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Abstract The solution of the Stokes problem with a punctual force in source 
term is not H1 × L2 and therefore the approximation by a finite element 
method is suboptimal. In the case of Poisson problem with a Dirac mass in 
the right-hand side, an optimal convergence for the Lagrange finite elements 
has been shown on a subdomain which excludes the singularity in L2-norm by 
Kp̈pl and Wohlmuth.

Here we show a quasi-optimal local convergence in H1 × L2-norm for a
Pk/Pk−1 finite element method, k ≥ 2, and for the P1b/P1. The error is still
analysed on a sub- domain which does not contain the singularity. The proof is
based on local Arnold and Liu error estimates, a weak version of Aubin–Nitsche
duality lemma applied to the Stokes problem and discrete inf-sup conditions.
These theoretical results are generalized to a wide class of finite element meth-
ods, before being illustrated by numerical simulations.
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1 Introduction

This paper is about the accuracy of the finite element method to solve the Stokes
problem with a punctual force in source term. Let us consider this following problem

⎧
⎨

⎩

−�u + ∇ p = δx0F in �,

div(u) = 0 in �,

u = 0 on ∂�,

(1)

where � ⊂ R
2 is a bounded open C∞ domain or a square, and δx0 F denotes the 

punctual force F located at x0 ∈ � such that dist(x0, ∂�)  >  0.
Our interest in Problem (1) is motivated by the modeling of the movement of thin

structures in a viscous fluid, such as flagella connected to bacteria or cilia involved in
the muco-ciliary transport in the lung [11]. Indeed, for instance in the lung, the cilium
is very thin and a direct simulation with a graded mesh would be too expensive. In
the asymptotics of a zero diameter cilium and an infinite velocity, the cilium is thus
replaced by a line Dirac of forces in source term. In order to ease the computations, the
line Dirac of forces is approached by a sum of punctual forces distributed along the
cilium [15]. Finally, by linearity of the Stokes problem, the analysis of the subsequent
problem reduces to Problem (1).

In dimension 2, Problem (1) has no H1(�)2×L
2(�)-solution. Although the numer-

ical solution can be defined in this case, the H1(�)-error (respectively L2(�)-error)
for the velocity (respectively the pressure) has no sense, and the L2-estimates of the
velocity cannot be derived like in the regular case without suitable modifications.

Let us notice that the scalar version of this problem, the Poisson Problem with a
Dirac mass in right-hand side, has already been widely studied. It occurs in many
applications from different areas like in optimal control of elliptic problems with state
contraints [7] or in the mathematical modeling of electromagnetic fields [13]. Problems
of this type are found in controllability for elliptic parabolic equations [8,9,16] and
in parameter identification problems with pointwise measurements [19]. In this case,
Babus̃ka proved in [3] for a two-dimensional smooth domain an L2(�)-convergence
of order h1−ε, ε > 0, where h is the mesh size, and Scott has shown in [20] an a priori
error estimates of order 2 − d2 , where the dimension d is 2 or 3. Casas has got the same 
result in [6] for general Borel measures on the right-hand side.

To the best of our knowledge, there is no finite element method convergence result
for the Stokes problem with a punctual force in source term. Moreover, in applications,
the punctual force (or the Dirac measure) at the point x0 is often a model reduction
approach and the finite element solution does not need to approximate precisely the
exact solution at the point x0. Thus, it is interesting to estimate the error on a fixed
subdomain which does not contain the singularity. In the case of the Poisson problem,
Köppl and Wohlmuth recently showed in [14] a quasi-optimal local convergence for
low order in L2-norm for Lagrange finite elements and optimal local convergence for
higher orders. In this paper, we establish in dimension 2 local error estimates for the
Stokes problem with a punctual force in source term, Problem (1), and show a quasi-
optimal convergence in H1 × L2-norm. The proof is based on the Arnold and Liu
Theorem [2] that establishes local error estimates for finite element discretizations of
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the Stokes equations with regular source term. It is written in the case of the Pk/Pk−1
elements for k � 2, and the MINI finite element method P1b/P1. No graded meshes
are required for these results and they imply that there is no pollution effects far from
the singularity.

The paper is organized as follows. Our main result is formulated in Sect. 2 followed
by theArnold and Liu Theorem [2], an important tool for the proof presented in Sect. 3.
Our theoretical results are generalized in Sect. 4, before being illustrated in Sect. 5 by
some numerical simulations.

2 Main results

In this section, we first set all the notations used in this paper. Then, we formulate our
main result and give an important tool for the proof: the Arnold and Liu Theorem.
For the sake of clarity, this result is first set and proved in the particular case of the
Pk/Pk−1 finite elements (k � 2) and the P1b/P1 elements. It will be generalized in
Sect. 4.

2.1 Notations

For a domain D, we will denote by ‖ · ‖s,q,D (respectively | · |s,q,D) the norm (respec-
tively semi-norm) of the Sobolev spaceWs,q(D), and by ‖ · ‖s,D (respectively | · |s,D)
the norm (respectively semi-norm) of the Sobolev space Hs(�). Letters in bold refer
to a vector of R

2 or a function with values in R
2. We also introduce the functional

space L2
0(�), that denotes all functions in L2(�) with 0 average on �.

For the numerical solution, let us introduce a family of quasi-uniform simplical
triangulations Th of�, where h is themeshsize. The approximation spaces for velocity
and pressure will be denoted by V k

h and Wk
h respectively, where k is the order of the

global method. In practice we will use the Pk/Pk−1 finite elements, for k � 2, defined
as

V k
h =

{
vh ∈ C (�̄)2

∣
∣ vh |T ∈ Pk[T ],∀T ∈ Th

}
,

Wk
h = {

ph ∈ C (�̄)
∣
∣ ph |T ∈ Pk−1[T ],∀T ∈ Th

}
,

and for k = 1, wewill use theMINI finite element method P1b/P1, whereP1b denotes
the continous piecewise linear and bubble functions. For a finite element T , the bubble
function b is defined by

b(x) =
{

λT
1 (x)λT

2 (x)λT
3 (x) if x ∈ T ,

0 else,

where λT
1 , λ

T
2 and λT

3 are the barycentric coordinates of x in relation to the triangle T .
We fix two subdomains of �, called �0 and �1, such that �0 ⊂⊂ �1 ⊂⊂ � and

x0 /∈ �1 (see Fig. 1). We consider a mesh which satisfies the following condition:
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Fig. 1 Domains �0 and �1

Assumption 1 For some h0, we have for all 0 < h � h0 (see Fig. 1),

�
m
0

⋂
�c

1 = ∅, where �
m
0 =

⋃

T∈Th
T

⋂
�0 	=∅

T .

2.2 Statement of our main results

Our main result is given by Theorem 1. The rest of the paper is mostly concerned by
the proof, the generalization and the illustration of this theorem.

Theorem 1 Consider �0 ⊂⊂ �1 ⊂⊂ � satisfying Assumption 1, k � 1, 1 � q < 2,
let (u, p) ∈ W 1,q

0 (�)×L
q
0(�) be the solution of Problem (1) and (uh, ph) its Galerkin

projection onto V k
h × Wk

h satisfying
∫

�
ph = 0 and

∫

�

∇(u − uh)::∇η −
∫

�

(p − ph)div(η) = 0 for all η ∈ V k
h ,

∫

�

div(u − uh)ξ = 0 for all ξ ∈ Wk
h .

(2)

Under the assumption that (u, p) ∈ Hk+1(�1)
2 × Hk(�1), there exists h1 such that

if 0 < h � h1, we have,

‖u − uh‖1,�0 + ‖p − ph‖0,�0 � C(�0,�1,�)hk
√| ln h|.

Remark 1 Note that since V k
h ⊂ C (�), the Galerkin projection of the solution of

Problem (1) onto V k
h × Wk

h is well-defined.
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2.3 Regularity of the solution (u, p)

In this subsection, we focus on the singularity of the solution, which is the main
difficulty in the study of this kind of problems. In dimension 2, Problem (1) has a
unique weak solution (u, p) ∈ W 1,q(�)2 × L

q
0(�) for all q ∈ [1, 2[. Indeed, the 2d

Stokeslet denoting (uδ, pδ) is defined as (see for instance [18])

uδ(x) = 1

4π

(

− ln ‖x‖I2 + x ⊗ x
‖x‖2

)

F,

pδ(x) = x · F
2π‖x‖2 .

(3)

The Stokeslet (uδ, pδ) satisfies in D ′(R2)

{−�uδ + ∇ pδ = δ0F,

div(uδ) = 0,

so that the Stokeslet (uδ(· − x0), pδ(· − x0)) contains the singular part of (u, p), the
solution of Problem (1). As it is done in [1] in the case of the Poisson problem, the
solution (u, p) can be built by using a suitable lift procedure which consists in adding
to (uδ, pδ) a corrector term (w, π) ∈ H1(�)2 × L

2
0(�), which satisfies the following

problem: ⎧
⎨

⎩

−�w + ∇π = 0 in �,

div(w) = 0 in �,

w = −uδ(· − x0) on ∂�.

Then, the solution is given by:

u(x) = uδ(x) + w(x) = 1

4π

(

− ln ‖x‖I2 + x ⊗ x
‖x‖2

)

F + w(x),

p(x) = pδ(x) + π(x) = x · F
2π‖x‖2 + π(x).

Moreover, it is easy to show that uδ /∈ H1
0 (�)2 and pδ /∈ L

2(�). Actually, we
can specify how the quantity |uδ|1,q,� goes to infinity when q goes to 2, with q < 2
(which will be noted q →

<
2). According to (3), estimating |uδ|1,q,� when q →

<
2 is

reduced to estimate |uδ|1,q,B , where B denotes the ball B(x0, 1): we can easily show
that there exists C > 0 depending only on F such that

∀1 � q < +∞, uδ ∈ L
q(�) and |∇uδ| � C

‖x‖ ,
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and so, using polar coordinates, we get for q < 2,

|uδ|q1,q,� =
∫

B
|∇uδ(x)|qdx �

∫

B

Cq

‖x‖q dx

= Cq
∫ 1

0

∫ 2π

0

1

rq−1 dθdr = 2πCq 1

2 − q
.

Finally, there exists C > 0 independent of q such that, for 1 � q < 2,

|uδ|1,q,� � C√
2 − q

. (4)

In the same way, we can easily show that there exists C > 0 independent of q such
that, for 1 � q < 2,

|pδ|0,q,� � C√
2 − q

. (5)

2.4 Arnold and Liu Theorem

Before stating Arnold and Liu Theorem, let us enumerate the assumptions that the
finite element spaces Vk

h and Wk
h have to satisfy so that the theorem is valid.

Assumption 2 Given two fixed concentric spheres B0 and B with B0 ⊂⊂ B ⊂⊂ �,
there exists an h0 such that for all 0 < h � h0, we have for some integers k1 and k2:

B1 For any 1 � �, for each v ∈ H �(B)2, there exists η ∈ Vk
h such that

‖v − η‖1,B � Chr1−1‖v‖�,B, r1 = min(k1 + 1, �).

For any 0 � s, for each π ∈ Hs(B), there exists ξ ∈ Wk
h such that

‖π − ξ‖0,B � Chr2‖π‖s,B , r2 = min(k2 + 1, s).

Moreover, if v ∈ H1
0 (B0)

2 (respectively π vanishes on B\B0) then η (respec-
tively ξ ) can be chosen to satisfy η ∈ H1

0 (B)2 (respectively ξ vanishes on�\B).
B2 Let ϕ ∈ C∞

0 (B0), vh ∈ Vk
h and πh ∈ Wk

h , then there exist η ∈ Vk
h

⋂
H1
0 (B) and

ξ ∈ Wk
h with supp ξ ⊂ B such that

‖ϕvh − η‖1,B � C(ϕ, B, B0)h‖vh‖1,B,

‖ϕπh − ξ‖0,B � C(ϕ, B, B0)h‖πh‖0,B .

B3 For each 0 < h � h0 there exists a domain Bh with B0 ⊂⊂ Bh ⊂⊂ B such that
for any 0 � �, for all vh ∈ Vk

h and πh ∈ Wk
h , we have

‖vh‖1,Bh � Ch−1−�‖vh‖−�,Bh ,

‖πh‖0,Bh � Ch−�‖πh‖−�,Bh .
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B4 There exists β > 0 such that for all 0 < h � h0, there is a domain Bh , with
B0 ⊂⊂ Bh ⊂⊂ B for which

inf
πh∈Wk

h
suppπh⊂Bh

sup
vh∈Vk

h
supp vh⊂Bh

∫

Bh
div(vh)πh

|πh |0,Bh |vh |1,Bh
� β > 0.

We now state the following theorem by Arnold and Liu [2], a key tool in the
forthcoming proof of Theorem 1.

Theorem (Arnold and Liu [2]) Consider �0 ⊂⊂ �1 ⊂⊂ �, V k
h and Wk

h sat-
isfy Assumption 2. Suppose that (v, π) ∈ H1(�)2 × L

2(�) satisfies (v, π)|�1
∈

H �(�1)
2 × H �−1(�1) for some � > 0. Suppose that (vh, πh) ∈ V k

h × Wk
h satisfies∫

�
(π − πh) = 0 and

∫

�

∇(v − vh)::∇η −
∫

�

(π − πh)div(η) = 0 for all η ∈ V k
h ,

∫

�

div(v − vh)ξ = 0 for all ξ ∈ Wk
h .

Let t be a nonnegative integer. Then there exist a constant C > 0 and a real h1 > 0
depending only on �1, �0, and t, such that if 0 < h � h1 we have

‖v − vh‖1,�0 + ‖π − πh‖0,�0 � C(hr1−1‖v‖�,�1 + hr2−1‖π‖�−1,�1

+ ‖v − vh‖−t,�1 + ‖π − πh‖−t−1,�1),

where r1 = min(k1 + 1, �), r2 = min(k2 + 2, �), and k1, k2 as in Assumption B1.

Assumption B1 is quite standard and satisfied by a wide class of finite element
spaces, including all finite element spaces defined on quasi-uniform meshes [10].
These elements also satisfy the inverse property defined by assumption B3 (see [17],
§2). The parameters k1 and k2 play respectively the role of the order of approximation
of the spaces Vk

h andWk
h . In our paper, for k � 2, we will have k1 = k and k2 = k−1,

and for k = 1, we will have k1 = k2 = k = 1. AssumptionB2 is less common but also
satisfied by a wide variety of approximation spaces, including the P1b-finite elements
[2]. Actually, for Lagrange finite elements, a more general property than assumption
B2 is shown in [4]: let 0 � s � � � k, ϕ ∈ C∞

0 (B) and vh ∈ V k
h , then there exists

η ∈ V k
h such that

‖ϕvh − η‖s,B � C(ϕ)h�−s+1‖vh‖�,B . (6)

Applied for s = � = 1, inequality (6) gives assumption B2. When Bh = �, Assump-
tion B4 is the standard stability condition or discrete inf-sup condition of the Stokes
elements. It usually holds as long as Bh is a union of elements.
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3 Proof of Theorem 1

This section is devoted to the proof of our main result: Theorem 1. First, we show
a weak version of Aubin–Nitsche duality lemma (Lemma 1), then we establish two
discrete inf-sup conditions (Lemmas 2, 3), and finally we use these results to prove
Theorem 1.

3.1 Aubin–Nitsche duality lemmawith a Dirac source term

The proof of Theorem 1 is based on Arnold and Liu Theorem. In order to estimate the
quantities ‖u − uh‖−t,�1 and ‖p − ph‖−t−1,�1 , we will first show a weak version of
Aubin–Nitsche Lemma in the case of the Stokes Problem with a Dirac source term.

Lemma 1 Consider f ∈ W−1,q(�)2 = (W 1,q ′
0 (�)2)′, 1 < q < 2, and let (w, π) ∈

W 1,q
0 (�) × L

q(�) be the unique solution of

⎧
⎨

⎩

−�w + ∇π = f in �,

div(w) = 0 in �,

w = 0 on ∂�.

Let (wh, πh) be the Galerkin projection of (w, π) in V k
h × Wk

h . For any integer 0 �
t � k − 1,

‖w − wh‖−t,� + ‖π − πh‖−t−1,�

� Ch2(1/q
′−1/2)ht+1 (|w − wh |1,q,� + |π − πh |0,q,�

)
, (7)

where C = C(t, q ′,�) is uniformly bounded in q ′ when q ′ → 2.

For the proof of this Lemma we will need the following result.

Proposition 1 (Girault and Raviart [12], Corollary A.2, page 97) Let Th be a family of
quasi-uniform simplicial triangulations of � ⊂ R

2, where h is the meshsize. For any
0 � m � t + 1 � k, for any mesh element T in the family, for any v ∈ Wk+1,q ′

(�),
q ′ � 2 real,

|v − �hv|m,q ′,T � Ch2(1/q
′−1/2)ht+2−m |v|t+2,2,T , (8)

where�hv is the Pk-interpolant of the function v andC is a constant that only depends
on q ′, t and m, uniformly bounded in q ′ when q ′ → 2.

Let us now prove Lemma 1.

Proof We aim at estimating, for t � 0, the H−t (�)-norm and the H−t−1(�)-norm
respectively of the errors w − wh and π − πh :

‖w − wh‖−t,� = sup
ϕ∈C∞

0 (�)2

1

‖ϕ‖t,�
∣
∣
∣
∣

∫

�

(w − wh) · ϕ

∣
∣
∣
∣ (9)
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‖π − πh‖−t−1,� = sup
ψ∈C∞

0 (�)

1

‖ψ‖t+1,�

∣
∣
∣
∣

∫

�

(π − πh)ψ

∣
∣
∣
∣ (10)

The Galerkin projection (wh, πh) satisfies
∫

�
π − πh = 0 and

∫

�

∇(w − wh)::∇η −
∫

�

(π − πh)div(η) = 0 for all η ∈ V k
h ,

∫

�

div(w − wh)ξ = 0 for all ξ ∈ Wk
h .

(11)

Consider ϕ ∈ C∞
0 (�)2 and let (wϕ, πϕ) be the solution of

⎧
⎨

⎩

−�wϕ + ∇πϕ = ϕ in �,

div(wϕ) = 0 in �,

wϕ = 0 on ∂�.

On a smooth domain, the unique solution to this problem belongs to Ht+2(�) ×
Ht+1(�), for any t ≥ 0 (see for instance [21], Chapter I, §2), and we have the
estimate

‖wϕ‖t+2,� + ‖πϕ‖t+1,� � C‖ϕ‖t,�, (12)

with C = C(t,�). This is not true on general polygonal domains, but it holds on
rectangular domains, as can be proven following [17] (see Example 3 in §7).

In dimension 2, by the Sobolev injections established for instance in [5], we have

Ht+2(�) ⊂ W 1,q ′
(�), Ht+1(�) ⊂ L

q ′
(�), (13)

for all q ′ in [2,+∞[. Thus
∫

�

(w − wh) · ϕ = −
∫

�

(w − wh) · �wϕ +
∫

�

(w − wh) · ∇πϕ

=
∫

�

∇(w − wh)::∇wϕ −
∫

�

div(w − wh)π
ϕ.

By adding (11) in the last equality, we get for any η ∈ V k
h and any ξ ∈ Wk

h ,

∫

�

(w − wh) · ϕ =
∫

�

∇(w − wh)::∇(wϕ − η) −
∫

�

div(w

− wh)(π
ϕ − ξ) +

∫

�

div(η)(π − πh).

9
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By definition of wϕ , div(wϕ) = 0 on �, so

∫

�

(w − wh) · ϕ =
∫

�

∇(w − wh)::∇(wϕ − η) −
∫

�

div(w − wh)(π
ϕ − ξ)

+
∫

�

div(η − wϕ)(π − πh)

� |w − wh |1,q,�

(|wϕ − η|1,q ′,� + |πϕ − ξ |0,q ′,�
)

+|π − πh |0,q,�|wϕ − η|1,q ′,�. (14)

Now let us deal with the pressure estimate. For any ψ ∈ C∞
0 (�), we denote by ψ̃

the function

ψ̃ = ψ − 1

|�|
∫

�

ψ.

By definition, it is easy to see that ψ̃ satisfies

∫

�

ψ̃ = 0 and ∀t � 0, ‖ψ̃‖t+1,� � C(�)‖ψ‖t+1,�.

We can now establish the result for the pressure: consider ψ ∈ C∞
0 (�) and let

(wψ, πψ) ∈ Ht+2(�) × Ht+1(�), for any t ≥ 0, be the solution of

⎧
⎨

⎩

−�wψ + ∇πψ = 0 in �,

div(wψ) = ψ̃ in �,

wψ = 0 on ∂�,

see [21] (Chapter I, §2) for the existence and the uniqueness of the solution on a
smooth domain and the following estimate, that holds also on rectangular domains:

‖wψ‖t+2,� + ‖πψ‖t+1,� � C‖ψ̃‖t+1,� � C‖ψ‖t+1,�, (15)

with C = C(t,�). Moreover,
∫

�

(π − πh) = 0, so that

∫

�

(π − πh)ψ =
∫

�

(π − πh)ψ̃ + 1

|�|
∫

�

ψ

∫

�

π − πh =
∫

�

(π − πh)ψ̃.

By the Sobolev injections recalled in (13), and the Galerkin projection property (11),
we can write for all η ∈ V k

h ,
∫

�

(π − πh)ψ =
∫

�

(π − πh)ψ̃

=
∫

�

(π − πh)div(wψ)

=
∫

�

(π − πh)div(wψ − η) +
∫

�

∇(w − wh)::∇η.

10
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Then, for all v ∈ W 1,q
0 (�)

∫

�

∇wψ ::∇v −
∫

�

πψdiv(v) = 0,

so, with v = w − wh , and for any ξ ∈ Wk
h ,

∫

�

(π − πh)ψ =
∫

�

(π − πh)div(wψ − η) +
∫

�

∇(w − wh)::∇(η − wψ)

+
∫

�

πψdiv(w − wh)

=
∫

�

(π − πh)div(wψ − η) +
∫

�

∇(w − wh)::∇(η − wψ)

+
∫

�

(πψ − ξ)div(w − wh)

� |π − πh |0,q,�|wψ − η|1,q ′,�

+|w − wh |1,q,�

(|wψ − η|1,q ′,� + |πψ − ξ |0,q ′,�
)
. (16)

Finally, for any (η1, ξ1) ∈ V k
h × Wk

h ,

∫

�

(w − wh) · ϕ � |w − wh |1,q,�

(|wϕ − η1|1,q ′,� + |πϕ − ξ1|0,q ′,�
)

+ |π − πh |0,q,�|wϕ − η1|1,q ′,�,

and for any (η2, ξ2) ∈ V k
h × Wk

h ,

∫

�

(π − πh)ψ � |π − πh |0,q,�|wψ − η2|1,q ′,�

+ |w − wh |1,q,�

(|wψ − η2|1,q ′,� + |πψ − ξ2|0,q ′,�
)
.

Let us now estimate |wϕ − η1|1,q ′,�, |wψ − η2|1,q ′,�, |πϕ − ξ1|0,q ′,� and |πψ −
ξ2|0,q ′,�. Up to now and until the end of this proof, we will take

η1 = �hwϕ and η2 = �hwψ ∈ V k
h ,

ξ1 = �̃hπ
ϕ and ξ2 = �̃hπ

ψ ∈ Wk
h ,

where �hv is the Pk-interpolant of the function v and �̃hv is the Pk−1-interpolant of
the function v. By (8), with m = 1, 0 � t � k − 1, for all T ∈ Th ,

|wϕ − η1|1,q ′,T � Ch2(1/q
′−1/2)ht+1|wϕ |t+2,2,T ,

|wψ − η2|1,q ′,T � Ch2(1/q
′−1/2)ht+1|wψ |t+2,2,T , (17)

11
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and with m = 0,

|πϕ − ξ1|0,q ′,T � Ch2(1/q
′−1/2)ht+1|πϕ |t+1,2,T ,

|πψ − ξ2|0,q ′,T � Ch2(1/q
′−1/2)ht+1|πψ |t+1,2,T ,

withC = C(q ′) a constant which is uniformly bounded in q ′ when q ′ → 2.We denote
the triangles of the mesh by {Ti }i=1,··· ,N , and we set

a = (ai )i and b = (bi )i , where ai = |wϕ − η1|1,q ′,Ti and bi = |wϕ |t+2,2,Ti .

By (17), we have, for all i in [[1, N ]],

ai � Ch2(1/q
′−1/2)ht+1bi .

We recall the norm equivalence in R
N for 0 < r < s,

‖x‖�s � ‖x‖�r � N 1/r−1/s‖x‖�s ,

with here N ∼ Ch−2. As 2 < q ′, we have ‖b‖
�q

′ � ‖b‖�2 . Then, we can write

|wϕ − η1|1,q ′,� = ‖a‖
�q

′ � Cht+1h2(1/q
′−1/2)‖b‖

�q
′

� Cht+1h2(1/q
′−1/2)‖b‖�2

� Cht+1h2(1/q
′−1/2)|wϕ |t+2,2,�.

Similarly, we get

|wψ − η2|1,q ′,� � Cht+1h2(1/q
′−1/2)|wψ |t+2,2,�,

|πϕ − ξ1|0,q ′,� � Cht+1h2(1/q
′−1/2)|πϕ |t+1,2,�,

|πψ − ξ2|0,q ′,� � Cht+1h2(1/q
′−1/2)|πψ |t+1,2,�,

and by (12) and (15), we get

|wϕ − η1|1,q ′,� � Cht+1h2(1/q
′−1/2)‖ϕ‖t,2,�,

|wψ − η2|1,q ′,� � Cht+1h2(1/q
′−1/2)‖ψ‖t+1,2,�,

|πϕ − ξ1|0,q ′,� � Cht+1h2(1/q
′−1/2)‖ϕ‖t,2,�,

|πψ − ξ2|0,q ′,� � Cht+1h2(1/q
′−1/2)‖ψ‖t+1,2,�,

Finally, the proof is ended by combining (9), (10), (14), (16), and the last inequalities.
��

Let us now introduce a small parameter 0 < ε  <  1, that is designed to tend to 0.
More precisely, it will be taken as ε = | ln h|−1 at the end of the proof of Theorem 1.

12
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In the following, we will use estimates of the solutions and finite element errors of
problem (1) in W 1,q and Lq norms, for q = qε = 2/(1 + ε); therefore, we will track
the dependence on qε of the constants in the different estimates in order to ensure that
they are bounded uniformly in ε when ε → 0.

Corollary 1 Let (uh, ph) ∈ V k
h ×Wk

h be the Galerkin projection of the solution (u, p)
of Problem (1), for any 0 < ε < 1,

‖u−uh‖−k+1,� + ‖p − ph‖−k,�

� Ch−εhk
(|u − uh |1,qε,� + |p − ph |0,qε,�

)
,

where qε = 2/(1 + ε) ∈ [1, 2[, and C is a constant uniformly bounded with respect
to ε when ε → 0.

Proof We will apply Lemma 1 with f = δx0F, w = u, π = p and t = k − 1. We can
explicit inequality (7):

2

(
1

q ′
ε

− 1

2

)

= 2

(
1 − ε

2
− 1

2

)

= −ε, (18)

where

q ′
ε = 2

1 − ε
.

It follows

‖u−uh‖−k+1,� + ‖p − ph‖−k,� � Ch−εhk
(|u − uh |1,qε,� + |p − ph |0,qε,�

)
,

where C = C(k, q ′
ε,�) is the constant appearing in inequality (7), and thus it is

uniformly bounded with respect to ε as ε → 0 (thus when q ′
ε → 2). ��

3.2 Discrete inf-sup conditions inL
q" -norm

Section 3.3 is devoted to estimate of |u−uh |1,qε,� and |p− ph |0,qε,�. In that prospect,
we need to establish two discrete inf-sup conditions.

Lemma 2 For qε = 2/(1 + ε) and q ′
ε = 2/(1 − ε), the approximation space V̊ k

h
defined by

V̊ k
h =

{

vh ∈ V k
h

∣
∣
∣
∣

∫

�

div(vh)ph = 0,∀ph ∈ Wk
h

}

,

satisfies the following discrete inf-sup condition:

inf
uh∈V̊ k

h

sup
vh∈V̊ k

h

∫

�
∇uh ::∇vh

|uh |1,qε,�|vh |1,q ′
ε,�

� Chε,

where C = C(k, q ′
ε,�) is uniformly bounded with respect to ε when ε → 0.

13
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For the proof of this Lemma we will need the following result.

Proposition 2 (Ciarlet, Theorem3.2.6, page 140 [10])LetTh a family of quasi-uniform
simplicial triangulations of� ⊂ R

d , where h is the meshsize. For vh ∈ V k
h , 1 � r , s <

+∞, 0 � � � m,

⎛

⎝
∑

T∈Th
|vh |rm,r ,T

⎞

⎠

1/r

� Ch−d[max{0,1/s−1/r}]h−(m−�)

⎛

⎝
∑

T∈Th
|vh |s�,s,T

⎞

⎠

1/s

,

where C is a constant that only depends on m, r , s, � and T , and is uniformly bounded
with respect to r when r → 2.

Let us now prove Lemma 2.

Proof The bilinear form a : (u, v) �→ ∫

�
∇u::∇v is continuous and coercive on

H1
0 (�), so for V̊ k

h vector subspace of H1
0 (�), we have the inf-sup condition:

inf
uh∈V̊ k

h

sup
vh∈V̊ k

h

∫

�
∇uh ::∇vh

|uh |1,�|vh |1,� � α > 0,

where α only depends on �. We apply Proposition 2 to any vh ∈ V̊ k
h ⊂ C (�), with

d = 2, m = � = 1, s = 2 and r = q ′
ε to get:

|vh |1,q ′
ε,�

� C(q ′
ε)h

−2(1/2−1/q ′
ε)|vh |1,2,� = C(q ′

ε)h
−ε|vh |1,2,�,

since q ′
ε = 2/(1 − ε), and C(q ′

ε) > 0 is uniformly bounded with respect to ε when
ε → 0. Moreover, for any uh ∈ V̊ k

h ,

|uh |1,qε,� � |�| ε
2 |uh |1,2,� � |�| ε

2

α
sup

vh∈V̊ k
h

∫

�
∇uh ::∇vh
|vh |1,2,�

� |�| ε
2

C(q ′
ε)α

h−ε sup
vh∈V̊ k

h

∫

�
∇uh ::∇vh

|vh |1,q ′
ε,�

Finally,

inf
uh∈V̊ k

h

sup
vh∈V̊ k

h

∫

�
∇uh ::∇vh

|uh |1,qε,�|vh |1,q ′
ε,�

� Chε,

where C = αC(q ′
ε)|�|− ε

2 is uniformly bounded with respect to ε when ε → 0. ��
The second discrete inf-sup condition we need is given by the following lemma:

Lemma 3 For qε = 2/(1+ ε) and q ′
ε = 2/(1− ε), the approximations spaces V k

h and
Wk

h satisfy the following discrete inf-sup condition:

14



Local error analysis for the Stokes equations...

inf
ph∈Wk

h

sup
vh∈V k

h

∫

�
div(vh)ph

|ph |0,qε,�|vh |1,q ′
ε,�

� C |�|− ε
2 hε,

where C = C(k, q ′
ε,�) is uniformly bounded with respect to ε when ε → 0.

Proof The proof is similar to the proof of Lemma 2. According to Assumption B4,

inf
ph∈Wk

h

sup
vh∈V k

h

∫

�
div(vh)ph

|ph |0,�|vh |1,� � β > 0.

According to Proposition 2, for any vh ∈ V k
h ,

|vh |1,q ′
ε,�

� C(q ′
ε)h

−ε|vh |1,2,�.

So, we have, for any ph ∈ Wk
h and qε < 2,

|ph |0,qε,� � |�| ε
2 |ph |0,� � |�| ε

2

β
sup

vh∈V k
h

∫

�
div(vh)ph
|vh |1,2,�

� |�| ε
2

C(q ′
ε)β

h−ε sup
vh∈V k

h

∫

�
div(vh)ph

|vh |1,q ′
ε,�

Finally, we get

inf
ph∈Wk

h

sup
vh∈V k

h

∫

�
div(vh)ph

|ph |0,qε,�|vh |1,q ′
ε,�

� Chε,

where C = βC(q ′
ε)|�|− ε

2 is uniformly bounded with respect to ε when ε → 0. ��

3.3 Estimates of |u− uh|1,q",Ä and |p− ph|0,q",Ä
Following Corollary 1, the quantities |u − uh |1,qε,� and |p − ph |0,qε,� have to be
estimated to prove Theorem 1. We will apply the last two results to bound them in
terms of |u|1,qε,� and |p|0,qε,�.

Lemma 4 Let (uh, ph) ∈ V k
h × Wk

h be the Galerkin projection of the solution (u, p)
of Problem (1), for any small enough real ε > 0, and for qε = 2/(1 + ε) and
q ′
ε = 2/(1 − ε),

|u − uh |1,qε,� � Ch−ε
(|u|1,qε,� + |p|0,qε,�

)
,

where C = C(k, q ′
ε,�) is uniformly bounded with respect to ε when ε → 0.

Proof First, we will estimate |uh |1,qε,� in terms of |u|1,qε,�. As we have div(u) = 0
on �, by (2) we have ∫

�

div(uh)qh = 0, ∀qh ∈ Wk
h ,

15
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and so, uh ∈ V̊ k
h . According to Lemma 2, there exists vh ∈ V̊ k

h such as |vh |1,q ′
ε,�

= 1,
and

|uh |1,qε,� � Ch−ε

∫

�

∇uh ::∇vh,

where C = C(k, q ′
ε,�) > 0 and uniformly bounded with respect to ε when ε → 0.

Moreover, equality (2) gives

∫

�

∇uh ::∇vh =
∫

�

∇u::∇vh −
∫

�

div(vh)(p − ph).

Now, vh ∈ V̊ k
h , so ∫

�

div(vh)ph = 0.

Finally, as |vh |1,q ′
ε,�

= 1, we get

|uh |1,qε,� � Ch−ε

(∫

�

∇u::∇vh −
∫

�

div(vh)p
)

,

� Ch−ε
(|u|1,qε,� + |p|0,qε,�

)
.

We conclude with the triangulary inequality:

|u − uh |1,qε,� � |u|1,qε,� + |uh |1,qε,� � Ch−ε
(
(1 + hε)|u|1,qε,� + |p|0,qε,�

)
.

And thus for ε sufficiently small:

|u − uh |1,qε,� � Ch−ε
(|u|1,qε,� + |p|0,qε,�

)
.

��
We can now estimate |p − ph |0,qε,�.

Lemma 5 Let (uh, ph) ∈ V k
h × Wk

h be the Galerkin projection of the solution (u, p)
of Problem (1), for any small enough real ε > 0, and for qε = 2/(1 + ε) and
q ′
ε = 2/(1 − ε),

|p − ph |0,qε,� � Ch−2ε
(
|u|1,qε,� + (1 + |�| ε

2 )|p|0,qε,�

)
,

where C = C(k, q ′
ε,�) is uniformly bounded with respect to ε when ε → 0.

Proof The proof is similar to the velocity case: according to Lemma 3, there exists
vh ∈ V k

h such as |vh |1,q ′
ε,�

= 1 and

|ph |0,qε,� � Ch−ε

∫

�

div(vh)ph,

16
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where C = C(k, q ′
ε,�) is uniformly bounded with respect to ε when ε → 0. By (2),

we have ∫

�

div(vh)ph = −
∫

�

∇(u − uh)::∇vh +
∫

�

div(vh)p.

By applying Lemma 4, as |vh |1,q ′
ε,�

= 1, we get

|ph |0,qε,� � Ch−ε

(

−
∫

�

∇(u − uh)::∇vh +
∫

�

div(vh)p
)

,

� Ch−ε
(|u − uh |1,qε,� + |p|0,qε,�

)
,

� Ch−2ε
(
|u|1,qε,� + (1 + |�| ε

2 )|p|0,qε,�

)
.

��

3.4 Proof of Theorem 1

We can now prove Theorem 1.

Proof The functions u and p are analytic on �1, so the quantities ‖u‖k+1,�1 and
‖p‖k,�1 are bounded. Let us note that in this case (u, p) /∈ H1

0 (�)2 × L
2
0(�), but

Remark 1 allows us to apply Arnold and Liu Theorem. For k1 = k and

k2 =
{
1 if k = 1,
k − 1 if k � 2,

and l = k + 1 and t = k − 1, we have

‖u − uh‖1,�0 + ‖p − ph‖0,�0 � C(hk + ‖u − uh‖−k+1,�1 + ‖p − ph‖−k,�1).

By combining Corollary 1, Lemmas 4 and 5, and inequalities (4) and (5), we get

‖u − uh‖−k+1,�1 + ‖p − ph‖−k,�1 � Chk
h−3ε

√
2 − qε

,

with C = C(k, q ′
ε,�) uniformly bounded with respect to ε when ε → 0. Since

qε = 2/(1 + ε), with ε < 1,

1√
2 − qε

=
√
1 + ε√
2ε

� 1√
ε
,

therefore, taking ε = | ln h|−1,

‖u − uh‖1,�0 + ‖p − ph‖0,�0 � Chk
√| ln h|,

which ends the proof of Theorem 1. ��
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4 General case

Theorem 1 and its proof have been written in the particular case of the Pk/Pk−1 finite
element method, k � 2, and the P1b/P1 elements (which corresponds to the case
k = 1). But we can state a more general result.

First, let us focus on the assumptions: let Th be a family of quasi-uniform simplicial
triangulations of�, let V k1

h andWk2
h be two approximation spaces satisfying Assump-

tion 2. We will also assume that V k1
h ∈ C (�): this assumption ensures that the finite

element solution is well-defined. Moreover, we will need two more assumptions, they
will play the role of Propositions 1 and 2:

Assumption 3 Given B ⊂ �, consider q ′ � 2, there exists an h0 such that for all
0 < h � h0, we have for some positive integers k1 and k2:

B̃1 For any 1 � �, for each v ∈ H �(B)2, there exists η ∈ V k1
h such that, for any

mesh element T ⊂ B,

|v − η|1,q ′,T � Chd(1/q ′−1/2)hr1−1|v|�,2,T , r1 = min(k1 + 1, �).

For any 0 � s, for each π ∈ Hs(B), there exists ξ ∈ Wk2
h such that, for any

mesh element T ⊂ B,

|π − ξ |0,q ′,T � Chd(1/q ′−1/2)hr2 |π |s,2,T , r2 = min(k2 + 1, s).

B̃3 For all vh ∈ V k1
h , for any mesh element T ∈ Th , we have

‖vh‖1,q ′,T � Ch2(1/q
′−1/2)‖vh‖1,2,T .

Assumptions B̃1 and B̃3 are also satisfied by a wide class of finite element spaces,
including all finite element spaces defined on quasi-uniform meshes [10]. They are
actually common generalisations of Assumptions B1 and B3.

We can now state the following result:

Theorem 2 Consider �0 ⊂⊂ �1 ⊂⊂ � satisfying Assumption 1, 1 � q < 2, let
(u, p) ∈ W 1,q

0 (�) × L
q
0(�) be the solution of Problem (1) and (uh, ph) its Galerkin

projection onto V k1
h × Wk2

h satisfying
∫

�
ph = 0 and

∫

�

∇(u − uh)::∇η −
∫

�

(p − ph)div(η) = 0 for all η ∈ V k1
h ,

∫

�

div(u − uh)ξ = 0 for all ξ ∈ Wk2
h .

Under the assumption that (u, p) ∈ H k0+1(�1)
2 × H k0 (�1), there exists h1 such that 

if 0 < h � h1, we have,

‖u − uh‖1,�0 + ‖p − ph‖0,�0 � C(�0,�1,�)hk0
√| ln h|,

where k0 = min(k1, k2 + 1).
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Proof We will not develop the complete proof here because it is essentially the same
as the proof of Theorem 1 (see Sect. 3). But we will explain two differences between
the both proofs:

• the result of Lemma 1 holds in this case, but for 0 � t � min(k1 − 1, k2).
• the result of Corollary 1 becomes

‖u−uh‖−k0+1,� + ‖p − ph‖−k0,�

� Ch−εhk0
(|u − uh |1,qε,� + |p − ph |0,qε,�

)
,

where k0 = min(k1, k2 + 1).

The end of the proof is the same. ��

5 Numerical illustrations

In this section, we present some computations which illustrate the theoretical results
proved in this paper.

Concentration of the error around the singularity. First, we define � as the unit
square,

� = [0, 1]2.
and solve the following Stokes problem with F = t [1, 1] and x0 = (0.5, 0.5),

⎧
⎨

⎩

−�u + ∇ p = δx0F in �,

div(u) = 0 in �,

u = uδ on ∂�,

(19)

where uδ is the 2d Stokeslet defined in (3).

Remark 2 Unlike Problem (1), Problem (19) has non homogeneousDirichlet boundary
conditions, but in this case, the exact solution is known: uδ . Thus, it is easier to get
some information on the error.

Figures 2, 3, 4 and 5 show the repartition of the error on the velocity with a P1b/P1
method for respectively 1/h � 5, 10, 20 and 30. Figures 6, 7, 8 and 9 show the
repartition of the error on the pressure for the same values of h. In both cases, they
illustrate the fact that the error concentrates around the singularity. These simulations
made us think that the convergence could be optimal on a subdomain which does not
contain the singularity: quasi-optimality has been proved in this paper (Theorem 1).
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Fig. 2 Error in velocity, 1/h � 5 Error0.02

0.01

0

Fig. 3 Error in velocity,
1/h � 10

Fig. 4 Error in velocity,
1/h � 20

Fig. 5 Error in velocity
1/h � 30
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Fig. 6 Error in pressure,
1/h � 5

Fig. 7 Error in pressure,
1/h � 10

Fig. 8 Error in pressure,
1/h � 20

Fig. 9 Error in pressure
1/h � 30
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Fig. 10 Estimated order of convergence for the H1(�0)-norm of the velocity

Estimated orders of convergence. For this second example, the domain � is still the
unit square, and �0 is defined as the following portion of �,

�0 = {x ∈ � : ‖x − x0‖2 > 0.4} ,

where x0 = (0.5, 0.5). We fix F = t [1, 1] and solve Problem 1 for different mesh
sizes h with the P1b/P1, P2/P1 and P3/P2 finite element methods.

Figure 10 (respectively Fig. 11) presents the estimated orders of convergence for
the H1(�0)-norm of the velocity (respectively the L2(�0)-norm of the pressure) for 
these three methods. The convergence far from the singularity (i.e. on �0) is the same
as in the regular case: the Pk /Pk−1 method (or the P1b/P1 method if k = 1) converges
at the order k on �0 in H1-norm for the velocity and in L2-norm for the pressure, as 
proved in this paper. Let us just note that there is an over-convergence in pressure for
the P1b/P1 elements: the estimated order of convergence is approximately 2, greater
than the convergence expected by Theorem 1.

When focusing on the error in L2(�0)-norm for the velocity, Fig. 12 suggests that 
the Pk /Pk−1 finite element method (or P1b/P1 if k = 1) converges at the order k + 1
on �0. This result has only been observed numerically but it is still an open question.
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Fig. 11 Estimated order of convergence for the L
2(�0)-norm of the pressure

6 A concluding remark: the 3d case

The approach presented in this paper can be extended in order to obtain a local estimate
of the numerical solution to problem (Pδ) in dimension 3, that is to the Stokes problem
with as source term a Dirac measure concentrated at one point. However straightfor-
ward adaptations of the proof lead to a suboptimal result. In fact, the solution uδ to
problem (Pδ) in 3d belongs toW

1,q
0 (�) for all q in [1, 3

2 [. As a consequence the couple
(qε, q ′

ε) defined in Corollary (1) and its related proof has to be taken near to ( 32 , 3).
For instance,

qε = 3

2 + ε
and q ′

ε = 3

1 − ε
,

so that, with the same notations, the result of Corollary 1 becomes

‖u−uh‖−k+1,� + ‖p − ph‖−k,�

� Ch−ε− 1
2 hk

(|u − uh |1,qε,� + |p − ph |0,qε,�

)
.

Moreover, the discrete inf-sup condition in dimension 3 is

inf
uh∈V̊ k

h

sup
vh∈V̊ k

h

∫

�
∇uh ::∇vh

|uh |1,qε,�|vh |1,q ′
ε,�

� Chε+ 1
2 .
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Fig. 12 Estimated order of convergence for the L
2(�0)-norm of the velocity

Thus when dealing with the estimate for |u − uh |1,qε,�, we get

|u − uh |1,qε,� � Ch−ε− 1
2
(|u|1,qε,� + |p|0,qε,�

)
.

Finally, the Stokeslet in 3d writes:

uδ(x) = 1

8π

(
I3

‖x‖ + x ⊗ x
‖x‖3

)

F, pδ(x) = x · F
4π‖x‖3 ,

which leads to the estimate, for 1 ≤ q < 3
2 ,

‖u‖1,q,� ≤ C

(3 − 2q)2/3,
‖p‖0,q,� ≤ C

(3 − 2q)2/3
,

where C > 0 is a constant independent of q. Combining the previous properties, we
get the estimate

‖u − uh‖1,�0 + ‖p − ph‖0,�0 � C(�0,�1,�)hk−1(| ln h|) 
2
3 ,

which is clearly suboptimal.
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