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1 Introdution

In reent times, two-level methods are beoming popular in a wide variety of appliations.

Sometimes they an be used to take advantage of parallel omputers, as in Domain Deompo-

sition Methods (see for instane the series of proeedings of the yearly Conferene in Domain

Deomposition Methods, visiting [16℄.) Other times, they are used in order to take into a-

ount small-sale e�ets, as for instane when dealing with omposite materials having a �ne

struture (see [4℄, [24℄, [25℄, and the review [17℄ with the referenes therein), or when dealing

with Helmholtz equations at high frequeny ([18℄, [20℄.) They are also used in a posteriori

error analysis (see e.g. [29℄, [30℄, [31℄, and the referenes therein). Finally, they are often also

used to stabilise �nite element formulations that lak the neessary stability properties, as

for onvetion{dominated ows or Stokes problems ([22℄, [21℄, [15℄). In many ases, they are

not seen as two-level methods, but, as we shall see, they �t rather easily into this athegory.

The �rst goal of this paper will indeed be to indiate a general framework that an be

seen as a generalisation of the augmented spae method, in order to inlude a wide lass of

these triks, used for dealing with subsales, into a uni�ed approah.

The seond, and main goal of the paper, is to show that within this approah one an set

suitable onditions on the subgrids that ensure the optimal performane of the orresponding

two-level method. We shall do that in the partiular ase of advetion dominated salar

equations, where muh is known (see e.g. [34℄, [35℄, [12℄, [36℄), so that the quality of the

results an be evaluated in a sharper way. In partiular, we shall see that a ertain number

of stabilised methods an atually be interpreted just as a way of hoosing a suitable subgrid,

and then applying the usual Galerkin framework (and omputer programs). In other words,

one an stabilise the problem just by hoosing the subgrid. This learly an also be used in

self-adaptive methods.

It would be very interesting to study the possible extensions of this approah to other

problems, inluding more ompliated uid ows, or also problems of di�erent appliative

nature.

2 The model problem

In order to desribe the general idea, we take a simple model problem, or, rather, a lass of

them. We assume that 
 is a polygon in R

2

, and we set

V := H

1

0

(
): (2.1)

We then onsider a bilinear form (u; v)! L(u; v) de�ned as
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where learly x = (x

1

; x

2

). The oeÆients a

ij

; b

j

; 

i

; d are supposed to be smooth funtions

of x in 
. This will easily imply the ontinuity of the bilinear form L on V � V , that is

9M suh that L(u; v) �M kuk

V

kvk

V

; 8u; v 2 V: (2.3)

To simplify the exposition, we also assume that the bilinear form L is V -ellipti:

9� > 0 suh that L(v; v) � � kvk

2

V

8v 2 V: (2.4)

For a given right-hand side f , say, in L

2

(
), we then onsider the variational problem

�

�nd u 2 V suh that:

L(u; v) = (f; v) 8v 2 V;

(2.5)

where, as usual, ( ; ) stands for the L

2

(
) inner produt. It is lear that, thanks to (2.4), prob-

lem (2.5) has a unique solution. In di�erent appliations, (2.5) an represent a onvetion{

dominated problem, or a problem with a omposite material having a �ne struture, or just a

nie ellipti problem where domain deomposition has to be used in order to take advantage

of a parallel omputer. The approah that follows, however, an rather easily be extended to

systems of equations, inluding inde�nite ones that an be found, for instane, in appliations

to mixed methods.

3 The general idea

The general idea behind the lass of methods we have in mind an be roughly desribed as

follows. We onsider a splitting of 
 in a �nite number of subpolygons 


k

(k = 1; ::;K) in

suh a way that

[

k




k

= 
 and 


r

\ 


s

= ; for r 6= s: (3.1)

In (3.1) eah 


k

is supposed to be open, and 


k

represents its losure. Then we set

� := [

k

�


k

; (3.2)

and we denote by � the spae of traes on � of the funtions of V , that is

� := fg 2 L

2

(�) suh that 9 v 2 V; v

j�

= gg: (3.3)

Then we onsider a �nite dimensional subspae

�

H

� � with N := dim(�

H

); (3.4)

and the in�nite dimensional subspae V

H

of V made by the funtions in V whose traes on

� belong to �

H

, that is

V

H

:= fv 2 V suh that v

j�

2 �

H

g: (3.5)

We an now onsider the approximate problem:

�

�nd u

H

2 V

H

suh that:

L(u

H

; v

H

) = (f; v

H

) 8v

H

2 V

H

:

(3.6)

It is lear from (2.4) that problem (3.6) also has a unique solution. In many appliations,

the deomposition (3.1) will be made of triangles, with the usual ompatibility onditions

(namely, for all r and s (with r 6= s) the intersetion 


r

\ 


s

must be either a ommon



Stabilising subgrids 3

vertex or a ommon edge or empty.) Then, we might hoose a �nite element spae V

P

(the

subjaent Polynomial spae) and de�ne �

H

as the spae spanned by the traes of V

P

on

�. In these ases, the stabilising e�ets of passing from V

P

to V

H

are well known. See for

instane [12℄, [36℄ for the ase of advetion{dominated problems. In other ases, however,

the struture an be muh more ompliated. We might for instane have a grid on �,

and take �

H

as the set of funtions that are ontinuous on �, vanishing on � \ �
 and

pieewise polynomial on the given grid. Note that, in this ase, the 


k

's do not need to

be triangles or quadrilaterals, and even if they are we do not need ompatibility onditions

among them. In these ases, there will be no obviuos starting spae V

P

. In other ases the

spae �

H

an ontain, besides or instead of pieewise polynomials, other funtions having

suitable properties (exponentials, trigonometri funtions, wavelets, or other problem-�tted

shapes). During an iterative proedure, these funtions might be hanged from time to time,

using suitable information obtained from the previous steps. As you an see, the framework

is rather general.

In any ase, it is possible to identify the subspae (of bubbles) V

B

whih an simply be

de�ned as

V

B

:= �

k

H

1

0

(


k

) � V � H

1

0

(
): (3.7)

We an then identify another subspae V

L

made of funtions v

L

in V

H

suh that

L(v

L

; v

B

) = 0 8v

B

2 V

B

: (3.8)

If L is the di�erential operator assoiated with the bilinear form L, the elements of V

L

are

loal solutions of the partial di�erential equation

Lv

L

= 0 in 


k

(3.9)

for all k, and having traes on � that belong to �

H

. It is lear that

V

H

� V

L

� V

B

: (3.10)

In some ases it will also be onvenient to identify a third subspae, V

L

�

, made of funtions

v

L

�

in V

H

suh that

L(v

B

; v

L

�

) = 0 8v

B

2 V

B

: (3.11)

If L

�

is the formal adjoint of the operator L, the elements of V

L

�

are loal solutions of the

partial di�erential equation

L

�

v

L

�

= 0 in 


k

(3.12)

for all k, also with traes in �

H

. It is lear that together with (3.10) we also have

V

H

� V

L

�

� V

B

: (3.13)

We also point out that both V

L

and V

L

�

are �nite dimensional, and dim(V

L

) � dim(V

L

�

) �

dim(�

H

) � N .

Given the right-hand side f we an �nally onsider the partiular solution u

f

B

2 V

B

suh

that

L(u

f

B

; v

B

) = (f; v

B

) 8v

B

2 V

B

: (3.14)

In strong form, u

f

B

will be the solution, in every 


k

, of the boundary value problem

Lu

f

B

= f in 


k

u

f

B

= 0 on �


k

: (3.15)

We have then the following theorem.
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Theorem 1 Let u

H

be the unique solution of (3.6), and let u

H

= u

L

+u

B

be its deomposition

aording to (3.10). Then u

B

oinides with the unique solution u

f

B

of (3.14), and u

L

an be

haraterized as the unique solution of either one of the following problems:

�

�nd u

L

2 V

L

suh that

L(u

L

; v

L

) + L(u

B

; v

L

) = (f; v

L

) 8v

L

2 V

L

(3.16)

or

�

�nd u

L

2 V

L

suh that

L(u

L

; v

L

�

) = (f; v

L

�

) 8v

L

�

2 V

L

�

:

(3.17)

Proof It is lear from (2.4) that both (3.6) and (3.16) have a unique solution. Let u

H

be the solution

of (3.6) and let u

H

= u

L

+u

B

be its (unique) deomposition aording to (3.10). Using the de�nition

(3.8) and then (3.6) for v

H

= v

B

we have

L(u

B

; v

B

) = L(u

L

; v

B

) + L(u

B

; v

B

) = L(u

H

; v

B

) = (f; v

B

) 8v

B

2 V

B

; (3.18)

whih implies that u

B

oinides with the unique solution u

f

B

of (3.14). Then we an take v

H

= v

L

in

(3.6) and obtain

(f; v

L

) = L(u

H

; v

L

) = L(u

L

+ u

B

; v

L

) 8v

L

2 V

L

; (3.19)

telling us that u

L

oinides with the unique solution of (3.16).

We still have to prove that u

L

an also be haraterised as the solution of (3.17), and that suh

solution is unique. Using u

H

= u

L

+u

f

B

and v

H

= v

L

�

in (3.6), and using (3.11) we immediately have

that u

L

solves (3.17). Let now fu

L

be another possible solution, in V

L

, of (3.17). It is easy to see that

then fu

H

:= fu

L

+ u

f

B

veri�es (3.6) for all v

L

�

2 V

L

�

and for all v

B

2 V

B

. Using (3.13) we have then

that fu

H

veri�es (3.6) for all v

H

in V

H

. As (3.6) has a unique solution, we onlude that fu

H

� u

H

and

then fu

L

� u

L

, thanks to (3.10). Hene the uniqueness of the solution of (3.17) is also proved. �

In the ase where one has a subjaent polynomial spae V

P

, one an present the problem

in another, slightly di�erent way. Indeed, assuming for simpliity that V

P

\ V

B

= ;, we an

now split V

H

= V

P

� V

B

, and, aordingly, u

H

= u

P

+ u

BP

. Then u

BP

solves

L(u

BP

; v

B

) = �L(u

P

; v

B

) + (f; v

B

) 8v

B

2 V

B

; (3.20)

that an be written, shortly, as

u

BP

= L

�1

B

(f � Lu

P

): (3.21)

This, inserted into

L(u

P

; v

P

) + L(u

BP

; v

P

) = (f; v

P

) 8v

P

2 V

P

; (3.22)

gives

L(u

P

; v

P

)� (L

�1

B

u

P

; L

�

v

P

) = (f; v

P

)� (L

�1

B

f; L

�

v

P

) 8v

P

2 V

P

; (3.23)

whih ould be onsidered as another equivalent way of writing the same problem (3.6), or

(3.16), or (3.17). Notie that, in partiular, we have L

�1

B

f � u

f

B

as de�ned in (3.14).

Methods of these types are found at several ourrenes in the literature. For instane, for

onvetion dominated problems one an see [33℄, [34℄, and the referenes therein for methods

in the formulation (3.16) or (3.17), while the formulation (3.23) an be found in [13℄, and

its equivalene with stabilised methods as SUPG (see [14℄, [19℄, [26℄, [27℄) is made lear in

[7℄. Formulations of the type (3.16) or (3.17) an also be found, at a more abstrat level

but for one-dimensional problems, in [5℄, and also, in more reent times, in [24℄, [25℄ for

homogeneisation problems. In some sense, the upsaling tehnique of [1℄, [2℄, [3℄ an also be
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seen in this framework, although it uses the mixed formulation as a starting point and hene

does not enter diretly the present assumptions. See [10℄ for a more general setting that

inludes the upsaling methods. Apart from one-dimensional ases (where they all give bak

the exat solution, provided one solves exatly the di�erential equation in eah subdomain,)

all these methods require a suitable approximation for the solutions of the problems inside

eah subdomain, as we shall see below in more detail. A similar point of view ould also be

taken when looking at Domain Deomposition problems, where (3.17) would represent a sort

of ontinuous Shur omplement that needs however, one way or another, to be disretised.

Indeed, if we onsider the problem of the atual solution of all these equivalent formula-

tions, several observations are in order. First of all, problem (3.14) is in�nite dimensional,

and therefore its solution is, in general, out of reah. In some ases, however, one might

think that the knowledge of the traes of u

L

ould provide enough information. However,

even if problem (3.17) is atually �nite dimensional, it is not solvable in pratie. Indeed,

in order to solve it on a omputer, we should �rst hoose a basis f 

(i)

g (i = 1; ::; N) in �

H

(this is not so diÆult,) and then assoiate to it a basis fv

(j)

L

g (j = 1; ::; N) in V

L

and a basis

fv

(i)

L

�

g (i = 1; ::; N) in V

L

�

, de�ned by:

v

(j)

L

=  

(j)

on � and Lv

(j)

L

= 0 in 


k

; (j = 1; ::; N ; k = 1; ::;K); (3.24)

and, respetively,

v

(i)

L

�

=  

(i)

on � and L

�

v

(i)

L

�

= 0 in 


k

; (i = 1; ::; N ; k = 1; ::;K): (3.25)

Then, we an express u

L

as u

L

=

P

j

U

j

v

(j)

L

and redue (3.17) to the linear system of equations

N

X

j=1

U

j

L(v

(j)

L

; v

(i)

L

�

) = (f; v

(i)

L

�

) 8i = 1; ::; N: (3.26)

However, in order to ompute the oeÆients L(v

(j)

L

; v

(i)

L

�

) of the matrix in (3.26), we need to

know the values of the v

(j)

L

and v

(i)

L

�

inside eah 


k

, that requires the solutions of the boundary

value problems (3.24) and (3.25); and this annot be obtained in pratie. Clearly we have

to resort to some approximate solution. It would be nie, however, to have guidelines that

indiate the neessary degree of auray that suh approximate solution must have.

The same problem arises with the formulation (3.23). Indeed, expressing now u

P

as

u

P

=

P

j

U

j

v

(j)

P

we should now ompute

N

X

j=1

U

j

L(v

(j)

P

; v

(i)

P

)� (L

�1

B

v

(j)

P

; L

�

v

(i)

P

) = (f; v

(i)

P

)� (u

f

B

; L

�

v

(i)

P

) 8i = 1; ::; N; (3.27)

whih again requires the (approximate) solution of the loal problems de�ning L

�1

B

v

(j)

P

for

eah j, and u

f

B

. In these ases, having understood the stabilising e�et of the additional

term appearing in the sti�ness matrix of (3.27), that is �(L

�1

B

u

P

; L

�

v

P

), the e�orts have

been onentrated mostly in providing approximate solutions of (3.20) that reprodued the

same stabilising e�et ; see for instane [11℄, [8℄, [21℄, [9℄. In partiular, when V

P

is made

of pieewise linear funtions, we have that the stabilised problem orresponds exatly to the

SUPG method, with a spei� value for the stabilising parameter � . An approximate solution

will produe the same method with a di�erent value of � . One ould then use the theory

of SUPG methods (see e.g. [28℄, [23℄, [35℄) to get the proper onditions on � , and hene,
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bakward, on the quality of the approximation. This, however, apart from working only in

partiular ases, seems somehow unfair.

In the next setion we are going to follow a di�erent approah. We suppose that in eah

element 


k

we have a subgrid, and a �nite element spae on this subgrid. The disretised

solutions of the loal problems are then obtained by the standard Galerkin �nite element

approximation. We want to see if we an presribe reasonable onditions on these �nite

element (subgrid) spaes, in order to preserve, in a sense to be made preise, the auray

that was (ideally) obtainable by solving (3.17). Unfortunately, we will not be able to do

that for a ompletely general problem, but we will have to onsider a simpli�ed advetion

dominated ase. We hope however that this might be a �rst step towards more general

results.

4 The hoie of the subgrid

As announed at the end of the last setion, we are now going to onsider a partiular ase of

(2.2). In this partiular ase, we shall introdue suÆient onditions on the subgrid in order

to preserve the quality of the a-priori error bounds.

More preisely, we shall make the following assumptions on the bilinear form L:

L(u; v) = "L

s

(u; v) + L

a

(u; v); (4.1)

where L

s

(u; v) is a bilinear symmetri form on V � V satisfying

jvj

2

1;


� L

s

(v; v) �M

s

jvj

2

1;


8v 2 V; (4.2)

representing the di�usive term, while L

a

is a skew-symmetri bilinear form on V �V satisfying

L

a

(u; v) �M

a

kuk

0;


jvj

2

1;


8u; v 2 V; (4.3)

representing the onvetive term. Finally, " is a small parameter. We obviously assume that

some harateristi length of 
 (for instane its diameter) has been saled to 1. It is not

diÆult to hek that the present ase is a partiular ase of (2.2), that an be obtained for

instane by making very mild assumptions on the oeÆients a

ij

, taking d and all b

i

's equal

to zero and assuming the onvetive term  = (

j

) to have zero divergene in 
.

Before disussing the hoie of the subgrid, we �rst analyse the a-priori error estimates

for problem (3.6). Following essentially [12℄, we set

e

H

:= u� u

H

and �

H

:= u� u

i

H

(4.4)

where u

i

H

is any approximation of u in V

H

. We immediately notie that

e

H

� �

H

2 V

H

(4.5)

so that by Galerkin orthogonality we have

L(e

H

; e

H

� �

H

) = 0: (4.6)

Using now (4.2) and (4.1), then (4.6), then again (4.1) and (4.2), we have

"je

H

j

2

1

� L(e

H

; e

H

) = L(e

H

; �

H

) = "L

s

(e

H

; �

H

) + L

a

(e

H

; �

H

)

� "M

s

je

H

j

1

j�

H

j

1

+ L

a

(e

H

; �

H

):

(4.7)
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The trik to estimate L

a

(e

H

; �

H

) is now to onsider a generi funtion �

B

in V

B

and reall

that V

B

is a subspae of V

H

, so that Galerkin orthogonality and (4.1) imply

0 = L(e

H

; �

B

) � "L

s

(e

H

; �

B

) + L

a

(e

H

; �

B

): (4.8)

Then we an use (4.3), (4.8), and (4.2) and write

L

a

(e

H

; �

H

) = L

a

(e

H

; �

H

� �

B

) + L

a

(e

H

; �

B

)

�M

a

je

H

j

1

k�

H

� �

B

k

0

� "L

s

(e

H

; �

B

)

�M"

1=2

je

H

j

1

("

�1=2

k�

H

� �

B

k

0

+ "

1=2

j�

B

j

1

);

(4.9)

having also, in the last step, olleted "

1=2

je

H

j

1

, and set M := maxfM

a

;M

s

g. De�ning now

k�

H

k

'1=2

:= sup

">0

inf

�

B

2V

B

f"

�1=2

k�

H

� �

B

k

0

+ "

1=2

j�

B

j

1

g (4.10)

we immediately have from (4.9) and (4.10) that

L

a

(e

H

; �

H

) �M"

1=2

je

H

j

1

k�

H

k

'1=2

; (4.11)

that inserted in (4.7) gives the �nal estimate

"

1=2

je

H

j

1

� C ("

1=2

j�

H

j

1

+ k�

H

k

'1=2

): (4.12)

As disussed in [12℄, and in the referenes therein, the norm (4.10) behaves, from the point

of view of interpolation error, as a 1=2-norm (hene the name we adopted here). See however

[6℄ for a muh more detailed analysis of these types of norms. Assuming that H is a typial

length assoiated with the size of the 


k

's, and assuming that, for some integer s � 1, we

have the interpolation errors

j�

H

j

r;


� H

s+1�r

kuk

s+1;


r = 0; 1 (4.13)

we have then the usual error estimate (see e.g. [28℄, [23℄, [35℄)

"

1=2

je

H

j

1;


� C("

1=2

H

s

+H

s+1=2

): (4.14)

We also notie that, with the same argument as in (4.9), we easily have, for every � 2 V and

for every �

B

2 V

B

L

a

(e

H

; �) = L

a

(e

H

; � � �

B

) + L

a

(e

H

; �

B

) �M"

1=2

je

H

j

1

k�k

'1=2

(4.15)

that together with (4.14) produes a norm of the advetive part of the error in the dual norm

of k�k

'1=2

. In pratial ases, see always [12℄, this in turn produes the usual L

2

estimate for

the advetive part of the error

H

1=2

k � re

H

k

0;


� C("

1=2

H

s

+H

s+1=2

): (4.16)

Our target is now to give suÆient onditions on the subgrid disretisation in order to

preserve the error estimates (4.14) and (4.16). For this, we assume that we are given a �nite

dimensional subspae V

h

H

� V

H

, and we onsider the fully disretised problem

�

�nd u

h

2 V

h

H

suh that:

L(u

h

; v

h

) = (f; v

h

) 8v

h

2 V

h

H

:

(4.17)
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We would like to have, for problem (4.17), a priori error estimates of the type (4.14)

(4.16). For this, we have to introdue suitable subspaes of V

h

H

, as we did before for V

H

.

We set

V

h

B

:= V

h

H

\ V

B

; (4.18)

V

h

L

:= fv

h

L

2 V

h

H

suh that: L(v

h

L

; v

h

B

) = 0 8v

h

B

2 V

h

B

g; (4.19)

and

V

h

S

:= fv

h

S

2 V

h

H

suh that: L

s

(v

h

S

; v

h

B

) = 0 8v

h

B

2 V

h

B

g: (4.20)

To simplify the notation it will also be onvenient to set

kvk

2

s

:= "L

s

(v; v) ' "jvj

2

1

: (4.21)

We are now ready to introdue our assumptions on the spae V

h

H

. We expliitly point out,

form the very beginning, that our assumptions are only suÆient for getting suitable error

bounds. So far, they have been taylored for ases where the loal dimension of �

H

is small,

so that we an think to use spaes V

h

B

that have a small dimension as well. We do believe

that there is room for many future improvements, and the present assumptions should be

regarded only as a beginning. Our �rst assumption will be

Assumption 1 There exists a onstant C

1

, independent of H, h, and " suh that, for every

w 2 V the solution �

h

2 V

h

B

of

L(�

h

; b

h

) = L(w; b

h

) 8b

h

2 V

h

B

(4.22)

satis�es

k�

h

k

s

+H

�1=2

k�

h

k

0

� C

1

(kwk

s

+H

1=2

kwk

1

+H

�1=2

kwk

0

); (4.23)

where, here and in all the sequel, H is some harateristi length assoiated with the 


k

's

(as it was in (4.14) and (4.16)): to simplify the exposition, we an assume one and for all

that H is the maximum diameter of the 


k

's. �

Assumption 1 should be regarded in the following way: problem (4.22) orresponds to

solve a disrete problem, in eah subdomain, exatly of the same type of the original one.

For all these problems we require stability estimates of the type that we expet for the global

problem (3.6) (see for instane the estimates (4.14) and (4.16)).

We shall ome bak in a while to disuss possible suÆient onditions that an ensure

(4.23). We �rst indiate the use that we are going to make of it.

For that we introdue a suitable interpolant of the exat solution u, that will allow an

easier derivation of error estimates. We start �rst by de�ning u

h

i

as the usual interpolant of

u in V

h

H

. Then we de�ne a new interpolant, u

h

I

as follows

u

h

I

= u

h

i

on � and L(u

h

I

; b

h

) = L(u; b

h

) 8b

h

2 V

h

B

: (4.24)

Assumption 1 allows us to ompare the distane ku� u

h

I

k with the orresponding ku� u

h

i

k.

Theorem 2 Let Assumption 1 hold, let u be a given funtion in V , and u

h

i

be a given funtion

in V

h

H

. Assume �nally that u

h

I

is onstruted as in (4.24). Then there exists a onstants C

I

independent of u, u

h

i

, H, h, and " suh that

ku� u

h

I

k

s

+H

�1=2

ku� u

h

I

k

0

� C

I

(ku� u

h

i

k

s

+H

1=2

ku� u

h

i

k

1

+H

�1=2

ku� u

h

i

k

0

): (4.25)
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Proof From (4.24) we have that u

h

I

must have the form u

h

I

= u

h

i

+ �

h

, where �

h

2 V

h

B

is determined

by

L(u

h

i

+ �

h

; b

h

) = L(u; b

h

) 8b

h

2 V

h

B

; (4.26)

that is,

L(�

h

; b

h

) = L(u� u

h

I

; b

h

) 8b

h

2 V

h

B

: (4.27)

The proof follows then immediately from (4.23) using the triangle inequality. �

Essentially, we are requiring that the new interpolant u

h

I

de�ned in (4.24) is as good as

the traditional interpolant u

h

i

.

We ome bak now to the problem of �nding suÆient onditions on the subgrid that an

ensure (4.23). A �rst possibility, rather rude but quite useful in simple ases (for instane

when the subgrid ontains only one node per element, or just a few) is the following one:

9C

0

1

> 0 suh that kb

h

k

0

� C

0

1

H

1=2

kb

h

k

s

8b

h

2 V

h

B

: (4.28)

In the simplest ase where we have a poor subgrid, onsisting of just one internal node in

eah element 


k

, ondition (4.28) is essentially equivalent to (4.23). Indeed, onsidering for

simpliity a ase in whih the oeÆients in (2.2) are onstant, and w in (4.22) is linear,

assuming that the shape of the bubble b

k

is suh that, in eah 


k

kb

k

k

0;


k

' j


k

j

�1=2

Z




k

b

k

dx (4.29)

we an write, in eah 


k

, �

h

= �b

k

and use (4.22) to determine �, obtaining

� =

L

a

w

R




k

b

k

dx

kb

k

k

2

s

' kL

a

wk

0;


kb

k

k

0

kb

k

k

2

s

; (4.30)

that gives

k�

h

k

0

' kL

a

wk

0;


k

kb

k

k

2

0

kb

k

k

2

s

; (4.31)

so that to get (4.23) we must have (4.28).

Inequality (4.28) should be ompared with the usual Poinar�e inequality, that would give

kb

h

k

0

� CH jb

h

j

1

8b

h

2 V

h

B

: (4.32)

In d dimensions, for a \normally shaped" bubble b

h

with maximum value equal to 1, we

expet kb

h

k

0

to behave like H

d=2

and jb

h

j

1

to behave like H

d=2�1

. Here we are dealing with

a two-dimensional problem; roughly speaking, in order to ful�ll (4.28) we must have that, in

eah maroelement 


k

, jb

h

j

1

behaves as "

�1=2

H

1=2

, instead of being ' 1. Inequality (4.28)

(that atually would be the same in any dimension) requires therefore that the subgrid nodes

are at a distane ' " (or smaller) from the boundary of the orresponding 


k

, as it is for

instane the ase for the pseudo-residual-free bubbles of [11℄, or for Shishkin meshes [32℄. We

shall see in a while that, if we have in mind subspaes V

h

B

having more than a few degrees of

freedom, (4.28) is too restritive. However its use is quite easy, and we prefer to start with

it rather than with more ompliated variants. It is easy to see that (4.28) indeed implies

(4.23), when L has the struture desribed in (4.1) with (4.2) and (4.3). Atually taking

b

h

= �

h

in (4.22) using (4.1), (4.2), and (4.3), and �nally using (4.28), we obtain

k�

h

k

2

s

= L(�

h

; �

h

) = L(w; �

h

)

= "L

s

(w; �

h

) + L

a

(w; �

h

)

�M

s

kwk

s

k�

h

k

s

+M

a

kwk

1

k�

h

k

0

� k�

h

k

s

(M

s

kwk

s

+M

a

C

0

1

H

1=2

kwk

1

)

(4.33)
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whih easily gives the required estimate for k�

h

k

s

. To estimate k�

h

k

0

use again (4.28).

Another reasonably simple possibility would be to require that

9�

1

> 0 suh that k�

h

k

0

� �

1

H sup

b

h

2V

h

B

L(�

h

; b

h

)

kb

h

k

0

8�

h

2 V

h

B

; (4.34)

together with

9�

2

> 0 suh that "kb

h

k

1

� �

2

kb

h

k

0

8b

h

2 V

h

B

: (4.35)

It is easy to see that (4.28) and (4.34) oinide when V

h

B

has only one degree of freedom per

element. Indeed, in this ase

H sup

b

h

2V

h

B

L(�

h

; b

h

)

kb

h

k

0

k�

h

k

0

= H

L(�

h

; �

h

)

k�

h

k

2

0

= H

k�

h

k

2

s

k�

h

k

2

0

: (4.36)

On the other hand, also in the more general ase (4.34) and (4.35) always ensure (4.23).

Indeed, in the last step of (4.33), instead of k�

h

k

0

� C

0

1

H

1=2

k�

h

k

s

, we ould use (4.27) in

(4.34) to obtain the following estimate

k�

h

k

0

� �

1

H sup

b

h

2V

h

B

L(w; b

h

)

kb

h

k

0

; (4.37)

and then use (4.1), (4.2), (4.3), (4.21), and (4.35) to obtain, for every b

h

2 V

h

B

L(w; b

h

) = L

s

(w; b

h

) + L

a

(w; b

h

) � "M

s

kwk

1

kb

h

k

1

+M

a

kwk

1

kb

h

k

0

� maxfM

s

�

2

;M

a

gkwk

1

kb

h

k

0

:

(4.38)

Inserting it into (4.37) we have

k�

h

k

0

� �

1

HmaxfM

s

�

2

;M

a

gkwk

1

: (4.39)

Then, using (4.39) in the last step of (4.33) gives

k�

h

k

2

s

�M

s

k�

h

k

s

kwk

s

+M

a

�

1

HmaxfM

s

�

2

;M

a

gkwk

2

1

(4.40)

that, together with (4.39), provides the desired bound (4.23).

We also point out that, unfortunately, the easy (4.28) will not be satis�ed if the subgrid

has one or more internal nodes having distane of order H from all the other nodes. In this

situation we would indeed be able to onstrut a funtion b

h

in V

h

B

with kb

h

k

0

' H and

kb

h

k

s

' "

1=2

, making (4.28) impossible to satisfy with C

0

1

independent of ".

Our seond assumption will be needed in order to prove error bounds for ku� u

h

k. In

order to present it, we shall need however one further piee of notation. To every v

h

2 V

h

H

we assoiate in a unique way two other elements of V

h

H

, that we all v

h

L

(v

h

) and v

h

S

(v

h

) (or,

shortly, just v

h

L

and v

h

S

, respetively) by the onditions

v

h

L

(v

h

) = v

h

S

(v

h

) = v

h

on � and v

h

L

(v

h

) 2 V

h

L

; v

h

S

(v

h

) 2 V

h

S

; (4.41)

where V

h

L

and V

h

S

are de�ned in (4.19) and (4.20) respetively.

Assumption 2

9C

2

> 0 suh that 8v

h

2 V

h

H

we have kL

a

v

h

S

(v

h

)k

0

� C

2

H

�1=2

kv

h

L

(v

h

)k

s

; (4.42)
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where learly L

a

is the (advetive) operator assoiated with the bilinear form L

a

in (4.1). �

At �rst sight, Assumption 2 might seem rather obsure. A possible way of looking at

it is the following: we are omparing the loal disrete solutions of two di�erent problems,

with the same boundary data. Indeed, v

h

S

and v

h

L

have the same value on the boundary of

eah 


k

, and represent the disrete solutions, on the given subgrid, of L

s

v = 0 and Lv = 0,

respetively, where learly L

s

, in agreement with (4.1), denotes the symmetri part of the

operator L. In both sides of (4.42) we have terms inluding �rst derivatives, but on the right-

hand side we have a term that behaves like H

�1=2

"

1=2

, that is muh smaller than 1 in the

interesting ases. Assumption 2 requires that the subgrid is suh that the disrete solution

of the bad problem (Lv = 0) omes out to be bad enough so that its k � k

1

norm is big enough

to ompensate for the smallness of H

�1=2

"

1=2

. However, a suÆient ondition for (4.42) to

hold is to have

kL

a

v

h

S

k � C

3

H

�1=2

sup

b

h

2V

h

B

L

a

(v

h

L

; b

h

)

kb

h

k

s

8v

h

2 V

h

H

(4.43)

for some positive onstant C

3

, where v

h

S

and v

h

L

are de�ned, starting from v

h

, as in (4.41).

Indeed, owing to the properties of funtions v

h

L

we have, for all b

h

2 V

h

B

,

L

a

(v

h

L

; b

h

) = �"L

s

(v

h

L

; b

h

) �M

s

kv

h

L

k

s

kb

h

k

s

: (4.44)

Hene (4.43) implies (4.42) with C

2

= C

3

M

s

. We note that, surprisingly enough, a small

value of " is atually helping in proving (4.43) for a given hoie of subgrid spaes. Indeed, a

small " will, in general, make the norm kb

h

k

s

smaller (see (4.21)) in the denominator of (4.43),

without hanging kL

a

v

h

S

k

0

(that does not depend on ".) In pratial ases, the numerator of

(4.43), having �xed b

h

and v

h

(that is, the values of v

h

L

on �), also inreases when " beomes

smaller. Indeed we remind that, for a �xed v

h

, the value of v

h

L

(v

h

), as de�ned in (4.41), grows

when " beomes smaller. It seems therefore that, in this approah, the are to be taken for

a small " is all in Assumption 1. On the other hand, for instane in the ase of one bubble

per element, it might happen that the shape of the bubbles b

k

is suh that kb

k

k

s

, instead of

behaving like H

1=2

(or as H

d=2�1=2

in d dimensions) as required by (4.28), is atually bigger.

This would orrespond, for instane, to having a node whose distane from �


k

is smaller

than ". Then (4.42) might be violated, as the denominator in (4.43) beomes too big. The

use of (4.28) and (4.42) together seems then to require that the internal node is exatly at

a distane of order " from the boundary. This agrees perfetly with the results obtained in

[11℄ in a more partiular ase.

Remark One might wonder why we took the pain to introdue v

h

S

, and use it in the left-

hand side of (4.42). The reason is simple. If we took v

h

L

instead of v

h

S

in the left-hand side

of (4.42) we would have obtained a very powerful assumption that is never satis�ed, even in

the simplest examples (one dimension, onstant oeÆients, et.). �

We are now ready to obtain error estimates for problem (4.17).

Theorem 3 In the same assumptions of Theorem 2, let u and u

h

be the solutions of (2.5)

and (4.17) respetively, and let u

h

i

be given in V

h

H

. Let moreover u

h

I

be de�ned as in (4.24).

Then there exists a onstant 

s

, independent of u, u

h

, u

h

i

, H, h, and " suh that

ku� u

h

k

s

� 

s

(ku� u

h

I

k

s

+H

�1=2

ku� u

h

I

k

0

): (4.45)

Proof We set e

h

:= u

h

�u

h

I

and �

h

:= u�u

h

I

. We notie that e

h

� �

h

= u

h

�u, so that, by Galerkin

orthogonality,

L(e

h

� �

h

; v

h

) = 0 8v

h

2 V

h

H

: (4.46)
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Moreover, for all b

h

2 V

h

B

we have, using (4.17), (4.24) and (2.5)

L(e

h

; b

h

) = L(u

h

; b

h

)�L(u

h

I

; b

h

) = (f; b

h

)�L(u; b

h

) = 0; (4.47)

implying

e

h

2 V

h

L

(and hene e

h

L

� e

h

); (4.48)

that will be used later on. We an now use (4.21), (4.46), and (4.1) to obtain

ke

h

k

2

s

= L(e

h

; e

h

) = L(�

h

; e

h

) = "L

s

(�

h

; e

h

) + L

a

(�

h

; e

h

) � I + II: (4.49)

The bound for I is immediate

I = "L

s

(�

h

; e

h

) �M

s

k�

h

k

s

ke

h

k

s

: (4.50)

To bound II requires some additional work: �rst we introdue e

h

S

as in (4.41). We notie immediately

that e

h

S

turns out to be the projetion of e

h

onto V

h

S

in the k � k

s

-norm. Indeed for all v

h

S

2 V

h

S

we

have

L

s

(e

h

� e

h

S

; v

h

S

) = 0; (4.51)

sine e

h

� e

h

S

belongs to V

h

B

and L

s

is symmetri. We dedue that, in partiular,

ke

h

S

k

2

s

+ ke

h

� e

h

S

k

2

s

= ke

h

k

2

s

: (4.52)

To estimate II we add and subtrat e

h

S

II = L

a

(�

h

; e

h

) = L

a

(�

h

; e

h

S

) + L

a

(�

h

; e

h

� e

h

S

) � III + IV; (4.53)

and we bound the two piees separately. Using Cauhy-Shwarz, (4.42), and �nally (4.48) we obtain

III = L

a

(�

h

; e

h

S

) � k�

h

k

0

kL

a

e

h

S

k

0

� k�

h

k

0

C

2

H

�1=2

ke

h

L

k

s

= k�

h

k

0

C

2

H

�1=2

ke

h

k

s

: (4.54)

In order to bound IV we �rst notie that, thanks to (4.41) e

h

� e

h

S

belongs to V

h

B

. Using (4.24) we

have then

L

a

(�

h

; e

h

� e

h

S

) + L

s

(�

h

; e

h

� e

h

S

) = L(�

h

; e

h

� e

h

S

) = L(u� u

h

I

; e

h

� e

h

S

) = 0: (4.55)

Now using (4.55), (4.2), and (4.52) we have

IV = L

a

(�

h

; e

h

� e

h

S

) �M

s

k�

h

k

s

ke

h

� e

h

S

k

s

�M

s

k�

h

k

s

ke

h

k

s

: (4.56)

Colleting (4.49), (4.50), (4.53), (4.54), and (4.56) we have

ke

h

k

2

s

� ke

h

k

s

(2M

s

k�

h

k

s

+ C

2

H

�1=2

k�

h

k

0

); (4.57)

and we onlude the proof using the triangle inequality. �

From (4.42), (4.48), and (4.57) we immediately have an estimate on the onvetive part

of the error

H

1=2

kL

a

e

h

S

k � C

2

ke

h

L

k

s

= C

2

ke

h

k

s

� maxf2C

2

M

s

; C

2

2

g(k�

h

k

s

+H

�1=2

k�

h

k

0

): (4.58)

Comparing (4.45) and (4.58) with the previous results for the orresponding errors for

u � u

H

(see e.g. (4.14) and (4.16)), we see that our assumptions insure errors of the same

size.
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5 Conlusions

We have seen a rather general setting that inludes many variants of two-level methods that

have been developed, more or less independently from eah other, for various appliations.

Many stabilised methods an also be inluded in this setting. We have seen as well that,

for ertain problems like onvetion dominated ows, the required stabilising e�et an be

obtained just with a suitable hoie of the subgrid. In partiular we proposed suÆient

onditions on the subgrid disretisation in order to obtain error estimates of the same quality

as one ould obtain by solving (ideally) the �ne-level equations in an exat way.

The use of onditions of this type in self-adaptive proedures is surely worth investigating,

as well as their extension to nononforming approximations for the subgrid problems, or to

other appliations.
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