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Abstract. We consider, as a simple model problem, the application of Virtual Element Methods4
(VEM) to the linear Magnetostatic three-dimensional problem in the formulation of F. Kikuchi. In5
doing so, we also introduce new serendipity VEM spaces, where the serendipity reduction is made only6
on the faces of a general polyhedral decomposition (assuming that internal degrees of freedom could7
be more easily eliminated by static condensation). These new spaces are meant, more generally,8
for the combined approximation of H1-conforming (0-forms), H(curl)-conforming (1-forms), and9
H(div)-conforming (2-forms) functional spaces in three dimensions, and they could surely be useful10
for other problems and in more general contexts.11
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1. Introduction. The aim of this paper is two-fold. We present a variant of14
the serendipity nodal, edge, and face Virtual Elements presented in [12] that could15
be used in many different applications (in particular since they can be set in an exact16
sequence), and we show their use on a model linear Magnetostatic problem in three17
dimensions, following the formulation of F. Kikuchi [36], [35]. Even though such18
formulation is not widely used within the Electromagnetic computational community,19
we believe that is it a very nice example of use of the De Rham diagram (see e.g. [27])20
that here is available for serendipity spaces of general order.21

Virtual Elements were introduced a few years ago [5, 8, 9], and can be seen as part22
of the wider family of Galerkin approximations based on polytopal decompositions, in-23
cluding Mimetic Finite Difference methods (the ancestors of VEM: see e.g. [37, 13] and24
the references therein), Discontinuous Galerkin (see e.g. [2, 24], or recently [29], and25
the references therein), Hybridizable Discontinuous Galerkin and their variants (see26
[26], or much more recently [25, 28], and the references therein). On the other hand27
their use of non-polynomial basis functions connect them as well with other methods28
such as polygonal interpolant basis functions, barycentric coordinates, mean value co-29
ordinates, metric coordinate method, natural neighbor-based coordinates, generalized30
FEMs, and maximum entropy shape functions. See for instance [45], [33], [43], [44]31
and the references therein. Finally, many aspects are closely connected with Finite32
Volumes and related methods (see e.g. [31], [30], and the references therein).33

The list of VEM contributions in the literature is nowadays quite large; in addition34
to the ones above, we here limit ourselves to mentioning [15, 3, 7, 17, 21, 34, 22, 39,35
46, 47].36

Here we deal, as a simple model problem, with the classical magnetostatic problem37
in a smooth-enough bounded domain Ω in R3, simply connected, with connected38
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boundary: given j ∈ H0(div; Ω) with divj = 0 in Ω, and given µ = µ(x) with39
0 < µ0 ≤ µ ≤ µ1,40

(1.1)


find H ∈ H(curl; Ω) and B ∈ H(div; Ω) such that:
curlH = j and divB = 0, with B = µH in Ω,
with the boundary conditions H ∧ n = 0 on ∂Ω.

41

When discretizing a three-dimensional problem, the degrees of freedom internal42
to elements (tetrahedra, hexahedra, polyhedra, etc.) can, in most cases, be easily43
eliminated by static condensation, and their burden on the resolution of the final44
linear system is not overwhelming. This is not the case for edges and faces, where45
static condensation would definitely be much more problematic. On edges one cannot46
save too much: in general the trial and test functions, there, are just one-dimensional47
polynomials. On faces, however, for 0-forms and 1-forms, higher order approximations48
on polygons with many edges find a substantial benefit by the use of the serendipity49
approach, that allows an important saving of degrees of freedom internal to faces.50

For that we constructed serendipity virtual elements in [10] and [12] (for scalar or51
vector valued local spaces, respectively) that however were not fully adapted to the52
construction of De Rham complexes. The spaces were therefore modified, for the 2d53
case, in [4]. Here we use this latest version on the boundary of the polyhedra of our54
three-dimensional decompositions, and we show that this can be a quite viable choice.55

We point out that, contrary to what happens for FEMs (where, typically, the56
serendipity subspaces do not depend on the degrees of freedom used in the bigger, non-57
serendipity, spaces), for Virtual Elements the construction of the serendipity spaces58
depends, in general, heavily on the degrees of freedom used, so that if we want an59
exact sequence the degrees of freedom in the VEM spaces must be chosen properly.60

We will show that the present serendipity VEM spaces are perfectly suited for the61
approximation of problem (1.1) with the Kikuchi approach, and we believe that they62
might be quite interesting in many other problems in Electromagnetism as well as in63
other important applications of Scientific Computing. In particular we have a whole64
family of spaces of different order of accuracy k. For simplicity we assumed here that65
the same order k is used in all the elements of the decomposition, but we point out66
that the great versatility of VEM would very easily comply with the use of different67
orders in different elements, allowing very effective h-p strategies.68

A single (lowest order only, and particularly cheap) Virtual Element Method for69
electro-magnetic problems was already proposed in [6], but the family proposed here70
does not include it: roughly speaking, the element in [6] is based on a generalization71
to polyhedra of the lowest order Nédélec first type element (say, of degree between72
0 and 1), while, instead, the family presented here could be seen as being based on73
generalizations to polyhedra of the Nédélec second type elements (of order k ≥ 1).74

A layout of the paper is as follows: in Section 2 we introduce some basic notation,75
and recall some well known properties of polynomial spaces. In Section 3 we will76
first recall the Kikuchi variational formulation of (1.1). Then, in Subsection 3.2 we77
present the local two-dimensional Virtual Element spaces of nodal and edge type to78
be used on the interelement boundaries. As we mentioned already, the spaces are the79
same already discussed in [5], [1] and in [20], [9], respectively, but with a different80
choice of the degrees of freedom, suitable for the serendipity construction discussed in81
Subsection 3.3. In Subsection 3.4 we present the local three-dimensional spaces. In82
Subsection 3.5 we construct the global version of all these spaces, and discuss their83
properties and the properties of the relative exact sequence. In Section 4 we first84
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introduce the discretized problem, and in Subsection 4.3 we prove the a priori error85
bounds for it. In Section 5 we present some numerical results that show that the86
quality of the approximation is very good, and also that the serendipity variant does87
not jeopardize the accuracy.88

2. Notation and well known properties of polynomial spaces. In two89
dimensions, we will denote by x the indipendent variable, using x = (x, y) or (more90
often) x = (x1, x2) following the circumstances. We will also use x⊥ := (−x2, x1),91
and in general, for a vector v ≡ (v1, v2),92

(2.1) v⊥ := (−v2, v1).93

Moreover, for a vector v and a scalar q we will write94

(2.2) rotv := ∂v2

∂x
− ∂v1

∂y
, rot q :=

(∂q
∂y
,− ∂q

∂x

)
.95

We recall some commonly used functional spaces. On a domain O we have96

H(div;O) = {v ∈ [L2(O)]3 with divv ∈ L2(O)},97

H0(div;O) = {ϕ ∈ H(div;O) s.t. ϕ · n = 0 on ∂O},98

H(curl;O) = {v ∈ [L2(O)]3 with curlv ∈ [L2(O)]3},99

H0(curl;O) = {v ∈ H(curl;O) with v ∧ n = 0 on ∂O},100

H1(O) = {q ∈ L2(O) with grad q ∈ [L2(O)]3},101

H1
0 (O) = {q ∈ H1(O) with q = 0 on ∂O}.102103

For an integer s ≥ −1 we will denote by Ps the space of polynomials of degree ≤ s.104
Following a common convention, P−1 ≡ {0} and P0 ≡ R. Moreover, for s ≥ 1105

(2.3) Phs := {homogeneous pol.s in Ps}, P0
s(O) := {q ∈ Ps s. t.

∫
O
q dO = 0}.106

The following decompositions of polynomial vector spaces are well known and will be107
useful in what follows. In two dimensions we have108

(2.4) (Ps)2 = rot(Ps+1)⊕ xPs−1 and (Ps)2 = grad(Ps+1)⊕ x⊥Ps−1,109

and in three dimension110

(2.5) (Ps)3 = curl((Ps+1)3)⊕ xPs−1, and (Ps)3 = grad(Ps+1)⊕ x ∧ (Ps−1)3.111

Taking the curl of the second of (2.5) we also get :112

(2.6) curl(Ps)3 = curl(x ∧ (Ps−1)3)113

which used in the first of (2.5) gives:114

(2.7) (Ps)3 = curl(x ∧ (Ps)3)⊕ xPs−1.115

We also recall the definition of the Nédélec local spaces of 1-st and 2-nd kind.116

(2.8)
In 2d: N1s = gradPs+1 ⊕ x⊥(Ps)2, s ≥ 0, N2s := (Ps)2, s ≥ 1,
in 3d: N1s = gradPs+1 ⊕ x ∧ (Ps)3, s ≥ 0, N2s := (Ps)3, s ≥ 1.

117
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In what follows, when dealing with the faces of a polyhedron (or of a polyhedral118
decomposition) we shall use two-dimensional differential operators that act on the119
restrictions to faces of scalar functions that are defined on a three-dimensional domain.120
Similarly, for vector valued functions we will use two-dimensional differential operators121
that act on the restrictions to faces of the tangential components. In many cases, no122
confusion will be likely to occur; however, to stay on the safe side, we will often use123
a superscript τ to denote the tangential components of a three-dimensional vector,124
and a subscript f to indicate the two-dimensional differential operator. Hence, to fix125
ideas, if a face has equation x3 = 0 then xτ := (x1, x2) and, say, divfvτ := ∂v1

∂x1
+ ∂v2
∂x2

.126

3. The problem and the spaces.127

3.1. The Kikuchi variational formulation. Here we shall deal with the128
variational formulation introduced in [35]. Given j ∈ H0(div; Ω) with divj = 0,129

(3.1)


find H ∈ H0(curl; Ω) and p ∈ H1

0 (Ω) such that:∫
Ω curlH ·curlv dΩ +

∫
Ω∇p·µv dΩ =

∫
Ω j ·curlv dΩ ∀v ∈ H0(curl; Ω)∫

Ω∇q ·µH dΩ = 0 ∀q ∈ H1
0 (Ω).

130

It is easy to check that (3.1) has a unique solution (H, p). Then we check that H131
and µH give the solution of (1.1) and p = 0. Checking that p = 0 is immediate, just132
taking v = ∇p in the first equation. Once we know that p = 0 the first equation gives133
curlH = j, and then the second equation gives divµH = 0.134

We will now design the Virtual Element approximation of (3.1) of order k ≥ 1.135
We define first the local spaces. Let P be a polyhedron, simply connected, with all136
its faces also simply connected and convex. (For the treatment of non-convex faces137
we refer to [12]). More detailed assumptions will be given in Section 4.3.138

3.2. The local spaces on faces. We first recall the local nodal and edge spaces139
on faces introduced in [4]. We shall deal with a sort of generalisation to polygons of140
Nédélec elements of the second kind N2 (see (2.8)). For this, let k ≥ 1. For each face141
f of P, the edge space on f is defined as142

(3.2) V e
k (f) :=

{
v∈ [L2(f)]2 : divv∈Pk(f), rotv∈Pk−1(f), v · te∈Pk(e)∀e⊂∂f

}
,143

with the degrees of freedom144

• on each e ⊂ ∂f , the moments
∫
e
(v · te)pk ds ∀pk ∈ Pk(e),(3.3)145

• the moments
∫
f

v · xf pk df ∀pk ∈ Pk(f),(3.4)146

•
∫
f

rotv p0
k−1 df ∀p0

k−1 ∈ P0
k−1(f) (only for k > 1)),(3.5)147148

where xf = x− bf , with bf = barycenter of f , and P0
s was defined in (2.3).149

We recall that for v ∈ V e
k (f) the value of rotv is easily computable from the150

degrees of freedom (3.3) and (3.5). Indeed, the mean value of rotv on f is computable151
from (3.3) and Stokes Theorem, and then (since rotv ∈ Pk−1) the use of (3.5) gives152
the full value of rotv. Once we know rotv, following [4], we can easily compute,153
always for each v ∈ V e

k (f), the L2–projection Π0
k+1 : V e

k (f)→ [Pk+1(f)]2. Indeed: by154
definition of projection, using (2.4) and integrating by parts we obtain:155

(3.6)

∫
f

Π0
k+1v · pk+1 df :=

∫
f

v · pk+1 df =
∫
f

v · (rot qk+2 + xfqk) df

=
∫
f
(rotv)qk+2 df +

∑
e⊂∂f

∫
e
(v · t)qk+2 ds+

∫
f

v · xfqk df
156

and it is immediate to check that each of the last three terms is computable.157
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Remark 3.1. Among other things, projection operators can be used to define suit-158
able scalar products in V e

k (f). As common in the virtual element literature, we could159
use the (Hilbert) norm160

(3.7) ‖v‖2V e
k

(f) := ‖Π0
kv‖20,f +

∑
i

(dofi{(I −Π0
k)v})2,161

where the dofi are the degrees of freedom in V e
k (f), properly scaled. In (3.7) we could162

also insert any symmetric and positive definite matrix S and change the second term163
into dT S d (with d = the vector of the dofi{(I −Π0

k)v}). Alternatively we could use164

(3.8) ‖v‖2V e
k

(f) := ‖Π0
k+1v‖20,f + hf‖(I −Π0

k+1)v · t‖20,∂f165

(that is clearly a Hilbert norm) where hf is the diameter of the face f . It is easy to166
check that the associated inner product scales like the natural [L2(f)]2 inner product167
(meaning that ‖v‖V e

k
(f) is bounded above and below by ‖v‖0,f times suitable constants168

independent of hf ), and moreover coincides with the [L2(f)]2 inner product whenever169
one of the two entries is in (Pk+1)2.170

For each face f of P, the nodal space of order k + 1 is defined as171

(3.9) V n
k+1(f) :=

{
q ∈ H1(f) : q|e ∈ Pk+1(e) ∀e ⊂ ∂f, ∆q ∈ Pk(f)

}
,172

with the degrees of freedom173

• for each vertex ν the value q(ν),(3.10)174

• for each edge e the moments
∫
e
q pk−1 ds ∀pk−1 ∈ Pk−1(e),(3.11)175

•
∫
f
(∇q · xf ) pk df ∀pk ∈ Pk(f).(3.12)176177

3.3. The local serendipity spaces on faces. We recall the serendipity spaces178
introduced in [4], which will be used to construct the serendipity spaces on polyhedra.179
Let f be a face of P, assumed to be a convex polygon. Following [10] we introduce180

(3.13) β := k + 1− η.181

where η is the number of straight lines necessary to cover the boundary of f . We note182
that the convexity of f does not imply that η is equal to the number of edges of f ,183
since we might have different consecutive edges that belong to the same straight line.184
Next, we define a projection Πe

S : V e
k (f)→ [Pk(f)]2 as follows:185 ∫

∂f
[(v −Πe

Sv) · t][∇p · t] ds = 0 ∀p ∈ Pk+1(f),(3.14)186 ∫
∂f

(v −Πe
Sv) · t ds = 0,(3.15)187 ∫

f
rot(v −Πe

Sv)p0
k−1 df = 0 ∀p0

k−1 ∈ P0
k−1(f) for k > 1,(3.16)188 ∫

f
(v −Πe

Sv) · xf pβ df ∀pβ ∈ Pβ(f) only for β ≥ 0.(3.17)189190

The serendipity edge space is then defined as:191

(3.18) SV e
k (f) :=

{
v ∈ V e

k (f) :
∫
f

(v −Πe
Sv) · xf p df = 0 ∀p ∈ Pβ|k(f)

}
,192

where Pβ|k is the space spanned by all the homogeneous polynomials of degree s with193
β < s ≤ k. The degrees of freedom in SV e

k (f) will be (3.3) and (3.5), plus194

(3.19)
∫
f

v · xf pβ df ∀pβ ∈ Pβ(f) only if β ≥ 0.195
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To summarize: if β < 0, i.e., if k + 1 < η, the only internal degrees of freedom are196
(3.5), and the moments (3.4) are given by those of Πe

S . Instead, for β ≥ 0 we have to197
include among the d.o.f. the moments of order up to β given in (3.19). The remaining198
moments, of order up to k, are again given by those of Πe

S . We point out that, on199
triangles, these are now exactly the Nédélec elements of second kind.200

Clearly in SV e
k (f) (that is included in V e

k (f)) we can still use the scalar product201
defined in (3.8) or (3.7).202

For the construction of the nodal serendipity space we proceed as before. Let203
Πn
S : V n

k+1(f)→ Pk+1(f) be a projection defined by204

(3.20)


∫
∂f
∂t(q −Πn

Sq)∂tp ds = 0 ∀p ∈ Pk+1(f),∫
∂f

(xf · n)(q −Πn
Sq) ds = 0,∫

f
(∇(q −Πn

Sq) · xf pβ df = 0 ∀pβ ∈ Pβ(f) only for β ≥ 0.
205

The serendipity nodal space is then defined as:206

(3.21) SV n
k+1(f) :=

{
q ∈ V n

k+1(f) :
∫
f

(∇q −∇Πn
Sq) · xf p df = 0∀p ∈ Pβ|k(f)

}
.207

The degrees of freedom in SV n
k+1(f) will be (3.10) and (3.11), plus208

(3.22)
∫
f

(∇q · xf ) pβ df ∀pβ ∈ Pβ(f) only if β ≥ 0.209

From this construction it follows that the nodal serendipity space contains internal210
d.o.f. only if k+ 1 ≥ η, and the number of these d.o.f. is equal to the dimension of Pβ211
only. The remaining d.o.f. are copied from those of Πn

S . Note also that on triangles212
we have back the old polynomial Finite Elements of degree k+ 1. Before dealing with213
the three dimensional spaces, we recall a useful result proven in [4], Proposition 5.4.214

Proposition 3.2. It holds215

(3.23) ∇SV n
k+1(f) = {v ∈ SV e

k (f) : rotv = 0}.216

The following result is immediate, but we point it out for future use.217

Proposition 3.3. For every q ∈ V n
k+1(f) there exists a (unique) q∗ such that218

(3.24) q∗ ∈ SV n
k+1(f) (and we denote it as q∗ = σn,f (q)),219

that has the same degrees of freedom (3.10),(3.11), and (3.22) of q. The difference220
q − q∗ is obviously a bubble in V n

k+1(f). Similarly, for a v in V e
k (f) there exists a221

unique v∗ with222

(3.25) v∗ ∈ SV e
k (f) (and we denote it as v∗ = σe,f (v)),223

with the same degrees of freedom (3.3)-(3.5), and (3.19) of v. The difference v − v∗224
is an H(rot)-bubble and, in particular, is the gradient of a scalar bubble ξ(v):225

(3.26) ∇ξ ≡ v − v∗.226

Proof. It is clear from the previous discussion that the degrees of freedom (3.10),227
(3.11), and (3.22) determine q∗ in a unique way. As q and q∗ share the same boundary228
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degrees of freedom (3.10) and (3.11), they will coincide on the whole boundary ∂f ,229
so that q − q∗ is a bubble. Similarly, given v in V e

k (f) the degrees of freedom (3.3)-230
(3.5), and (3.19) determine uniquely a v∗ in SV e

k (f). The two vector valued functions231
v and v∗, sharing the degrees of freedom (3.3)-(3.5) must have the same tangential232
components on ∂f and the same rot. In particular, rot(v−v∗) = 0 and (as f is simply233
connected) v − v∗ must be a gradient of some scalar function ξ (that we can take as234
a bubble, since its tangential derivative on ∂f is zero).235

3.4. The local spaces on polyhedra. Let P be a polyhedron, simply con-236
nected with all its faces simply connected and convex. For each face f we will use the237
serendipity spaces SV n

k+1(f) and SV e
k (f) as defined in (3.21) and (3.18), respectively.238

We then introduce the three-dimensional analogues of (3.21) and (3.18), that are239
240

(3.27) V e
k (P) :=

{
v ∈ [L2(P)]3 : divv ∈ Pk−1(P), curl(curlv) ∈ [Pk(P)]3,241

vτ|f ∈ SV
e
k (f) ∀ face f ⊂ ∂P, v · te continuous on each edge e ⊂ ∂P

}
,242

243
244

(3.28) V n
k+1(P) :=

{
q ∈ C0(P) : q|f ∈ SV n

k+1(f) ∀ face f ⊂ ∂P, ∆ q ∈ Pk−1(P)
}
.245

This time however we will also need a Virtual Element face space (for the discretization246
of two-forms), that we define as247

(3.29) V f
k−1(P) :=

{
w∈ [L2(P)]3 : divw∈Pk−1, curlw∈[Pk]3, w · nf ∈Pk−1(f) ∀f

}
.248

249

Remark 3.4. We note that in several cases, in particular for polyhedra with250
many faces, the number of internal degrees of freedom for the spaces (3.27), (3.28),251
and (3.29) will be more than necessary. However, at this point, we will not make252
efforts to diminish them, as we assume that in practice we could eliminate them by253
static condensation (or even construct suitable serendipity variants).254

Among the same lines of Proposition 3.3, we have now:255

Proposition 3.5. For every function q in the (non serendipity!) space256

(3.30) Ṽ n
k+1(P) :=

{
q ∈ C0(P) : q|f ∈ V n

k+1(f) ∀ face f ⊂ ∂P, and ∆q ∈ Pk−1

}
257

there exists exactly one element q∗ = σn,P(q) in V n
k+1(P) such that258

(3.31) q∗|f = σn,f (q|f ) ∀ face f, and ∆(q − q∗) = 0 in P.259

Similarly, for every vector-valued function v in the (non serendipity!) space260
261

(3.32) Ṽ e
k (P) :=

{
v ∈ [L2(P)]3 : divv ∈ Pk−1(P), curl(curlv) ∈ [Pk(P)]3262

vτ|f ∈ V
e
k (f) ∀ face f ⊂ ∂P, v · te continuous on each edge e ⊂ ∂P

}
,263

264

there exists exactly one element v∗ = σe,P(v) of V e
k (P) such that:265

• on each face f of ∂P : (v∗)τ = σe,f (vτ ) (as defined in (3.25)),(3.33)266

• and in P : div(v − v∗) = 0 and curl(v − v∗) = 0.(3.34)267268
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Proof. The first part, relative to nodal elements, is obvious: on each face we take269
as q∗ the one given by (3.24) in Proposition 3.3, and then we take ∆q∗ = ∆q inside.270
For constructing v∗ we also start by defining its tangential components on each face271
using Proposition 3.3. Now, on each face f we have a (scalar) bubble ξf (whose272
tangential gradient equals the tangential components of v− v∗), and we construct in273
P the scalar function ξ which is: equal to ξf on each face f , and harmonic inside P.274
Then we set v∗ := v +∇ξ, and we check immediately that v∗ verifies property (3.33),275
and also properties (3.34), since ξ vanishes on all edges and is harmonic inside.276

Proposition 3.6. It holds277

(3.35) ∇V n
k+1(P) = {v ∈ V e

k (P) : curlv = 0}.278

Proof. From the above definitions we easily see that the tangential gradient of279
any q ∈ V n

k+1(P), applied face by face, belongs to SV e
k (f). Consequently, we also have280

that v := gradq belongs to V e
k (P), as divv ∈ Pk−1(P) and curlv = 0. Hence,281

(3.36) ∇V n
k+1(P) ⊆ {v ∈ V e

k (P) : curlv = 0}.282

Conversely, assume that a v ∈ V e
k (P) has curlv = 0. As P is simply connected we283

have that v = ∇q for some q ∈ H1(P). On each face f , the tangential gradient of284
q (equal to vτ ) is in SV e

k (f) (see (3.27)), and since rotfvτ = curlv · nf ≡ 0, from285
(3.23) we deduce that q|f ∈ SV n

k+1(f). Hence, the restriction of q to the boundary of286
P belongs to V n

k+1(P)|∂P. Moreover, ∆q = divv is in Pk−1(P). Hence, q ∈ V n
k+1(P)287

and the proof is concluded.288

In V e
k (P) we have (see [4] and [12]) the degrees of freedom289

• ∀ edge e:
∫
e
(v · te)pk ds ∀pk ∈ Pk(e),(3.37)290

• ∀ face f with βf ≥ 0 :
∫
f

vτ · xf pβf
df ∀pβf

∈ Pβf
(f),(3.38)291

• ∀ face f :
∫
f

rotfvτ p0
k−1 df ∀p0

k−1 ∈ P0
k−1(f) (for k > 1),(3.39)292

•
∫

P(v · xP)pk−1 dP ∀pk−1 ∈ Pk−1(P),(3.40)293

•
∫

P(curlv) · (xP ∧ pk) dP ∀pk ∈ [Pk(P)]3,(3.41)294295

where βf = value of β (see (3.13)) on f , and xP :=x−bP, with bP =barycenter of P.296

Proposition 3.7. Out of the above degrees of freedom we can compute the [L2(P)]3297
orthogonal projection Π0

k from V e
k (P) to [Pk(P)]3.298

Proof. Extending the arguments used in [6], and using (2.7) we have that for299
any pk ∈ (Pk)3 there exist two polynomials, qk ∈ (Pk)3 and zk−1 ∈ Pk−1, such that300
pk = curl(xP ∧ qk) + xPzk−1. Hence, from the definition of projection we have:301

(3.42)
∫

P
Π0
kv ·pk dP :=

∫
P

v ·pk dP =
∫

P
v · curl(xP ∧ qk) dP+

∫
P

(v ·xP)zk−1 dP.302

The second integral is given by the d.o.f. (3.40), while for the first one we have, upon303
integration by parts:304

(3.43)

∫
P v·curl(xP ∧ qk) dP =

∫
P curlv ·(xP ∧ qk) dP+

∫
∂P(v ∧ n)·(xP ∧ qk) dS

=
∫

P curlv · (xP ∧ qk) dP +
∫
∂P

(
n ∧ (xP ∧ qk)

)
· v dS

=
∫

P curlv · (xP ∧ qk) dP +
∑
f

∫
f

(
nf ∧ (xP ∧ qk)

)τ
· vτ df.

305

The first term is given by the d.o.f. (3.41), and the second is computable as in (3.6).306
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Hence, following the path of Remark 3.1 we can define a µ-dependent scalar product307
through the (Hilbert) norm308

(3.44) ‖v‖2e,µ,P := ‖µ1/2Π0
kv‖20,P + hPµ0

∑
i

(dofi{(I −Π0
k)v})2,309

or, for instance,310

(3.45) ‖v‖2e,µ,P := ‖µ1/2Π0
kv‖20,P + hPµ0

∑
f⊂∂P

‖(I −Π0
k)vτ‖2V e

k
(f)311

getting, for positive constants α∗, α∗ independent of hP,312

(3.46) α∗µ0‖v‖20,P ≤ ‖v‖2e,µ,P ≤ α∗µ1‖v‖0,P ∀v ∈ V e
k (P).313

We observe that the associated scalar product will satisfy314

(3.47) [v,w]0,P ≤
(

[v,v]e,µ,P
)1/2(

[w,w]e,µ,P
)1/2

≤ µ1α
∗‖v‖0,P‖w‖0,P,315

316

(3.48) [v,pk]e,µ,P =
∫

P µΠ0
kv · pk dP ∀v ∈ V e

k (P), ∀pk ∈ [Pk(P)]3.317

In V n
k+1(P) we have the degrees of freedom318

• ∀ vertex ν the nodal value q(ν),(3.49)319

• ∀ edge e and k ≥ 1 the moments
∫
e
q pk−1 ds ∀pk−1 ∈ Pk−1(e),(3.50)320

• ∀ face f with βf ≥ 0 the moments
∫
f
(∇fq · xf ) pβf

df ∀pβf
∈ Pβf

(f),(3.51)321

• the moments
∫

P∇q · xP pk−1 dP ∀pk−1 ∈ Pk−1(P).(3.52)322323

We point out (see [4]) that the degrees of freedom (3.49)-(3.51) on each face f allow324
to compute the L2(f)-orthogonal projection operator from SV n

k+1(f) to Pk(f). This,325
together with the degrees of freedom (3.52) and an integration by parts, gives us the326
L2(P)-orthogonal projection operator from V n

k+1(P) to Pk−1(P). Finally, for V f
k−1(P)327

we have the degrees of freedom328

• ∀ face f :
∫
f
(w · nf )pk−1 df ∀pk−1 ∈ Pk−1(f),(3.53)329

•
∫

P w · (grad pk−1) dP ∀pk−1 ∈ Pk−1(P), for k > 1(3.54)330

•
∫

P w · (xP ∧ pk) dP ∀pk ∈ [Pk(P)]3.(3.55)331332

According to [12] we have now that from the above degrees of freedom we can compute333
the [L2(P)]3-orthogonal projection Π0

s from V f
k−1(P) to [Ps(P)]3 with s ≤ k + 1.334

In particular, along the same lines of Remark 3.1 we can define a scalar product335
[w,v]V f

k−1(P) through the Hilbert norm336

(3.56) ‖v‖2V f
k−1(P) := ‖Π0

k−1v‖20,P + hP
∑
f

‖(I −Π0
k−1)v · nf‖20,f ,337

and then there exist two positive constants α1, α2 independent of hP such that338

(3.57) α1‖w‖20,P ≤ ‖w‖2V f
k−1(P) ≤ α2‖w‖20,P ∀w ∈ V f

k−1(P),339
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and also340

(3.58) [w,pk−1]V f
k−1(P) = (w,pk−1)0,P ∀w ∈ V f

k−1(P), ∀pk−1 ∈ [Pk−1(P)]3.341

Needless to say, instead of (3.56) we could also consider variants of the type of (3.7)342
and (3.44), using only the values dofi of the degrees of freedom.343

Note that Pk+1(P) ⊆ V n
k+1(P), [Pk(P)]3 ⊆ V e

k (P), and [Pk−1(P)]3 ⊆ V f
k−1(P).344

Proposition 3.8. It holds:345

(3.59) curlV e
k (P) = {w ∈ V f

k−1(P) : divw = 0}.346

Proof. For every v ∈ V e
k (P) we have that w := curl v belongs to V f

k−1(P). Indeed,347
on each face f we have that w ·nf ≡ rotfvτ belongs to Pk−1(f) (see (3.2) and (3.29)),348
and moreover divw = 0 (obviously) and curlw ∈ [Pk(P)]3 from (3.27). Hence,349

(3.60) curlV e
k (P) ⊆ {w ∈ V f

k−1(P) : divw = 0}.350

In order to prove the converse, we first note that from [9] we have that: if w is in351
V f
k−1(P) with divw = 0, then w = curlv for some v ∈ Ṽ e

k (P) (as defined in (3.32)).352
Then we use Proposition 3.5 and obtain a v∗ ∈ V e

k (P) that, according to (3.34), has353
the same curl. An alternative proof could be derived by a simple dimensional count,354
following the same guidelines as in [6].355

3.5. The global spaces. Let Th be a decomposition of the computational do-356
main Ω into polyhedra P. On Th we make the following assumptions, quite standard357
in the VEM literature. We assume the existence of a positive constant γ such that358
any polyhedron P of the mesh (of diameter hP) satisfies the following conditions:359

(3.61)
−P is star-shaped with respect to a ball of radius bigger than γhP;
−each face f is star-shaped with respect to a ball of radius ≥ γhP ,
−each edge has length bigger than γhP.

360

We note that the first two conditions imply that P (and, respectively, every face361
of P) is simply connected. At the theoretical level, some of the above conditions362
could be avoided by using more technical arguments. We also point out that, at the363
practical level, as shown by the numerical tests of the Section 5, the third condition is364
negligible since the method seems very robust to degeneration of faces and edges. On365
the contrary, although the scheme is quite robust to distortion of the elements, the366
first condition is more relevant since extremely anisotropic element shapes can lead367
to poor results. Finally, as already mentioned, for simplicity we also assume that all368
the faces are convex.369

We can now define the global nodal space:370

(3.62) V n
k+1 ≡ V n

k+1(Ω) :=
{
q ∈ H1

0 (Ω) such that q|P ∈ V n
k+1(P) ∀P ∈ Th

}
,371

with the obvious degrees of freedom372

• ∀ internal vertex ν the nodal value q(ν),(3.63)373

• ∀ internal edge e and k ≥ 1:
∫
e
q pk−1 ds ∀pk−1 ∈ Pk−1(e),(3.64)374

• ∀ internal face f with βf ≥0:
∫
f
(∇fq ·xf )pβf

df ∀pβf
∈ Pβf

(f),(3.65)375

• ∀ element P, k ≥ 1:
∫

P∇q · xP pk−1 dP ∀pk−1 ∈ Pk−1(P).(3.66)376377
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For the global edge space we have378

(3.67) V e
k ≡ V e

k (Ω) :=
{

v ∈ H0(curl; Ω) such that v|P ∈ V e
k (P) ∀P ∈ Th

}
,379

with the obvious degrees of freedom380

• ∀ internal edge e :
∫
e
(v · te)pk ds ∀pk ∈ Pk(e),(3.68)381

• ∀ internal face f with βf ≥ 0 :
∫
f

vτ · xf pβf
df ∀pβf

∈ Pβf
(f),(3.69)382

• ∀ internal face f :
∫
f

rotfvτ p0
k−1 df ∀p0

k−1 ∈ P0
k−1(f) (for k > 1),(3.70)383

• ∀ element P :
∫

P(v · xP)pk−1 dP ∀pk−1 ∈ Pk−1(P),(3.71)384

• ∀ element P :
∫

P(curlv) · (xP ∧ pk) dP ∀pk ∈ [Pk(P)]3.(3.72)385386

Finally, for the global face space we have:387

(3.73) V f
k−1 ≡ V f

k−1(Ω) :=
{

w ∈ H0(div; Ω) such that w|P ∈ V f
k−1(P) ∀P ∈ Th

}
,388

with the degrees of freedom389

• ∀ internal face f :
∫
f
(w · n)pk−1 df ∀pk−1 ∈ Pk−1(f),(3.74)390

• ∀ element P :
∫

P w · (xP ∧ pk) dP ∀pk ∈ [Pk(P)]3,(3.75)391

• ∀ element P :
∫

P w · (gradpk−1) dP ∀pk−1 ∈ Pk−1(P) k > 1.(3.76)392393

It is important to point out that394

(3.77) ∇V n
k+1 ⊆ V e

k .395

In particular, it is easy to check that from Propositiom 3.6 it holds396

(3.78) ∇V n
k+1 ≡ {v ∈ V e

k such that curlv = 0}.397

Similarly, also recalling Proposition 3.8, we easily have398

(3.79) curlV e
k ⊆ V f

k−1.399

For the converse we follow the same arguments of the proof of Proposition 3.8: first400
using [9], this time for the global spaces, and then correcting v with a ∇ξ which is401
single-valued on the faces. Hence402

(3.80) curlV e
k ≡ {w ∈ V f

k−1 such that divw = 0}.403

Introducing the additional space (for volume 3-forms)404

(3.81) V v
k−1 := {γ ∈ L2(Ω) such that γ|P ∈ Pk−1(P) ∀P ∈ Th},405

we also have406

(3.82) divV f
k−1 ≡ V v

k−1.407

408

Proposition 3.9. For the Virtual element spaces defined in (3.62), (3.67), (3.73),409
and (3.81) the following is an exact sequence:410

R
i
−→ V n

k+1(Ω)
grad
−−−−→ V e

k (Ω)
curl
−−−→ V f

k−1(Ω)
div
−−→ V v

k−1(Ω)
o
−→ 0.411
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Remark 3.10. Here too it is very important to point out that the inclusions (3.77),412
(3.79) and (3.82) are (in a sense) also practical, and not only theoretical. By this,413
more specifically, we mean that: given the degrees of freedom of a q ∈ V n

k+1 we can414
compute the corresponding degrees of freedom of ∇q in V e

k ; and given the degrees of415
freedom of a v ∈ V e

k we can compute the corresponding degrees of freedom of curl v416
in V f

k−1; finally (and this is almost obvious) from the degrees of freedom of a w ∈ V f
k−1417

we can compute its divergence in each element and obtain an element in V v
k−1.418

3.6. Scalar products for VEM spaces in 3D. From the local scalar products419
in V e

k (P) we can also define a scalar product in V e
k in the obvious way420

(3.83) [v,w]e,µ :=
∑

P∈Th

[v,w]e,µ,P421

and we note that for some constants α∗ and α∗ independent of h422

(3.84) α∗µ0(v,v)0,Ω ≤ [v,v]e,µ ≤ α∗µ1(v,v)0,Ω ∀v ∈ V e
k .423

It is also important to point out that, using (3.48) we have424

(3.85) [v,p]e,µ = (µΠ0
kv,p)0,Ω ≡

∫
Ω
µΠ0

kv · p dΩ ∀v ∈ V e
k , ∀p piecewise in (Pk)3.425

From (3.56) we can also define a scalar product in V f
k−1 in the obvious way426

(3.86) [v,w]V f
k−1

:=
∑

P∈Th

[v,w]V f
k−1(P)427

and we note that, for some constants α1 and α2 independent of h428

(3.87) α1(v,v)0,Ω ≤ [v,v]V f
k−1
≤ α2(v,v)0,Ω ∀v ∈ V f

k−1.429

Note also that, using (3.58) we have430

(3.88) [v,p]V f
k−1

= (v,p)0,Ω ≡
∫

Ω
v · p dΩ ∀v ∈ V f

k−1, ∀p piecewise in (Pk−1)3.431

4. The discrete problem and error estimates.432

4.1. The discrete problem. Given j ∈ H0(div; Ω) with divj = 0, we construct433
its interpolant jI ∈ V f

k−1 that matches all the degrees of freedom (3.74)–(3.76):434

• ∀f :
∫
f
((j − jI) · n)pk−1 df = 0 ∀pk−1 ∈ Pk−1(f),(4.1)435

• ∀P :
∫

P(j − jI)·grad pk−1 dP = 0 ∀pk−1 ∈ Pk−1(P), k > 1(4.2)436

• ∀P :
∫

P(j − jI) · (xP ∧ pk) dP = 0 ∀pk ∈ [Pk(P)]3.(4.3)437438

Then we can introduce the discretization of (3.1):439

(4.4)


find Hh ∈ V e

k and ph ∈ V n
k+1 such that:

[curlHh, curlv]V f
k−1

+ [∇ph,v]e,µ = [jI , curlv]V f
k−1

∀v ∈ V e
k

[∇q,Hh]e,µ = 0 ∀q ∈ V n
k+1.

440

We point out that both curlHh and curlv (as well as jI) are face Virtual Elements441
in V f

k−1(P) in each polyhedron P, so that (taking also into account Remark 3.10)442
their face scalar products are computable as in (3.86). Similarly, from the degrees of443
freedom of a q ∈ V n

k+1 we can compute the degrees of freedom of ∇q, as an element444
of V e

k , so that the two edge-scalar products in (4.4) are computable as in (3.83).445
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Proposition 4.1. Problem (4.4) has a unique solution (Hh, ph), and ph ≡ 0.446

Proof. Taking v = ∇ph (as we did for the continuous problem (3.1)) in the447
first equation, and using (3.84) we easily obtain ph ≡ 0 for (4.4) as well. To prove448
uniqueness of Hh, set jI = 0, and let Hh be the solution of the homogeneous problem.449
From the first equation we deduce that curl Hh = 0. Hence, from (3.78) we have450
Hh = ∇q∗h for some q∗h ∈ V nk+1. The second equation and (3.84) give then Hh = 0.451

In order to study the discretization error between (3.1) and (4.4) we need the452
interpolant HI ∈ V e

k of H, defined through the degrees of freedom (3.68)-(3.72):453

• ∀ e :
∫
e
((H −HI) · te)pk ds = 0 ∀pk ∈ Pk(e),(4.5)454

• ∀ f :
∫
f

rotf (H −HI)τ p0
k−1 df = 0 ∀p0

k−1 ∈ P0
k−1(f) (for k > 1),(4.6)455

• ∀ f with βf ≥ 0 :
∫
f
((H −HI)τ · xf )pβf

df = 0 ∀pβf
∈ Pβf

(f),(4.7)456

• ∀ P :
∫

P((H −HI) · xP)pk−1 dP = 0 ∀pk−1 ∈ Pk−1(P),(4.8)457

• ∀ P :
∫

P curl(H −HI) · (xP ∧ pk) dP = 0 ∀pk ∈ [Pk(P)]3.(4.9)458459

We have the following result.460

Proposition 4.2. With the choices (4.1)-(4.3) and (4.5)-(4.9) we have461

(4.10) curl(HI) = (curlH)I ≡ jI .462

Proof. We should show that the face degrees of freedom (3.74)-(3.76) of the dif-463
ference curlHI − jI are zero, that is:464

• ∀ f :
∫
f
((curlHI − jI) · n)pk−1 df = 0 ∀pk−1∈Pk−1(f),(4.11)465

• ∀P :
∫

P(curlHI − jI) · gradpk−1 dP = 0 ∀pk−1∈Pk−1(P),(4.12)466

• ∀P :
∫

P(curlHI − jI) · (xP ∧ pk) dP = 0 ∀pk∈ [Pk(P)]3.(4.13)467468

From the interpolation formulas (4.1)-(4.3) we see that in (4.11)-(4.13) we can replace469
jI with j (that in turn is equal to curlH). Hence (4.11)-(4.13) become470

• ∀f :
∫
f

curl(HI −H) · n pk−1 df = 0 ∀pk−1 ∈ Pk−1(f),(4.14)471

• ∀P :
∫

P curl(HI −H) · gradpk−1 dP = 0 ∀pk−1 ∈ Pk−1(P),(4.15)472

• ∀P :
∫

P curl(HI −H) · (xP ∧ pk) dP = 0 ∀pk ∈ [Pk(P)]3.(4.16)473474

Observing that (4.5) and (4.6) imply that∫
f

rotf (H −HI)τ pk−1 df = 0 ∀pk−1 ∈ Pk−1(f),

and recalling that on each f the normal component of curl(HI −H) is equal to the475
rotf of the tangential components (HI −H)τ , we deduce476 ∫

f

curl(HI −H) · npk−1 df ≡
∫
f

rotf (HI −H)τ pk−1 df = 0.477

Hence, (4.14) is satisfied. Next, we note that, having already (4.14) on each face, the478
equation (4.15) follows immediately with an integration by parts on P. Finally, (4.16)479
is the same as (4.9), and the proof is concluded.480
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We observe now that, once we know that ph = 0, the first equation of (4.4) reads481

(4.17) [curlHh, curlv]V f
k−1

= [jI , curlv]V f
k−1
∀v ∈ V e

k ,482

that in view of (4.10) becomes483

(4.18) [curlHh − curlHI , curlv]V f
k−1

= 0 ∀v ∈ V e
k .484

Using v = Hh −HI and (3.87), this easily implies485

(4.19) curlHh = curlHI = jI .486

4.2. Commuting diagrams. Formula (4.10) represents, for H smooth, a com-487
muting diagram property. Similar properties can be established also for the nodal488
and face interpolants. For a smooth function q, let qI be its nodal interpolant in489
V n
k+1(P) defined through the degrees of freedom (3.49)-(3.52), and let (∇q)I be the490

interpolant of ∇q in V e
k (P) defined through the degrees of freedom (3.37)-(3.41). Since491

∇qI ∈ V e
k (P), to prove that ∇qI ≡ (∇q)I amounts to prove that the vector ∇q−∇qI492

verifies493

• ∀ edge e:
∫
e
∇(q − qI) · te pk ds = 0 ∀pk ∈ Pk(e),(4.20)494

• ∀ face f with βf ≥ 0 :
∫
f
∇(q − qI)τ · xf pβf

df = 0 ∀pβf
∈ Pβf

(f),(4.21)495

• ∀ face f :
∫
f

rotf∇(q − qI)τ p0
k−1 df = 0 ∀p0

k−1 ∈ P0
k−1(f) (for k > 1),(4.22)496

•
∫

P(∇(q − qI) · xP)pk−1 dP = 0 ∀pk−1 ∈ Pk−1(P),(4.23)497

•
∫

P(curl∇(q − qI)) · (xP ∧ pk) dP = 0 ∀pk ∈ [Pk(P)]3.(4.24)498499

Conditions (4.21)–(4.24) are automatically verified. The only non-immediate condi-
tion is (4.20) which, integrating by parts and using (3.49)-(3.50), gives∫

e

∇(q − qI) · te pk ds = −
∫
e

(q − qI)∇pk · te ds = 0.

For the face interpolant it is even much easier. Looking at the degrees of freedom
(3.74) and (3.76) we immediately see that: for every smooth enough vector field w,
denoting by wI its interpolant in V f

k−1(P) we have∫
P

div(w −wI)pk−1 dP = 0 ∀pk−1 ∈ Pk−1(P)

which immediately implies500

(4.25) Π0
k−1divw = div(wI)501

that, in turn, can be interpreted as a commuting diagram if we consider Π0
k−1 as the502

interpolator from L2(P) to Pk−1(P).503

4.3. Error estimates. Let us bound the error H −Hh in terms of approxima-504
tion errors for H. From (4.19) we have505

(4.26) curl(HI −Hh) = 0,506

and therefore, from (3.35),507

(4.27) HI −Hh = ∇q∗h for some q∗h ∈ V n
k+1.508
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On the other hand, using (3.84) we have509

(4.28) α∗µ0‖HI −Hh‖20,Ω ≤ [HI −Hh,HI −Hh]e,µ.510

Then:511

α∗µ0‖HI −Hh‖20,Ω ≤ [HI −Hh,HI −Hh]e,µ

=(use (4.27)) [HI −Hh,∇q∗h]e,µ

=(use the second of (4.4)) [HI ,∇q∗h]e,µ

=(add and subtract Π0
kH) [HI −Π0

kH,∇q∗h]e,µ + [Π0
kH,∇q∗h]e,µ

=(use (3.85)) [HI −Π0
kH,∇q∗h]e,µ + (Π0

kH, µΠ0
k∇q∗h)0,Ω

=(use the 2nd of (3.1)) [HI −Π0
kH,∇q∗h]e,µ︸ ︷︷ ︸
I

+ (Π0
kH, µΠ0

k∇q∗h)0,Ω − (H, µ∇q∗h)0,Ω︸ ︷︷ ︸
II

512

For the first term we use (3.47) to get513

(4.29) I ≤ µ1α
∗‖HI −Π0

kH‖0,Ω‖∇q∗h‖0,Ω.514

Next, following arguments similar to [11] (Lemma 5.3), we obtain:515

II = (Π0
kH, µΠ0

k∇q∗h)0,Ω−(H, µ∇q∗h)0,Ω+(H, µΠ0
k∇q∗h)0,Ω − (H, µΠ0

k∇q∗h)0,Ω516

= (Π0
kH −H, µΠ0

k∇q∗h)0,Ω + (µH,Π0
k∇q∗h −∇q∗h)0,Ω517

= (Π0
kH −H, µΠ0

k∇q∗h)0,Ω + (µH −Π0
kµH,Π0

k∇q∗h −∇q∗h)0,Ω(4.30)518

≤ ‖Π0
kH −H‖0,Ω‖µΠ0

k∇q∗h‖0,Ω + ‖µH −Π0
kµH‖0,Ω‖Π0

k∇q∗h −∇q∗h‖0,Ω519

≤ µ1‖Π0
kH −H‖0,Ω‖∇q∗h‖0,Ω + ‖µH −Π0

kµH‖0,Ω‖∇q∗h‖0,Ω.520521

Inserting (4.29)-(4.30) in the above estimate we deduce522
523

α∗µ0‖HI −Hh‖20,Ω ≤524 (
µ1α

∗‖HI −Π0
kH‖0,Ω + µ1‖Π0

kH −H‖0,Ω + ‖µH −Π0
kµH‖0,Ω

)
‖∇q∗h‖0,Ω525

526

that implies immediately (since α∗ ≥ 1)527

‖HI−Hh‖0,Ω ≤
µ1α

∗

µ0α∗

(
‖HI−Π0

kH‖0,Ω+‖Π0
kH−H‖0,Ω

)
+ 1
µ0α∗

‖µH−Π0
kµH‖0,Ω.528

Summarizing:529

Theorem 4.3. Problem (4.4) has a unique solution, and we have530

(4.31) ‖H −Hh‖0,Ω ≤ C
(
‖H −HI‖0,Ω + ‖Π0

kH −H‖0,Ω + ‖µH −Π0
k(µH)‖0,Ω

)
,531

with C a constant depending on µ but independent of the mesh size. Moreover,532

(4.32) ‖curl(H −Hh)‖0,Ω = ‖j − jI‖0,Ω.533
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Remark 4.4. The error bounds in (4.31) and (4.32) imply that the approximation534
error is of the same order (up to a multiplicative constant independent of h) of the535
interpolation error. The last two terms of (4.31) can be bounded using classical536
polynomial approximation properties. In particular, if the data µ and the solution537
H are sufficiently regular, one has that the projection errors (namely, the last two538
terms in (4.31)) can be estimated by539

(4.33) ‖H −Π0
kH‖0,Ω + ‖µH −Π0

k(µH)‖0,Ω ≤ Chs‖H‖s,Ω 0 ≤ s ≤ k + 1,540

where the constant C depends only on the polynomial degree k, the mesh regularity541
parameter γ, and ‖µ‖Wk+1,∞(Ωh). On the other hand, interpolation estimates for542
3d vector valued VEMs are still in fieri, as far as we know, in the international VEM543
community. However, a widely shared educated guess is that an estimate like (4.33)544
would also hold for ‖H − HI‖0,Ω, taking also into account that our local spaces545
contain all polynomials of degree k. The proof should be obtainable by tools similar546
to those already developed and used so far for VEMs (see, e.g., [16, 14, 38, 19, 18, 23]).547
The main difficulty, apparently, lies in the great variety of vector valued VEM spaces548
(splitting the proofs in zillions of different rivulets, each dealing with a very particular549
case) as well as in the great variety of possible geometric properties of the polyhedral550
elements used in the decomposition. Such a proof goes way beyond the scopes of the551
present paper, and we decided to stick on (4.31) that can still be seen as an "optimality552
result".553

The same is true for the error (4.32), which is already an interpolation error.554
Note however that here we are dealing with spaces similar to Nedéléc second types555
elements, where the order of approximation of the H field is one level higher than556
that of its curl, so that in a possible estimate of the error in the H(curl; Ω)-norm the557
error would be dominated by the curl part, that however is the less crucial of the two,558
since it deals with the approximation of a known datum and not of the (unknown)559
solution of the system of equations. �560

Remark 4.5. By inspecting the proof of Theorem 4.3 we notice that, for this561
particular problem, the consistency property (3.88) for the space V f

k−1 is never used.562
Since only property (3.87) is needed, in V f

k−1 we could simply take, for instance, as563
scalar product in V f

k−1 the one (much cheaper to compute) associated to the norm564

(4.34) ‖v‖2V f
k−1

:=
∑
i

(dofi(v))2,565

where dofi are the degrees of freedom in V f
k−1 properly scaled.566

5. Numerical Results. In this section we numerically validate the proposed567
VEM approach. More precisely, we will focus on two main aspects of this method.568
We will first show that we recover the theoretical convergence rate for standard and569
serendipity VEM, then we compare these two approaches in terms of number of degrees570
of freedom. For the present study we consider the cases k = 1 and k = 2. A lowest571
order case (not belonging to the present family) has been already discussed in [6].572

In the following two tests we use four different types of decompositions of [0, 1]3:573
• Cube, a mesh composed by cubes;574
• Nine, a regular mesh composed by 9-faced polyhedrons in accordance with575
a periodic pattern;576

• CVT, a Voronoi tessellation obtained by a standard Lloyd algorithm [32];577
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• Random, a Voronoi tessellation associated with a set of seeds randomly578
distributed inside Ω.579

Note that the meshes taken into account are of increasing complexity; in particular,580
the meshes CVT and Random have polyhedra with small faces and edges.581

All discretizations have been generated with the c++ library voro++ [42] and we
exploit the software PARDISO [41, 40] to solve the resulting linear systems. In order to

Cube Nine

CVT Random

Figure 1. A sample of the used meshes.

study the error convergence rate, for each type of mesh we consider a sequence of three
progressive refinements composed by approximately 27, 125 and 1000 polyhedrons.
Then, we associate with each mesh a mesh-size

h := 1
NP

NP∑
i=1

hP ,

where NP is the number of polyhedrons P in the mesh and hP is the diameter of P.582
Since Hh is virtual, we use its projection Π0

kHh to compute the L2-error, i.e.,
the following quantity is used as an indicator of the L2-error:

||H −Π0
kHh||0,Ω

||H||0,Ω
.

The expected convergence rate is O(hk+1).583
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Test case 1: h-analysis584
We consider a problem with a constant permeability µ(x) = 1. We take as exact585

solution586

H(x, y, z) := 1
π

 sin(πy)− sin(πz)
sin(πz)− sin(πx)
sin(πx)− sin(πy)

 ,587

and chose right-hand side and boundary conditions accordingly.588
In Figure 2 we show the convergence curves for each set of meshes. The error589

behaves as expected (O(h2) and O(h3) for k = 1 and k = 2, respectively).590
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Figure 2. Test case 1: L2-error for standard and serendipity approach: case k = 1 and k = 2.

From Figure 2 we also observe that we get almost the same values when we
consider the standard or the serendipity approach. These two methods are equivalent
in terms of error, but the serendipity approach requires fewer degrees of freedom. To
better quantify the gain in terms of computational effort, we compute the quantity

gain :=
#doff −#dofSf

#doff
100% ,

where #doff and #dofSf are the number of degrees of freedom on the faces in standard591
and serendipity VEM, respectively. We underline that in this computation we do not592
take into account the internal degrees of freedom since they can be removed via static593
condensation. As we can see from the data in Table 1, the gain is remarkable (almost594
50% of the face d.o.f.s). Note that this also reflects on a much better performance of595
several solvers of the final linear system.596

gain
k = 1 k = 2

∼ NP Cube Nine CVT Random Cube Nine CVT Random
27 56.6% 51.0% 50.2% 50.3% 56.4% 52.0% 49.9% 50.4%
125 59.5% 53.6% 50.5% 50.1% 58.5% 54.1% 51.6% 50.2%
1000 61.8% 54.9% 50.3% 49.8% 60.2% 55.0% 44.3% 49.9%

Table 1
Test case 1: values of gain for each type of mesh taken into account.

If we compare the total number of degrees of freedom, i.e., including the internal597
ones, the gain in percentage is obviously smaller, since we are applying serendipity598

This manuscript is for review purposes only.



A 3D VEM FAMILY FOR MAGNETOSTATIC PROBLEMS 19

only on faces. For instance, in the case of the 125 CVT mesh and k = 2 one gets599
40.7% instead of 51.6% (and similarly in the other cases). We nevertheless remind600
that, for the reasons explained above, counting only the degrees of freedom on faces601
is a better estimation of the overall computational cost.602

Test case 2: h-analysis with a variable µ(x)603
We consider now a problem with variable permeability µ(x) given by

µ(x, y, z) := 1 + x+ y + z.

We take as exact solution

H(x, y, z) := 1
(1 + x+ y + z)

 sin(πy)
sin(πz)
sin(πx)

 ,

and we choose again right-hand side and boundary conditions accordingly. In Figure 3604
we provide the convergence curves for each set of meshes. The L2-error behaves again605
as expected.606
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Figure 3. Test case 2 - L2-error for standard and serendipity approach: case k = 1 and k = 2.
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