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BASIC PRINCIPLES OF MIXED VIRTUAL ELEMENT METHODS

F. Brezzi1, 2, Richard S. Falk3 and L. Donatella Marini4

Abstract. The aim of this paper is to give a simple, introductory presentation of the extension
of the Virtual Element Method to the discretization of H(div)-conforming vector fields (or, more
generally, of (n − 1) − Cochains). As we shall see, the methods presented here can be seen as
extensions of the so-called BDM family to deal with more general element geometries (such as
polygons with an almost arbitrary geometry). For the sake of simplicity, we limit ourselves to
the 2-dimensional case, with the aim of making the basic philosophy clear. However, we consider
an arbitrary degree of accuracy k (the Virtual Element analogue of dealing with polynomials of
arbitrary order in the Finite Element Framework).
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Introduction

The Virtual Element Method has been recently introduced as a generalization of H1-conforming Finite
Elements to arbitrary element-geometry and as a generalization of the 0−Cochains version of Mimetic Finite
Differences (see [13] or [8]) to arbitrary degree of accuracy and arbitrary continuity properties (see [4], [5], [18],
and [1]).

The original nodal version of Virtual Elements put them, essentially, in the framework of non-polynomial
Finite Elements and/or Finite Elements on polygonal (or polyhedral) meshes. For example, [23], [24], [25],
[29], [30], [31], [32], [33].

The range of applicability of the basic ideas of Virtual Element Methods seems to be very wide, although
a reliable knowledge of the types of real-life applications where these methods are to be recommended is, in
our opinion, still lacking.

In this paper, we want to show the basic ideas of the possible extension of the Virtual Element framework
to the discretization of H(div)-conforming vector fields (as in Mixed Finite Element Methods). In doing so,
we will generalize Mixed Finite Elements (see e.g., [11] or [14]) to arbitrary element geometry, and the original
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(n− 1)−Cochains version of Mimetic Finite Differences (see e.g., [9], [15], [16], [17], [19], [26], [27], [28]; see
also [10] and [22] for overviews in more general frameworks) to arbitrary degree of accuracy.

For the sake of simplicity, we will just consider the basic case of 2-dimensional polygons and the sim-
plest toy-problem of the mixed formulation of the Laplace operator (or, actually, operators of the form
div(Kgrad)), with the aim of making the general philosophy understood in the simplest possible case (as
was done already in [4] for the H1-conforming case).

Throughout the paper, for a bounded Lipschitz-continuous domain Ω and an integer s, we will use the
common notation (· , ·)s,Ω and ‖ · ‖s,Ω to denote the Hs(Ω) scalar product and norm, respectively. When no
confusion can occur, the indication of the domain Ω will be omitted. Moreover, we shall often write (· , ·)
and ‖ · ‖ to indicate the L2 scalar product and norm, respectively. As usual, | · |s,Ω will denote the Hs(Ω)
semi-norm (using only the derivatives of order s).

With an abuse of language, we shall often write “polynomial of degree k” meaning actually ”polynomial of
degree ≤ k”. With another abuse of language, we will write the integral of the product of two functions even
when the right notation would be a duality pairing. Finally, C will denote a generic constant (independent
of the mesh size), not necessarily the same from one occurrence to the other.

An outline of the paper is the following. In the next section, we shall present the continuous model
problem and its mixed formulation. The decomposition and the corresponding discretizations will then be
introduced in Section 3. The interpolation operators (from spaces of smooth functions to the discretized
ones) will then be introduced in Section 4. In Section 5 we will present the discretized problem, and the
proof of convergence and error estimates will be given in Section 6. At the end of Section 6, several remarks
will give some hints on possible extensions of the method to more general situations.

Finally, we point out from the very beginning that “the name of the game” is that we know how to
integrate “every polynomial on every polygon” through (for instance)∫

E

xk1 =
1

k + 1

∫
∂E

xk+1
1 n1 ds (0.1)

and normal one-dimensional integration on the edges.

1. The Continuous Problem

We consider the classical model problem of Darcy flow in a porous medium.

Given the (polygonal) computational domain Ω ⊂ R2 and a source term f ∈ L2(Ω), we then look for a
scalar function p ∈ H1(Ω) (pressure), such that

−div(Kgrad p) = f in Ω (Kgrad p) · n = 0 on Γ ≡ ∂Ω, (1.1)

where the tensor K represents the permeability of the medium, and for simplicity we assumed no flux boundary
conditions all over Γ. We assume that K is symmetric, positive definite and, for simplicity, constant (or
piecewise constant).

We also denote by

‖K‖ and ‖K−1‖ (1.2)

the matrix norm of K and K−1, respectively, in R2. Clearly, we must require that f has zero mean value on
Ω, and p will be determined only up to an additive constant. To fix ideas, we might choose the constant by
requiring that p have zero mean value as well. In other words, we have
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∫
Ω

f dΩ = 0 and

∫
Ω

p dΩ = 0. (1.3)

Introducing the variable u (often called ”velocity”) given by

u := −K grad p, (1.4)

the problem can be written in the so-called mixed form, that is

u = −Kgrad p, divu = f in Ω, u · n = 0 on Γ. (1.5)

We consider the spaces

H := (L2(Ω))2, V := {v ∈ H(div; Ω) s.t. v · n = 0 on Γ}, Q := L2(Ω)/R, (1.6)

with norms

‖v‖2H =

∫
Ω

|v|2 dΩ, ‖v‖2V =

∫
Ω

|v|2 dΩ +

∫
Ω

|div v|2 dΩ, ‖q‖2Q =

∫
Ω

|q|2 dΩ, (1.7)

and the bilinear forms

a(u,v) :=

∫
Ω

K−1u · v dΩ u, v ∈ V, (1.8)

b(v, q) :=

∫
Ω

div v q dΩ v ∈ V, q ∈ Q. (1.9)

Then we can write (1.5) in variational form: Find (u, p) ∈ V ×Q such that:{
a(u,v)− b(v, p) = 0 ∀v ∈ V,

b(u, q) = (f, q) ∀q ∈ Q,
(1.10)

where, in agreement with our notation,

(f, q) :=

∫
Ω

f q dΩ. (1.11)

It is not difficult to check that

|a(u,v)| ≤ ‖a‖‖u‖H‖v‖H , ∀u,v ∈ H,

|b(u, q)| ≤ ‖b‖‖u‖V ‖q‖Q, ∀u ∈ V, ∀ q ∈ Q,

where ‖a‖ depends on K and ‖b‖ is actually equal to 1. We can also easily see that

a(v,v) ≥ α‖v‖2H ∀v ∈ H, (1.12)

where α > 0 also depends on K, and that there exists a β > 0 such that

sup
v∈V

b(v, q)

‖v‖V
≥ β‖q‖Q ∀q ∈ Q, (1.13)

where β depends on the domain Ω. Introducing the kernel K as

K := {v ∈ V such that b(v, q) = 0 ∀q ∈ Q}, (1.14)

we can finally see that
‖v‖H = ‖v‖V ∀v ∈ K. (1.15)
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Hence, we have that (1.10) has a unique solution, with

‖u‖V + ‖p‖Q ≤ C ‖f‖0, (1.16)

where we recall that (here and in all the sequel), C will denote a generic constant, non necessarily the same
at all occurrences.

2. Decomposition and Discretization

In order to approximate the solution of (1.10), we consider a sequence {Th}h of decompositions of Ω into
sub-polygons, such that:

HD - There exists a positive real number CT such that for every h and for every E ∈ Th:

• the ratio between the shortest edge and the diameter hE of E is bigger than CT , and
• E is star-shaped with respect to every point of a ball of radius CT hE . �

E

A C

D

B

Figure 1. Elements A and C have 4 edges; B has 7 edges; D has 3 edges; E has 8 edges

Remark. Assumptions HD have several important consequences that can be rather easily checked. First,
every element will be simply connected. Moreover, there will exist an integer NT (depending only on CT )
such that the number of edges of every polygon E in T is ≤ NT . Finally, we observe that meshes traditionally
considered as nonconforming, as the one in Figure 1, are easily allowed, although hanging nodes (or, here,
hanging edges) will not be considered as slaves but (as we shall see) will carry, each, a set of independent
unknowns. �

Remark. If we assume that the permeability tensor K is piecewise constant (instead of globally constant),
we will also assume that the decomposition is such that K is constant in every element.

Corresponding to the decomposition Th, we split the bilinear forms

a(u,v) =
∑
E∈Th

aE(u,v), u,v ∈ H, b(u, q) =
∑
E∈Th

bE(u, q), ∀u ∈ V, ∀ q ∈ Q, (2.1)
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and we consider, with obvious notation, the element by element norms

‖v‖2H =
∑
E∈Th

‖v‖20,E , ‖v‖2V,h =
∑
E∈Th

‖v‖2V,E , ‖q‖2Q =
∑
E∈Th

‖q‖20,E . (2.2)

Clearly,

‖v‖2V,h ≡ ‖v‖2V whenever v ∈ V, (2.3)

while the spaces Q and H do not imply any continuity requirement.

Then, for every integer k ≥ 1, we consider the following finite dimensional spaces:

Vh := {v ∈ V s.t. (v · n)|e ∈ Pk(e) for all edge e in Th,
(div v)|E ∈ Pk−1(E) and (rotv)|E ∈ Pk−1(E) for all element E ∈ Th}, (2.4)

Qh := {q ∈ Q s.t. q|E ∈ Pk−1(E) for all element E ∈ Th}. (2.5)

Remark. Since every element is simply connected, it is elementary to check that a vector field v having
v · n = 0 on ∂E, and both div v = 0 and rotv = 0 in E is identically zero. This implies that the restriction
of Vh to each element is finite dimensional, the dimension being less than or equal to k+ 1 times the number
of edges plus k(k + 1) (= twice the dimension of Pk−1). �

Remark. For every element E in Th, it is also easy to check that every polynomial vector field of degree ≤ k
(having normal component of degree ≤ k on each edge, divergence of degree ≤ k−1 and rotational of degree
≤ k − 1 inside) will belong to the restriction of Vh to E. Hence, [Pk(E)]2 ⊂ Vh|E . �

The choice of the degrees of freedom in Qh is trivial. On the other hand, in order to define the degrees
of freedom in the space Vh, we define first the following notation: for t a nonnegative integer and e an edge
with midpoint xe and length he, we denote by Me

t the set of t+ 1 normalized monomials

Me
t :=

{
1,
x− xe
he

,
(x− xe

he

)2

, ...,
(x− xe

he

)t}
. (2.6)

Similarly, for a two-dimensional domain E with diameter hE and barycenter xE , we denote by ME
t the set

of (t+ 1)(t+ 2)/2 normalized monomials

ME
t :=

{(x− xE
hE

)β
, |β| ≤ t

}
, (2.7)

where, as usual, for a nonnegative multi-index β = (β1, β2), we set |β| = β1 + β2 and xβ = xβ1

1 xβ2

2 . We
also assume that, in particular, for all E ∈ Th and for all nonnegative integer t, the elements qi ∈ ME

t are
ordered in such a way that q1 is the constant 1 in E.

In Vh we define then the following degrees of freedom:

(1)

∫
e

v · n q dt ∀ q ∈Me
k ∀ edge e in Th,

(2)

∫
E

v · grad q dΩ ∀ q ∈ME
k−1 \ {1} ∀E ∈ Th,

(3)

∫
E

rotv q dΩ ∀ q ∈ME
k−1 ∀E ∈ Th.

(2.8)

To analyze the unisolvence, it will be more convenient to proceed on an element by element basis.
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Proposition 2.1. Let E be an element in Th, let ` be the number of its edges, and let k be an integer ≥ 1.
Set

nEk := {`(k + 1)}+ {k(k + 1)/2− 1}+ {k(k + 1)/2} ≡ `(k + 1) + k2 + k − 1 (2.9)

and define the local space

V Eh := {v ∈ H(div;E) ∩H(rot;E) such that

(v · n)|e ∈ Pk(e) for all edge e of E, (div v)|E ∈ Pk−1(E) and (rotv)|E ∈ Pk−1(E)}. (2.10)

Then the nEk degrees of freedom (2.8) (restricted to E) are unisolvent in V Eh .

Proof. We remark first that the degrees of freedom (2.8) restricted to E determine, in a unique way,

(1)

∫
e

v · n q dt ∀ q ∈ Pk(e) ∀ edge e of E

(2)

∫
E

v · grad q dΩ ∀ q ∈ Pk−1(E) \ {1},

(3)

∫
E

rotv q dΩ ∀ q ∈ Pk−1(E).

(2.11)

In turn, the degrees of freedom (2.11) determine in a unique way,

• a function g on ∂E, polynomial of degree k on each edge, such that∫
e

g q ds =

∫
e

v · n q ds ∀q ∈ Pk(e) ∀ edge e of ∂E; (2.12)

• a polynomial r of degree k − 1 in E such that∫
E

r q dΩ =

∫
E

rotv q dΩ ∀q ∈ Pk−1(E); (2.13)

• a polynomial d of degree k − 1 in E such that∫
E

d q dΩ = −
∫
E

v · grad q dΩ +

∫
∂E

v · n q ds ∀q ∈ Pk−1(E). (2.14)

Clearly g, r, and d are the candidates to be, respectively, v · n on ∂E, and rotv and div v in E. This is
obvious for g and r, (from (2.11) (1) and (3) respectively), and is reasonably clear also for d, since∫

E

div vq dΩ = −
∫
E

v · grad q dΩ +

∫
∂E

v · n q ds ∀q ∈ Pk−1. (2.15)

Then we consider two auxiliary problems, looking for functions ψ and ϕ in H1(E) such that:

∆ψ = r in E, ψ = 0 on ∂E, (2.16)

and

∆ϕ = d in E,
∂ϕ

∂n
= g on ∂E, (2.17)

where we took into account that taking q = 1 in (2.14) (and remembering that (2.12) gives g = v ·n on ∂Ω)
we have ∫

E

ddΩ =

∫
∂E

g ds, (2.18)
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so that problem (2.17) has a solution. Setting v := gradϕ− rotψ, we immediately have

div v = d in E, rotv = r in E, and v · n = g on ∂E. (2.19)

Since the domain E is simply connected, we easily deduce that the function v satisfying (2.19) is unique and
the proof is concluded. �

Remark. We note that, if the element E is a triangle, and if, for instance, k = 1, then the local space
V Eh , as defined in (2.10), has dimension equal to 7, which is in between the dimension of the lowest order
BDM element (i.e., BDM1(E), which coincides with (P1(E))2 and has dimension 6) and that of the ”next
to the lowest” Raviart-Thomas element (i.e., RT1(E), which is given by (P1)2 + xP1 and has dimension 8).
Indeed,in this case V Eh can be obtained by adding to (P1(E))2 the vector v = rotψ, with ψ satisfying

∆ψ = 1 in E with ψ = 0 on ∂E. (2.20)

Note that if E is an equilateral triangle, then the function ψ in (2.20) coincides with the cubic bubble bE3 ,
and then one has

BDM1(E) ⊂ V Eh ⊂ BDMR
2 (E),

where BDMR
2 (E) is the so called ”reduced BDM” space, made of those vectors in BDM2 (≡ (P2)2) whose

normal component has degree ≤ 1 on each edge. It is immediate to see that BDMR
2 (E) has dimension 9, and

(as is well known) can be obtained (for a general triangle) by adding to RT1(E) the vector rot bE3 . Instead,
as we have seen, on the equilateral triangle, adding rot b3 to BDM1(E), we obtain our Virtual Element
space Vh(E). However, if E is not equilateral, the inclusion BDM1(E) ⊂ V Eh still holds, but V Eh will not be
a subset of BDMR

2 (E), as, in general, the function ψ given by (2.20) is not a polynomial. �

3. Interpolation in Vh and Qh

The space Qh has a particularly simple structure. Hence, for a given p ∈ Q, we can immediately define
its “interpolant” pI ∈ Qh by∫

E

(p− pI)qk−1 dΩ = 0 ∀E ∈ Th, ∀qk−1 ∈ Pk−1(E). (3.1)

Taking qk−1 ≡ 1 in each E and summing over the elements, we easily get∫
Ω

(p− pI) dΩ =
∑
E∈Th

∫
E

(p− pI) dΩ = 0, (3.2)

so that when p ∈ Q (recall: with zero mean value over Ω), we have that pI ∈ Q as well.

Note that we could write, locally, pI = PEk−1p, where PEk−1 is the L2-projection operator on Pk−1(E), and

globally pI = PQh
p where PQh

is the L2-projection on Qh.

As a consequence, we easily have (see e.g., [12]) that for every h, for every E ∈ Th, and for every integer
r with 0 ≤ r ≤ k:

‖p− pI‖0,E ≤ C hrE |p|r,E , (3.3)

where C depends only on the constant CT in HD.

The interpolation in the space Vh is also reasonably easy. We consider, for simplicity, a w ∈ V , and we
require additionally that for each element E we have w ∈ ∩(Ls(Ω))2 for some s > 2 (so that we can easily
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take its traces on each individual edge), and also rotw ∈ L1(E) (so that we can take its moments in E).
Then we define its interpolant wI ∈ Vh by requiring that

∫
e

(w −wI) · n q dt = 0 ∀ q ∈Me
k ∀ edge e in Th,∫

E

(w −wI) · grad q dΩ = 0 ∀ q ∈ME
k−1 ∀E ∈ Th,∫

E

rot(w −wI) q dΩ = 0 ∀ q ∈ME
k−1 ∀E ∈ Th.

(3.4)

Using Proposition 2.1, it is not difficult to check that such a wI exists and is unique in Vh. It is also easy to
see that for every element E and for every qk−1 ∈ Pk−1(E), we have∫

E

div(w −wI) qk−1 dΩ = −
∫
E

(w −wI) · grad qk−1 dΩ +

∫
∂E

(w −wI) · n qk−1 ds = 0 (3.5)

and since divwI itself is in Pk−1(E), we deduce that in each E,

divwI = PEk−1 divw, (3.6)

implying, as in (3.3), that

‖ divw − divwI‖0,E ≤ C hrE |divw|r,E 0 ≤ r ≤ k. (3.7)

Moreover, using again [12] and classical arguments, we have also, for each h, for each E ∈ Th, and for each
integer r with 1 ≤ r ≤ k + 1,

‖w −wI‖0,E ≤ C hrE |w|r,E (3.8)

for some constant C depending only on the constant CT in HD.

Remark. The use of spaces of vector valued functions in (Ls(E))2 ∩ H(div;E) for some s > 2 in order to
define the trace of the normal component on a single edge goes back to the early days of mixed methods
(see e.g., [14]). Among the more recent and detailed use of this tool, we refer, for instance, to [15] (Lemma
4.1) for a detailed description of the reason why s > 2 is sufficient, and to [11] (Remark 2.5.1) for a detailed
description of the reason why s = 2 is not sufficient. On the other hand, in order to take the “integral” of
rotw times a smooth function, we could just require rotw ∈ H−1/2(E). �

4. The discrete bilinear forms

For every decomposition Th and for every positive integer k, we have defined in (2.4) and (2.5) the spaces
Vh and Qh, respectively. Now we need to define, on them, a discrete version of the bilinear forms a and b
given in (1.8)-(1.9).

For the bilinear form b, this is really simple. Indeed we can keep

b(v, q) :=

∫
Ω

div v q dΩ ≡
∑
E∈Th

∫
E

div v q dΩ v ∈ Vh, q ∈ Qh, (4.1)

as in (1.9), which is easily computable since both div v and q are polynomials in each element. We explicitly
point out that, as can be seen from (2.14) and (2.19), the divergence of any vector v in V Eh can be easily
computed from knowledge of the degrees of freedom of v.
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On the other hand, the bilinear form a needs to be dealt with in a more careful way. We start by noting
that, on each element E, whenever û is of the form

û = Kgrad q̂k+1 with q̂k+1 ∈ Pk+1, (4.2)

then for every v ∈ V Eh , we have

aE(û,v) =

∫
E

K−1û · v dΩ =

∫
E

grad q̂k+1 · v dΩ

= −
∫
E

q̂k+1 div v dΩ +

∫
∂E

q̂k+1v · nds.

(4.3)

Since both div v and v · n|∂E are easily computable from the degrees of freedom of v (as pointed out in
(2.12) and in (2.14)), we have that (4.3) is also computable using only the degrees of freedom of v. Inspired
by this observation (that in turn is inspired by [9], [7]), we define first, for each element E, the space

V̂ E := {v̂ ∈ V Eh such that v̂ = Kgrad q̂k+1 for some q̂k+1 ∈ Pk+1(E)}. (4.4)

Then we define the (oblique) projector Π̂E from H(div;E) onto V̂ E by

aE(v − Π̂Ev, ŵ) = 0 ∀ŵ ∈ V̂ E , (4.5)

and we point out that Π̂Ev is explicitly computable for every v ∈ V Eh using only its degrees of freedom. At

this point, we consider the bilinear form SE , defined on V Eh × V Eh , associated to the identity matrix in RnE
k

with respect to the local basis determined by the degrees of freedom (2.8), and we define, in each E,

aEh (u,v) := aE(Π̂u, Π̂v) + ‖K−1‖ SE((I − Π̂)u, (I − Π̂)v) ∀u, v ∈ V Eh (4.6)

and, in a natural way,

ah(u,v) :=
∑
E∈Th

aEh (u,v) ∀u, v ∈ Vh. (4.7)

Remark. It is important to observe that each of the degrees of freedom in (2.8) scales like v times hE : indeed,
the choice of the monomials (2.6) and (2.7) was done exactly for this purpose. As a consequence, for instance,
the sum of their squares (that, in the computer, will be the square of the usual Euclidean norm) will scale
like ‖v‖20,E . As a consequence, on every element E, the bilinear form SE(v,v) will scale as aE(v,v). In
particular we will have that there exist two positive constants, c0 and c1, depending only on CT and K such
that

c0 a
E(v,v) ≤ ‖K−1‖SE(v,v) ≤ c1 aE(v,v)∀E ∈ Th, ∀v ∈ V E . (4.8)

�

Proposition 4.1. The bilinear form ah defined in (4.6) has the following two properties:

aEh (û,v) = aE(û,v) ∀E ∈ Th, ∀ û ∈ V̂ E , ∀v ∈ V Eh , (4.9)

∃α∗, α∗ > 0 s.t. α∗ a
E(v,v) ≤ aEh (v,v) ≤ α∗aE(v,v) ∀E ∈ Th, ∀v ∈ V Eh . (4.10)

Proof. Property (4.9) follows immediately from (4.5) and (4.6): indeed for û ∈ V̂ E , (4.5) implies that

SE(û− Π̂Eû,v − Π̂Ev) = 0 ∀v, and hence

aEh (û,v) = aE(Π̂Eû, Π̂Ev) = aE(Π̂Eû,v) = aE(û,v). (4.11)
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Moreover, from (4.5) we have aE(v − Π̂Ev, ŵ) = 0 for all ŵ ∈ V̂ E and for all v ∈ V Eh , so that by the
Pythagorean theorem, we have

aE(v − Π̂Ev,v − Π̂Ev) + aE(Π̂Ev, Π̂Ev) = aE(v,v) ∀v ∈ V Eh . (4.12)

Property (4.10) then follows easily using (4.6), (4.8), and then (4.12). Indeed, taking α∗ as α∗ := max{1, c1},
we have

aEh (v,v) ≤ aE(Π̂Ev, Π̂Ev) + c1a
E(v − Π̂Ev,v − Π̂Ev)

≤ max{1, c1}
(
aE(Π̂Ev, Π̂Ev) + aE(v − Π̂Ev,v − Π̂Ev)

)
= α∗aE(v,v),

(4.13)

and similarly, setting α∗ := min{1, c0}:

aEh (v,v) ≥ min{1, c0}
(
aE(Π̂Ev, Π̂Ev) + aE(v − Π̂Ev,v − Π̂Ev)

)
= α∗a

E(v,v).
(4.14)

�

Note that (4.10) and (1.12), in particular, imply

ah(v,v) ≥ α∗α‖v‖2H ∀v ∈ Vh. (4.15)

Moreover, introducing the discrete kernel

Kh := {vh ∈ Vh s. t. b(vh, qh) = 0 ∀qh ∈ Qh} ≡ {vh ∈ Vh s. t. div v = 0}, (4.16)

we easily see from the definition of Vh and Qh (see (2.4)-(2.5)) that

Kh ⊂ K, (4.17)

implying in particular that
ah(v,v) ≥ α∗α0‖v‖2V ∀v ∈ Kh. (4.18)

Finally, we point out that the symmetry of ah together with (4.10) easily gives

aEh (u,v) ≤ (aEh (u,u))1/2(aEh (v,v)1/2 ≤ α∗(aE(u,u))1/2(aE(v,v))1/2

≤ α∗‖a‖‖u‖0,E‖v‖0,E . (4.19)

Remark. The form (4.6) for ah is, in a sense, the trade mark of Virtual Element Methods (see for instance
[4]), although its structure was already present in earlier works dealing with reduced integration for nodal
quadrilateral elements (see e.g., [23], [24] and the references therein). We could say that the part

aE(Π̂u, Π̂v) (4.20)

is the consistency part, that ensures (among other things) that the final method will satisfy the patch test
(see always [4]). On the other hand, the second part

‖K−1‖ SE((I − Π̂)u, (I − Π̂)v) (4.21)

is in charge of stability: this is why it is made to vanish whenever u = Π̂u or v = Π̂v (so that it will not
spoil the patch test), and only its order of magnitude and asymptotic behavior in h matter. �

At this point, we have just to check the discrete analogue of the inf-sup condition (1.13). We have the
following theorem.
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Theorem 4.2. Under the above assumptions, there exists a constant β∗ > 0, depending only on Ω and on
the constant CT in HD, such that:

∀ q∗ ∈ Qh, ∃w∗h ∈ Vh such that divw∗h = q∗ and β∗‖w∗h‖H ≤ ‖q∗‖Q. (4.22)

Proof. It is well known (c.f. e.g., Ladyzenskaya) that there exists a constant β > 0, depending on Ω, such
that for every q∗ ∈ Qh ⊂ Q, there exists a w∗ ∈ (H1

0 (Ω))2 such that

divw∗ = q∗ and β‖w∗‖1,Ω ≤ ‖q∗‖Q. (4.23)

Then we define its interpolant w∗I ∈ Vh as in (3.4), and we have in particular, from (3.8) with r = 1 and
(4.23)

‖w∗I‖H ≤ (1 + C h)‖w∗‖1,Ω ≤
1 + C h

β
‖q∗‖Q =:

1

β∗
‖q∗‖Q. (4.24)

Finally, we have from (3.6) and (4.23) that

divw∗I = PQh
divw∗ = PQh

q∗ = q∗.

�

Corollary 4.3. The above result easily implies the classical inf-sup condition:

∃ β̃ > 0 such that ∀h, ∀Th inf
q∈Qh

sup
v∈Vh

(div v, q)

‖q‖Q ‖v‖V
≥ β̃ > 0. (4.25)

Proof. Indeed, for every q∗ ∈ Qh, taking w∗h as in (4.22), we have

‖w∗h‖2V = ‖w∗h‖2H + ‖ divw∗h‖2Q ≤
( 1

(β∗)2
+ 1
)
‖q∗‖2Q, (4.26)

so that
(divw∗h, q

∗)

‖w∗h‖V ‖q∗‖Q
=
‖q∗‖Q
‖w∗h‖V

≥ β̃, (4.27)

with β̃ = β∗/
√

1 + (β∗)2, proving (4.25). �

5. Convergence Theorem

We are now ready to introduce the discretized problem:
Find (uh, ph) in Vh ×Qh such that

ah(uh,v)− b(v, ph) = 0 ∀v ∈ Vh,
b(uh, q) = (f, q) ∀q ∈ Qh.

(5.1)

We have the following theorem.

Theorem 5.1. Under the above assumptions, the discrete problem (5.1) has a unique solution (uh, ph).

Moreover, for every approximation uπ of u that is piecewise in V̂ E (as defined in (4.4)), we have

‖uh − u‖H ≤ C1

(
‖u− uI‖H + ‖u− uπ‖H), (5.2)

‖pI − ph‖Q ≤ C2

(
‖u− uh‖H + ‖u− uπ‖H

)
, (5.3)
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where uI is defined in (3.4), pI is defined in (3.1), C1 is a constant depending only on K, α∗, α
∗, and C2

is a constant depending only on K, α∗ and β∗.

Proof. Existence and uniqueness of the solution of (5.1) follow immediately from (4.18) and (4.25).Then we
note that the second equation of (5.1) gives divuh = PQh

f , while from (3.6) we have divuI = PQh
divu =

PQh
f , so that, setting

δh := uh − uI , (5.4)

we easily have first
div δh = 0. (5.5)

Hence, in particular,
δh ∈ Kh ⊂ K, (5.6)

and also
‖δh‖V = ‖δh‖H . (5.7)

Then we have:

α∗α‖δh‖2H ≤ (use (1.12) and (4.10))

≤ α∗a(δh, δh) ≤ ah(δh, δh) (use (5.4))

= ah(uh, δh)− ah(uI , δh)(use (5.1) with (4.1) and (5.5), and (4.7))

= −
∑
E

aEh (uI , δh) (use ± uπ)

= −
∑
E

(
aEh (uI − uπ, δh) + aEh (uπ, δh)

)
(use (4.9))

= −
∑
E

(
aEh (uI − uπ, δh) + aE(uπ, δh)

)
(use ±u and (2.1))

= −
∑
E

(
aEh (uI − uπ, δh) + aE(uπ − u, δh)

)
− a(u, δh) (use (1.10) with (5.5))

= −
∑
E

(
aEh (uI − uπ, δh) + aE(uπ − u, δh)

)
.

(5.8)

Now we use the continuity of each aE and of each aEh (that is, (4.19)) in (5.8) in order to obtain

‖δh‖2H ≤ C
(
‖uI − uπ‖H + ‖u− uπ‖H

)
‖δh‖H , (5.9)

for some constant C depending only on Ω, K, α∗, α
∗. Then (5.2) follows easily by the triangle inequality.

We turn next to the proof of (5.3). Taking q∗ := ph− pI , we can apply (4.22) and obtain a w∗h ∈ Vh with
divw∗h = q∗ and

‖w∗h‖H ≤ (1/β∗)‖q∗‖Q = (1/β∗)‖ph − pI‖Q. (5.10)

Hence, using the definition (3.1) of pI and the fact that divw∗h ∈ Qh, and then the first equations of (1.10)
and (5.1), we deduce

‖ph − pI‖2Q = ‖q∗‖2Q = (ph − pI ,divw∗h) = (ph − p,divw∗h) = ah(uh,w
∗
h)− a(u,w∗h). (5.11)

Splitting over the elements, and adding and subtracting uπ, we have from (5.11)

‖ph − pI‖2Q =
∑
E∈Th

(
aEh (uh − uπ,w∗h) + aE(uπ − u,w∗h)

)
≤ C

(
‖uh − uπ‖H + ‖uπ − u‖H

)
‖w∗h‖H

≤ C
(
‖uh − uπ‖H + ‖uπ − u‖H

)
‖ph − pI‖Q,

(5.12)
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where (5.10) was used in the last step. Hence (5.3) follows. �

From the error estimates (5.2) and (5.3) we can then, with the usual techniques (see e.g., [12], [20]), derive
estimates on the speed of convergence in terms of powers of h, the degree k of accuracy, and the regularity
of the solution. In particular we have

Corollary 5.2. Under the same assumptions of Theorem 5.1 we have

‖u− uh‖H ≤ C hk+1‖u‖k+1,Ω ‖ divu− divuh‖0,Ω ≤ C hk‖f‖k,Ω, (5.13)

‖pI − ph‖Q ≤ C hk+1‖u‖k+1,Ω ‖p− ph‖0,Ω ≤ C hk(‖p‖k,Ω + ‖u‖k,Ω). (5.14)

Note that, in particular, the first estimate of (5.14) should be regarded as a superconvergence result (since
the pressure is locally in Pk−1), very much in the spirit of [21].

Remark. In our construction, we started from the degree k of the normal component on each edge, and then
we chose k − 1 as the local degree of the divergence, of the curl, and of the elements in Qh. This gave us
spaces that are sort of BDM-like. Our choice was dictated by the effort to remain as simple as possible.
Obviously we could have been slightly more general. One can rather easily see that taking four integers ke,
kd, kr, and kq, we could define the local space of vectors as

V Eh := {v ∈ H(div;E) ∩H(rot;E) such that

(v · n)|e ∈ Pke(e) for all edge e of E, (div v)|E ∈ Pkd(E) and (rotv)|E ∈ Pkr (E)}, (5.15)

and take as Qh the space of scalars locally in Pkq . Taking ke instead of k in (2.8)-(1), kd instead of k − 1 in
(2.8)-(2), and finally kr instead of k−1 in (2.8)-(3), we see that we could easily carry out all our construction
of Section 3. Needless to say, the local space for vectors will now contain all the polynomials of degree

k = min{ke, kd + 1, kr + 1},

so that, in general, kd ≥ ke − 1 and kr ≥ ke − 1 would be required in order to avoid a loss of accuracy
in the approximation properties of our spaces. Moreover, in the study of stability, we would actually need
kq = kd. Indeed, for kq < kd we would lose the inclusion of kernels (4.17), and for kq > kd we would lose the
inf-sup condition (4.22). Hence our choice (kq = kd = ke − 1 and kr = ke − 1) can be seen as minimal and
corresponds, as we said, to some sort of BDM -like elements. But we could have chosen

kq = kd = ke kr = ke − 1 (5.16)

to get some RT -like (or rather BDFM -like) elements (see e.g., [14] or [11] for all this terminology). Note
that with the choice (5.16) we could allow kq = kd = ke = 0 and kr = −1 (with the usual convention that
P−1 ≡ {0}) that would mimic the lowest order Raviart-Thomas element.

Finally we point out that, instead of requiring the local vector space to contain all vector polynomials of
a certain degree (say, (Pk)2), we could limit ourselves to the minimal requirement that the local vector space
contains the spaces of the type Kgrad q for all q, say, in ∈ Pk+1 (as we used here in (4.4)). In this case we
can change the requirement rotv ∈ Pkr into rot(K−1v) = 0, and get away, in general, with less degrees of
freedom. All these choices, however, cannot yet be reasonably discussed, in the absence of suitable numerical
experiments. �

Remark. It is interesting to note that, since all our construction is done on the current element (and we
don’t use the reference element), on general quadrilaterals our Virtual Elements will not incur the troubles
of classical BDM elements for ”non affine quadrilaterals” (see [2]), and should therefore be compared to the
ABF elements in [3]. �
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Remark. It is clear that (as it happens for practically all H(div)-conforming Finite Elements) a rotation of
our vector fields of 90 degrees ((u1, u2)→ (−u2, u1)) would generate H(rot)-conforming vector fields. �

Remark. The extension of the H(div)-conforming elements introduced here to the three-dimensional case
is essentially straightforward, giving rise to 3-dimensional face elements. However the extension to three
dimensions of their H(rot)-conforming version (in the spirit of the above remark) is less trivial. Mixed 3D
elements, of both types, are the object of a paper in preparation [6]. �

Remark. The extension of the present methods to more general problems, including for instance variable
permeability, the presence of lower order terms, and nonlinearities, is still to be done. Good suggestions for
the treatment of a variable permeability can be obtained from previous works on Mimetic Finite Differences
(as, for instance, [7]). For the treatment of lower order terms, a natural approach is to generalize the
technique used in [1] for nodal Virtual Elements.
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