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Abstract In the present paper we detail the implementation of the Virtual Element
Method for two dimensional elliptic equations in primal and mixed form with
variable coefficients.

1 Introduction

The Virtual Element Method (VEM) is a recent generalization of the Finite
Element Method that, in addition to other useful features, can easily handle general
polygonal and polyhedral meshes. The interest in numerical methods that can use
polytopal elements has a long and relevant history. We just recall the review works
[3, 4, 14, 21, 22, 26, 27] and the references therein. However, the use of polytopes
showed recently a significant growth both in the mathematical and in the engineering
literature, with the emergence of a new class of methods where the traditional
approach (based on the approximation and/or numerical integration of test and trial
functions) was substituted by various alternative strategies based on suitable differ-
ent formulations. Among these alternative frameworks (all, deep inside, very similar
to each other) we could see the (older) Mimetic Finite Differences (see e.g. [9]
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and the references therein), the Hybridizable Discontinuous Galerkin (see e.g. [18]
and the references therein) the Gradient Schemes (see e.g. [20] and the references
therein) the Weak Galerkin Methods (see e.g. [29] and the references therein), and
the Hybrid High Order methods (see e.g. [19] and the references therein), together
with the main object of the present paper: the Virtual Element Method.

The subject of polygonal and polyhedral mesh generation is a very active area of
research on its own. Here we only refer to [28] for a simple and reliable MATLAB
polygonal mesh generator in 2D, and to [24] and the references therein for some
insights into the issues of the three-dimensional case.

Very briefly, the key idea of the Virtual Element Method is to adopt also non-
polynomial shape functions (that are necessary in order to build conforming discrete
spaces on complex polytopal grids) but avoiding their explicit computation, not even
in an approximate way. This is achieved by introducing the right set of degrees
of freedom and defining computable projection operators on polynomial spaces.
In the initial paper [6] the Virtual Element Method was presented for the two
dimensional Poisson problem in primal form, while the three dimensional case (still
for constant coefficients) was discussed later in [1]. In the more recent papers [12]
and [11] the Virtual Element Method was then extended to more general elliptic
equations (including variable coefficients with the possible presence of convection
and reaction term), respectively in primal and mixed form. At the same time, the
method has been applied with success to a wide range of other problems. We just
recall [2, 5, 7, 10, 13, 15–17, 23, 25].

The present work can be considered as a natural continuation of [8], where all
the coding aspects of the model scheme presented in [6] and [1] where detailed.
Here we describe all the tools for the practical implementation of the methods
analysed in [12] and [11]. Since the assembly of the global matrix follows the same
identical procedure as in the Finite Element case, the focus of this work is on the
construction of the local matrices. After a brief description of the discrete spaces and
the associated degrees of freedom, we detail step by step the implementation of the
projection operators and all the other involved matrices. At the end of each part the
reader can find an “algorithm” section where the whole procedure is summarized.
Although we believe that the VEM is very elegant and, once some familiarity is
acquired, quite easy to implement, we advice the reader to look into the previous
work [8] before reading the present one.

The paper is organized as follows. After presenting some minimal notation in
Sect. 2, we briefly describe in Sect. 3 the problem under consideration, including
its primal and mixed variational formulations. In Sects. 4 and 5 we briefly recall
the discrete spaces, the degrees of freedom and the construction of the projection
operator of [6]. In Sect. 6 we detail the implementation of the method analysed
in [12]; a useful summary can be found in Sect. 7. Section 8 is devoted to a brief
description of the discrete spaces and of the degrees of freedom introduced in
[11], while the implementation aspects are described in Sects. 9 and 10. A useful
summary can be found in Sect. 11.

In this paper we have studied in details the implementation of the Virtual Element
Method in two dimensions only. The extension to the three dimensional case does
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not present any major difficulties, as long as all the 2D machinery is developed with
respect to each face of a general polyhedron. We will soon release a full MATLAB
implementation for both the 2D and the 3D case.

2 Basic Notation

In the present section we introduce some minimal notation needed in the rest of the
paper.

2.1 Polynomial Spaces

For a given a domain D � R
d and an integer k > 1, we will denote by Pk.D/

the linear space of polynomials of degree less than or equal to k. When d D 2, the
dimension of Pk.D/ will be denoted by nk:

nk WD dimPk.D/ D .k C 1/.k C 2/

2
:

2.2 Polygons

A generic polygon will be denoted by E; the number of vertices will be denoted by
NV and the number of edges by Ne. Of course Ne D NV , but it will be useful to
keep separate names. The diameter of the polygon E will be denoted by hE and its
centroid by .xc; yc/. The outward normal to E will be denoted by nE or simply by n
when no confusion can arise. The normal nE restricted to ad edge e will be indicated
by ne.

2.3 Scaled Monomials

Let ˛ D .˛x; ˛y/ be a multi-index. We define the scaled monomial m˛ on E by:

m˛.x; y/ WD
�x � xc

hE

�˛x
�y � yc

hE

�˛y

: (1)

For k an integer, let

Mk.E/ WD fm˛; 0 6 j˛j 6 kg (2)
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where j˛j D ˛x C ˛y. With a small abuse of notation we will indicate with ˛ (in
contrast with boldface ˛) a linear index running from 1 to nk. Obviously,Mk.E/ is
a basis for Pk.E/.

2.4 Functional Spaces

The scalar product in L2.D/ will be denoted by .�; �/0;D or simply by .�; �/ when the
domain is clear from the context.

3 The Elliptic Problem

Let ˝ � R
2 be a bounded convex polygonal domain with boundary � , let � and

� be smooth functions ˝ ! R with �.x/ > �0 > 0 for all x 2 ˝ , and let b be a
smooth vector field ˝ ! R

2. We consider the following elliptic problem:

( Lp WD div .��rp C bp/ C � p D f in ˝

p D 0 on �:
(3)

We assume that problem (3) is solvable for any f 2 H�1.˝/, and that the a-priori
estimate

k pk1;˝ 6 Ck fk�1;˝ (4)

and the regularity estimate

k pk2;˝ 6 Ck fk0;˝ (5)

hold with a constantC independent of f . As shown in [12] and [11], these hypotheses
are sufficient to prove the convergence of the Virtual Element approximation, both
in primal and in mixed form.

3.1 The Primal Variational Formulation

Set:

a. p; q/ WD
Z

˝

� rp � rq dx; b. p; q/ WD �
Z

˝

p .b � rq/ dx;

c. p; q/ WD
Z

˝

� p q dx; . f ; q/ D
Z

˝

f q dx;
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and define

B. p; q/ WD a. p; q/ C b. p; q/ C c. p; q/: (6)

The primal variational formulation of problem (3) is then

(
find p 2 V WD H1

0.˝/ such that

B. p; q/ D . f ; q/ for all q 2 V:
(7)

3.2 The Mixed Variational Formulation

In order to build the mixed variational formulation of problem (3), we define

� WD ��1; ˇ WD ��1b;

and re-write (3) as

u D ��1.�rp C ˇp/; divu C � p D f in ˝; p D 0 on �: (8)

Introducing the spaces

V WD H.div I ˝/; and Q WD L2.˝/;

the mixed variational formulation of problem (3) is:

8̂
<̂
ˆ̂:

Find .u; p/ 2 V � Q such that

.�u; v/ � . p; divv/ � .ˇ � v; p/ D 0 for all v 2 V;

.divu; q/ C .�p; q/ D . f ; q/ for all q 2 Q:

(9)

4 Approximation with the Virtual Element Method

The Virtual Element approximation of problems (7) and (9) fits in the classical con-
forming Galerkin methods: in principle, in both cases we define finite-dimensional
subspaces Vh � V (for problem (7)) and Vh � V, Qh � Q (for problem (9)) and
we restrict the various bilinear forms to the spaces Vh and Vh � Qh respectively.
However, given that for the VEM the functions are not explicitly known, we will
also have to approximate the various bilinear forms.
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As usual, the virtual spaces Vh, Vh and Qh will be defined at the element level,
and on the boundary of the elements the degrees of freedom will be chosen in such
a way that they will nicely glue together.

Hence, given a polygon E of the decomposition, we will first define the local
virtual spaces Vh.E/, Vh.E/ and Qh.E/ and then we will set

Vh D f p 2 V such that pjE 2 Vh.E/g (10)

Vh D fv 2 V such that vjE 2 Vh.E/g (11)

Qh D fq 2 Q such that qjE 2 Qh.E/g: (12)

Also the approximation of the various bilinear forms will be made element by
element.

To encourage the reader, we point out that the space Qh will consist, as usual in
finite element methods, of piecewise discontinuous polynomials of degree k.

5 Virtual Element Space for the Primal Formulation

Before defining the local virtual space Vh.E/, we need to become familiar with the
projection operator ˘r

k which will play a major role in the rest of the paper.
The operator ˘r

k is the orthogonal projection onto the space of polynomials of
degree k with respect to the scalar product

R
E rp � rq dx. Given a function p 2

H1.E/, the polynomial ˘r
k p is defined by the condition

Z

E
r.˘r

k p � p/ � rrk dx D 0 for all rk 2 Pk.E/: (13)

When rk is a constant, condition (13) is the identity 0 � 0 so the polynomial ˘r
k p

itself is determined up to a constant. This is fixed by imposing an extra condition,
for instance,

Z

@E
.˘r

k p � p/ ds D 0: (14)

The following easy lemma will be useful throughout the section:

Lemma 1 The polynomial ˘r
k p depends only on

• the value of p on the boundary of E;
• the moments of p in E up to order k � 2.

Proof By Eqs. (13) and (14) it is clear that the polynomial ˘r
k p is completely

determined by the integrals

Z

E
rp � rrk dx and

Z

@E
p ds:
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The second integral clearly depends only on the value of p on the boundary of E.
Concerning the first integral, integrating by parts we have

Z

E
rp � rrk dx D �

Z

E
p�rk dx C

Z

@E
p

@rk
@n

ds

and since �rk 2 Pk�2.E/ the proof is completed.

We are now ready to introduce the local virtual space Vh.E/. The space Vh.E/

consists of functions ph such that:

• ph is continuous on E;
• ph on each edge e is a polynomial of degree k;
• �ph 2 Pk.E/;

•
Z

E
ph m˛ dx D

Z

E
˘r

k ph m˛ dx for j˛j D nk � 1 and j˛j D nk.

In [1, 8] we have shown the following results:

1. Vh.E/ has dimension NV C .k � 1/Ne C nk�2 D kNV C nk�2;
2. Pk.E/ � Vh.E/;
3. for the space Vh.E/ we can take the following degrees of freedom:

Boundary degrees of freedom [NV C .k � 1/ � Ne D k � NV]

• the values of ph at the NV vertices of the polygon E;
• for each edge e, the values of ph at k � 1 distinct points of e (for instance

equispaced points).

Internal degrees of freedom (only for k > 1) [nk�2]

• the moments of ph up to degree k � 2, i.e. the integrals

1

jEj
Z

E
ph m˛ dx; j˛j 6 k � 2:

We will indicate by dofi. ph/ (i D 1; : : : ;Ndof WD dimVh.E/) the degrees of freedom
of ph. We define the local basis functions �i 2 Vh.E/, i D 1; : : : ;Ndof, by the
property:

dofi.�j/ D ıij i; j D 1; : : : ;Ndof (15)

so that we have a Lagrange-type decomposition:

ph D
NdofX
iD1

dofi. ph/ �i: (16)
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Given a function ph 2 Vh.E/, by Lemma 1 the polynomial ˘r
k ph depends only on

the value of ph on the boundary of E and on the moments of ph in E up to order
k � 2. Hence, the polynomial ˘r

k ph depends only on the degrees of freedom of ph.
In [8] it is shown that also the L2 projection ˘0

k ph of a function ph 2 Vh.E/ onto
Pk.E/ depends only on its degrees of freedom, and all the details to compute and
code˘r

k �i and ˘0
k �i, for a generic basis function �i, are given. For the convenience

of the reader we report here the various steps. Write

˘r
k �i D

nkX
˛D1

s˛
i m˛; i D 1; : : :Ndof (17)

and define

P0�i WD
Z

@E
�i ds:

Then, defining

G D

2
6664

P0m1 P0m2 : : : P0mnk

0 .rm2; rm2/0;E : : : .rm2; rmnk/0;E
:::

:::
: : :

:::

0 .rmnk ; rm2/0;E : : : .rmnk ; rmnk /0;E

3
7775 ; (18)

bi D

2
6664

P0�i

.rm2; r�i/0;E
:::

.rmnk ; r�i/0;E

3
7775 ; (19)

for each i, the coefficients s˛
i , ˛ D 1; : : : ; nk are solution of the nk�nk linear system:

Gsi D bi:

Denoting by B the nk � Ndof matrix given by

B WD �
b1 b2 : : : bNdof

� D

2
6664

P0�1 : : : P0�Ndof

.rm2; r�1/0;E : : : .rm2; r�Ndof/0;E
:::

: : :
:::

.rmnk ; r�1/0;E : : : .rmnk ; r�Ndof/0;E

3
7775 ; (20)
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the matrix representation
�
…r

k of the operator ˘r
k acting from Vh.E/ to Pk.E/ in the

basisMk.E/ is given by .
�
…r

k /˛i D s˛
i , that is,

�
…r

k D G�1B: (21)

We will also need the matrix representation, in the basis (15), of the same operator
˘r

k , this time thought as an operator Vh.E/ �! Vh.E/. Hence, let

˘r
k �i D

NdofX
jD1

�
j
i�j; i D 1; : : :Ndof;

with

�
j
i D dofj

�
˘r

k �i
�
:

From (17) and (16) we have

˘r
k �i D

nkX
˛D1

s˛
i m˛ D

nkX
˛D1

s˛
i

NdofX
jD1

dofj.m˛/ �j

so that

�
j
i D

nkX
˛D1

s˛
i dofj.m˛/: (22)

In order to express (22) in matrix form, we define the Ndof � nk matrix D by:

Di˛ WD dofi.m˛/; i D 1; : : : ;Ndof; ˛ D 1; : : : ; nk;

that is,

D D

2
6664

dof1.m1/ dof1.m2/ : : : dof1.mnk/

dof2.m1/ dof2.m2/ : : : dof2.mnk/
:::

:::
: : :

:::

dofNdof.m1/ dofNdof.m2/ : : : dofNdof.mnk/

3
7775 : (23)

Equation (22) becomes:

�
j
i D

nkX
˛D1

.G�1B/˛iDj˛ D .DG�1B/ji:
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Hence, the matrix representation …r
k of the operator ˘r

k W Vh.E/ �! Vh.E/ in the
basis (15), is given by

…r
k D DG�1B D D

�
…r

k : (24)

Remark 1 We point out that, as shown in [8], the matrix G can be expressed in
terms of the matrices D and B as

G D BD. (25)

Always following [8], we can show that also the L2 projection onto Pk.E/ of a
function ph 2 Vh.E/ depends only on its degrees of freedom. If we write

˘0
k �i D

NdofX
iD1

t˛i m˛;

and define

H D

2
6664

.m1;m1/0;E .m1;m2/0;E : : : .m1;mnk /0;E

.m2;m1/0;E .m2;m2/0;E : : : .m2;mnk /0;E
:::

:::
: : :

:::

.mnk ;m1/0;E .mnk ;m2/0;E : : : .mnk ;mnk/0;E

3
7775 ; (26)

ci D

2
6664

.m1; �i/0;E

.m2; �i/0;E
:::

.mnk ; �i/0;E

3
7775 ; (27)

then, for each i, the coefficients t˛i , ˛ D 1; : : : ; nk are solution of the nk � nk linear
system:

H ti D ci; (28)

which descends directly from the definition of the L2-projection.
We denote by C the nk � Ndof matrix given by

C WD �
c1 c2 : : : cNdof

� D

2
6664

.m1; �1/0;E .m1; �2/0;E : : : .m1; �Ndof/0;E

.m2; �1/0;E .m2; �2/0;E : : : .m2; �Ndof/0;E
:::

:::
: : :

:::

.mnk ; �1/0;E .mnk ; �2/0;E : : : .mnk ; �Ndof/0;E

3
7775 : (29)
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The first nk�2 lines of the matrix C can be computed directly from the degrees of
freedom, and the resulting matrix is

first nk�2 lines of C D jEj

2
6664

0 0 : : : 0 0 1 0 : : : 0
0 0 : : : 0 0 0 1 : : : 0

:::
:::

: : :
:::

:::
:::

:::
: : :

:::
0 0 : : : 0 0 0 0 : : : 1

3
7775

where the rightmost block is the identity matrix of size nk�2�nk�2. The last nk�nk�2

lines of the matrix C correspond to m˛ being a monomial of degree k � 1 or k and
we need to resort to the fundamental property

Z

E
�i m˛ dx D

Z

E
˘r

k �i m˛ dx:

Hence in this case we have

C˛i D .HG�1B/˛i; nk�2 < ˛ 6 nk:

It follows that the matrix representation
�
…0

k of the operator ˘0
k acting from Vh.E/

to Pk.E/ in the basisMk.E/ is given by .
�
…0

k/˛i D t˛i , that is,

�
…0

k D H�1C: (30)

Arguing as before, the matrix representation, in the basis (15), of the same operator
˘0

k , this time thought as an operator Vh.E/ �! Vh.E/, is

…0
k D DH�1C D D

�
…0

k: (31)

In a similar fashion we can also compute the matrix representations
�
…0

k�1 and …0
k�1

of the L2 projection onto the space of polynomials of degree k � 1. To this end, we
consider:

• the nk�1 � nk�1 matrix H0 obtained by taking the first nk�1 rows and the first nk�1

columns of the matrix H defined in (26);
• the nk�1 � Ndof matrix C0 obtained by taking the first nk�1 lines of the matrix C

defined in (29);
• the Ndof � nk�1 matrix D0 obtained by taking the first nk�1 columns of the matrix

D defined in (23).

Then we have:

�
…0

k�1 D .H0/�1C0 and …0
k�1 D D0 �

…0
k�1:
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To summarize, given a “virtual” function ph 2 Vh.E/, we can compute the
polynomials ˘r

k ph, ˘0
k ph and ˘0

k�1ph in terms of its degrees of freedom.

6 VEM Approximation of the Primal Formulation

As shown in [6], the projectors˘r
k and ˘0

k�1 allow us to solve the Laplace equation
with a reaction term. Indeed, according to [1], if problem (3) reduces to

( ��p C �p D f in ˝

u D g on @˝

then we have

a. p; q/ WD
Z

˝

rp � rq dx; b. p; q/ WD 0; c. p; q/ WD
Z

˝

� p q dx:

The local VEM approximation for a.�; �/ is

aEh . ph; qh/ WD
Z

E
r˘r

k ph � r˘r
k qh dx C SE

�
.I � ˘r

k /ph; .I � ˘r
k /qh

�

where the stability term SE.�; �/ is the symmetric and positive definite bilinear form
which is the identity on the basis function, i.e. SE.�i; �j/ D ıij. The local VEM
approximation for c.�; �/ is

cEh . ph; qh/ WD
Z

E
� ˘0

k�1ph ˘0
k�1qh dx

and similarly the load term . f ; qh/ is approximated locally by . f ; ˘0
k�1qh/0;E.

If the diffusion � is not constant or a first-order term is present, then we cannot
simply approximate rph with r˘r

k ph; as shown in [12], we would loose the
optimal convergence rates. Instead, we should approximate

rph with ˘0
k�1rph:

Note that for k D 1 the two approximations of rph coincide; in fact,

r˘r
1 ph D 1

jEj
Z

E
rph dx D ˘0

0 rph:

We will see now how to compute ˘0
k�1rph in terms of the degrees of freedom. To

this end, we observe that in order to obtain ˘0
k�1rph, we need to compute

Z

E
rph � rk�1 dx
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where rk�1 is any vector whose components are polynomials of degree k � 1.
Integrating by parts, we have

Z

E
rph � rk�1 dx D �

Z

E
ph div rk�1 dx C

Z

@E
ph rk�1 � n ds

and since div rk�1 2 Pk�2.E/, both integrals are directly computable from the
degrees of freedom of ph. In order to find the matrix representations of the operator

˘0
k�1r, we define the nk�1 � Ndof matrix

�
…

0;x
k�1 by

˘0
k�1�i;x D

nk�1X
˛D1

� �
…

0;x
k�1

�
˛i
m˛: (32)

The polynomial ˘0
k�1�i;x is defined by

Z

E
˘0

k�1�i;x mˇ dx D
Z

E
�i;x mˇ dx; ˇ D 1; : : : ; nk�1

which becomes the linear system

nk�1X
˛D1

� �
…

0;x
k�1

�
˛i

Z

E
m˛ mˇ dx D

Z

E
�i;x mˇ dx; ˇ D 1; : : : ; nk�1:

The term
R
E �i;x mˇ dx can be computed integrating by parts:

Z

E
�i;x mˇ dx D �

Z

E
�i mˇ;x dx C

Z

@E
�i mˇ nx: (33)

If we define the matrices Ex and Ey by

�
Ex�

iˇ
D

Z

E
�i;x mˇ dx;

�
Ey�

iˇ
D

Z

E
�i;y mˇ dx; ˇ D 1; : : : nk�1 (34)

then we have:

�
…

0;x
k�1 D OH�1

Ex;
�
…

0;y
k�1 D OH�1

Ey

where OH is the submatrix of H defined in (26) obtained taking the first nk�1 rows
and columns of H.

We can now compute the local VEM stiffness matrices for the variable coefficient
case.
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6.1 Diffusion Term

We have:

.Ka/ij WD aEh .�j; �i/ D
Z

E
� ˘0

k�1r�j � ˘0
k�1r�i dx

C N� SE
�
.I � ˘r

k /�j; .I � ˘r
k /�i

�

where N� is a constant approximation of � (for instance, the mean value).We compute
separately the consistency term and the stability term.

• consistency term:

.Ka
c/ij WD

Z

E
� ˘0

k�1r�j � ˘0
k�1r�i dx

D
Z

E
�

˚
Œ˘0

k�1�j;x	Œ˘
0
k�1�i;x	 C Œ˘0

k�1�j;y	Œ˘
0
k�1�i;y	

�
dx

and

Z

E
� Œ˘0

k�1�j;x	Œ˘
0
k�1�i;x	 dx D

nk�1X
˛;ˇD1

� �
…

0;x
k�1

�
˛j

� �
…

0;x
k�1

�
ˇi

Z

E
� m˛ mˇ dx;

Z

E
� Œ˘0

k�1�j;y	Œ˘
0
k�1�i;y	 dx D

nk�1X
˛;ˇD1

� �
…

0;y
k�1

�
˛j

� �
…

0;y
k�1

�
ˇi

Z

E
� m˛ mˇ dx:

If we define the nk�1 � nk�1 matrix H� by

.H�/˛ˇ WD
Z

E
� m˛ mˇ dx; 1 6 ˛; ˇ 6 nk�1;

then we have

Ka
c D � �

…
0;x
k�1

�TH�
�
…

0;x
k�1 C � �

…
0;y
k�1

�TH�
�
…

0;y
k�1

which can be written as

Ka
c D

h� �
…

0;x
k�1

�T � �
…

0;y
k�1

�Ti
2
4
H� 0

0 H�

3
5

2
4

�
…

0;x
k�1�

…
0;y
k�1

3
5: (35)
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• stability term:

.Ka
s/ij WD N� SE

�
.I � ˘r

k /�j; .I � ˘r
k /�i

�

D N�
NdofX
k;`D1

�
ıjk � .…r

k /jk
�SE.�k; �`/

�
ıi` � .…r

k /i`
�

D N�
NdofX
`D1

�
ıj` � .…r

k /j`
��

ıi` � .…r
k /i`

�

i.e.

Ka
s D N� .I � …r

k /T.I � …r
k /: (36)

If the diffusion � happens to be a 2 � 2 symmetric matrix, i.e.

� D
	
�xx �xy

�xy �yy



;

then we can proceed similarly by defining the nk�1 � nk�1 matrices H�xx , H�xy and
H�yy as follows:

.H�xx/˛ˇ WD
Z

E
�xx m˛ mˇ dx; .H�xy/˛ˇ WD

Z

E
�xy m˛ mˇ dx; : : :

and the local virtual diffusion consistency matrix Ka
c can be written as

Ka
c D

h� �
…

0;x
k�1

�T � �
…

0;y
k�1

�Ti
2
4
H�xx H�xy

H�xy H�yy

3
5

2
4

�
…

0;x
k�1�

…
0;y
k�1

3
5:

In this case, the stability matrix Ka
s can still be taken of the form (36), where this

time the constant scalar N� can be defined as the arithmetic mean of the mean values
of �xx and �yy. Note that here we are not considering the problem of optimizing the
stability matrix with respect to the anisotropy of the diffusion matrix �, but we are
only interested in the convergence as h goes to zero.

6.2 Transport Term

The local VEM approximation for the transport term is

bEh . ph; qh/ WD �
Z

E
˘0

k�1ph .b � ˘0
k�1rqh/ dx
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and the corresponding local matrix is

.Kb/ij WD bEh .�j; �i/ D �
Z

E
˘0

k�1�j .b � ˘0
k�1r�i/ dx:

Define the nk�1 � nk�1 matrices Hbx and Hby by

.Hbx/˛ˇ WD
Z

E
bx m˛ mˇ dx; .Hby/˛ˇ WD

Z

E
by m˛ mˇ dx:

By (32) we have

b � Œ˘0
k�1r�i	 D bxŒ˘0

k�1r�i;x	 C byŒ˘0
k�1r�i;y	

D bx
nk�1X
ˇD1

.
�
…

0;x
k�1/ˇi mˇ C by

nk�1X
ˇD1

.
�
…

0;y
k�1/ˇi mˇ

so that

�
Z

E
˘0

k�1�j .b � ˘0
k�1r�i/ dx D

�
Z

E

"
nk�1X
˛D1

.…0
k�1/˛j m˛

#"
bx

nk�1X
ˇD1

.
�
…

0;x
k�1/ˇi mˇ C by

nk�1X
ˇD1

.
�
…

0;y
k�1/ˇi mˇ

#
dx D

�
Z

E

(
bx

nk�1X
˛;ˇD1

.…0
k�1/˛j .

�
…

0;x
k�1/ˇi mˇm˛ C by

nk�1X
˛;ˇD1

.…0
k�1/˛j .

�
…

0;y
k�1/ˇi mˇm˛

)
dx D

�
nk�1X

˛;ˇD1

.…0
k�1/˛j .

�
…

0;x
k�1/ˇi

Z

E
bxmˇm˛ dx�

nk�1X
˛;ˇD1

.…0
k�1/˛j .

�
…

0;y
k�1/ˇi

Z

E
bymˇm˛ dxD

�
nk�1X

˛;ˇD1

.…0
k�1/˛j .

�
…

0;x
k�1/ˇi .Hbx/˛ˇ �

nk�1X
˛;ˇD1

.…0
k�1/˛j .

�
…

0;y
k�1/ˇi .Hby/˛ˇ D

�
h
.

�
…

0;x
k�1/

THbx…0
k�1 C .

�
…

0;y
k�1/

THby…0
k�1

i
ij

D

�
h�

.
�
…

0;x
k�1/

THbx C .
�
…

0;y
k�1/

THby
�
…0

k�1

i
ij
:
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Hence the elementary VEM matrix for the transport term is

Kb D �
�
.

�
…

0;x
k�1/

THbx C .
�
…

0;y
k�1/

THby
�
…0

k�1: (37)

6.3 Reaction Term

The local VEM approximation for the reaction term is

cEh . ph; qh/ WD
Z

E
� Œ˘0

k�1ph	 Œ˘0
k�1qh	 dx

and in matrix form

.Kc/ij WD cEh .�j; �i/ D
Z

E
� Œ˘0

k�1�j	 Œ˘0
k�1�i	 dx:

Define the matrix

.H� /˛ˇ WD
Z

E
� m˛mˇ dx

and we have immediately

.Kc/ij D
Z

E
�

h nk�1X
˛D1

.…0
k�1/˛j m˛

i h nk�1X
ˇD1

.…0
k�1/ˇi mˇ

i
dx D

nk�1X
˛;ˇD1

.…0
k�1/˛j.…

0
k�1/ˇi

Z

E
� m˛mˇ dx D �

.…0
k�1/

TH�…0
k�1

�
ij

i.e.

Kc D .…0
k�1/

TH�…0
k�1: (38)

7 Algorithm for the Primal Formulation

For the convenience of the reader, we summarize the results of the previous Section
in form of an algorithm ready to be implemented.
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7.1 Projectors

1. Compute the nk � Ndof matrix B given by

B D

2
6664

P0�1 : : : P0�Ndof

.rm2; r�1/0;E : : : .rm2; r�Ndof/0;E
:::

: : :
:::

.rmnk ; r�1/0;E : : : .rmnk ; r�Ndof/0;E

3
7775 ;

where the terms of type .rm˛; r�i/0;E can be determined as shown in Lemma 1.
2. Compute the Ndof � nk matrix D defined by:

Di˛ D dofi.m˛/; i D 1; : : : ;Ndof; ˛ D 1; : : : ; nk:

3. Set

G D BD. (39)

Note that the nk�nk matrixG can be computed independently (see (18)), and (39)
can be used as a check of the correctness of the code.

4. Set

�
…r

k D G�1B and …0
k D D

�
…0

k:

5. Compute the nk � nk matrix H defined by:

H˛ˇ D
Z

E
m˛mˇ dx ˛; ˇ D 1; : : : ; nk:

6. Compute the nk � Ndof matrix C defined by

C˛i D
Z

E
m˛ �i dx; ˛ D 1; : : : ; nk; i D 1; : : : ;Ndof:

The matrix C has the following structure:

• first nk�2 lines of C D jEj

2
6664

0 0 : : : 0 0 1 0 : : : 0
0 0 : : : 0 0 0 1 : : : 0

:::
:::

: : :
:::

:::
:::

:::
: : :

:::
0 0 : : : 0 0 0 0 : : : 1

3
7775 where the last

block is the identity matrix of size nk�2 � nk�2;
• last nk � nk�2 lines of C:

C˛i D .H
�
…r

k /˛i; nk�2 < ˛ 6 nk:
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7. Set

�
…0

k D H�1C and …0
k D D

�
…0

k:

8. Compute the Ndof � nk�1 matrices Ex and Ey (see (33) and (34)) by

�
Ex�

iˇ
D

Z

E
�i;x mˇ dx;

�
Ey�

iˇ
D

Z

E
�i;y mˇ dx:

9. Set

�
…

0;x
k�1 D OH�1

Ex;
�
…

0;y
k�1 D OH�1

Ey

where OH is the submatrix ofH obtained by taking the first nk�1 rows and columns
of H.

7.2 Coefficient Matrices

Compute the nk�1 � nk�1 matrices

.H�/˛ˇ D
Z

E
� m˛ mˇ dx; (40)

.Hbx/˛ˇ D
Z

E
bx m˛ mˇ dx; .Hby/˛ˇ D

Z

E
by m˛ mˇ dx; (41)

.H� /˛ˇ D
Z

E
� m˛mˇ dx: (42)

7.3 Local Stiffness Matrices

Finally, set

Ka D
h� �

…
0;x
k�1

�T � �
…

0;y
k�1

�Ti
2
4
H� 0

0 H�

3
5

2
4

�
…

0;x
k�1�

…
0;y
k�1

3
5 C N� .I � …r

k /T.I � …r
k /

Kb D �
�
.

�
…

0;x
k�1/

THbx C .
�
…

0;y
k�1/THby

�
…0

k�1

Kc D .…0
k�1/

TH�…0
k�1:
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8 Virtual Element Spaces for the Mixed Formulation

Before defining the virtual space Vh.E/, we need to study certain spaces of
polynomials which will play a major role in the definition of the degrees of freedom.

We start by defining an easily computable basis fmIg for ŒPk.E/	2. Let I be an
index running from 1 to 2 nk D dimŒPk.E/	2. Set:

8
ˆ̂̂̂
<̂
ˆ̂̂̂
:̂

mI WD
"
mI

0

#
if 1 6 I 6 nk

mI WD
"

0

mI�nk

#
if nk C 1 6 I 6 2nk:

We introduce the (vector) polynomial spaces

Gr
k .E/ WD rPkC1.E/

and

G?
k .E/ WD L2-orthogonal complement of Gr

k .E/ in ŒPk.E/	2

or, more generally,

G˚
k .E/ WD any complement of Gr

k .E/ in ŒPk.E/	2:

An easy computation shows that

dimGr
k .E/ D nr

k WD nk C .k C 1/ and dimG˚
k .E/ D n˚

k WD nk � .k C 1/:

We construct now a basis for Gr
k .E/ and G˚

k .E/. It is easy to check that a basis for
Gr
k .E/ is given by

gr;k
˛ WD rm˛C1; ˛ D 1; : : : ; nr

k :

Let now the nr
k � 2nk matrix Tr be such that

gr;k
˛ D

2nkX
ID1

Tr
˛ImI ; ˛ D 1; : : : ; nr

k :

A way to obtain a basis in G˚
k .E/ is to complete the matrix Tr with a n˚

k � 2nk

matrix T˚ to form a non-singular .nr
k Cn˚

k D 2nk/�2nk square matrix T D
	
Tr
T˚



.
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A basis for G˚
k .E/ is then given by

g˚;k
� WD

2nkX
ID1

T˚
� ImI; � D 1; : : : ; n˚

k :

An obvious way of constructing the matrix T is to define the rows of T˚ as a basis
for the kernel of Tr . This can be easily done symbolically in MATLAB:

TO = null(TN)’; T = [TN; TO]; go = T*m;

where TN D Tr and TO D T˚. In the appendix we present the basis so obtained up
to k D 5.

8.1 The Space Vh.E/

We are ready now to define the local VEM space Vh.E/ which consists of functions
vh such that:

• vh 2 H.divIE/ \ H.rotIE/;
• vh � ne is a polynomial of degree k on each edge e;
• div vh 2 Pk.E/;
• rotvh 2 Pk�1.E/.

In [11] we have shown the following results:

1. the dimension of Vh.E/ on a polygon E is

Ndof WD dimVh.E/ D Ne � .k C 1/ C dimGr
k�1.E/ C dimG˚

k .E/

D Ne � .k C 1/ C nr
k�1 C n˚

k DNe � .k C 1/ C 2nk � k � 2

2. ŒPk.E/	2 � Vh.E/;
3. for the space Vh.E/ we can take the following degrees of freedom:

• Edge dofs [Ne � .k C 1/]
Since on each edge vh � ne is a polynomial of degree k and no continuity is

enforced at the vertices, we need to identify a polynomial of degree k on each
edge without using the values at the vertices.

This can be done in several ways, the most natural being taking the value
of vh � ne at k C 1 internal distinct fxe`g points of the edge e, obtained by
subdividing e in k C 2 equal parts:

dof e` .vh/ WD .vh � ne/.xe`/; ` D 1; : : : ; k C 1:
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This choice automatically ensures the continuity of vh � ne across two
adjacent elements.

• Internal r dofs [nr
k�1

D nk � 1]
Let ˛ be an index running from 1 to dimGr

k�1.E/ D nr
k�1. We define:

dofr̨.vh/ WD 1

jEj
Z

E
vh � gr;k�1

˛ dx; gr;k�1
˛ 2 Gr

k�1.E/:

• Internal ˚ dofs [n˚
k D nk � .k C 1/]

Let � be an index running from 1 to dimG˚
k .E/ D n˚

k . We define:

dof�̊ .vh/ WD 1

jEj
Z

E
vh � g˚;k

� dx; g˚;k
� 2 G˚

k .E/:

Let i be an index running through all dofs. We define �i 2 Vh.E/ by

dofj.�i/ D ıij; j D 1; : : : ;Ndof

in such a way that we have again a Lagrange-type identity:

vh D
NdofX
iD1

dofi.vh/ �i:

8.2 The Space Qh.E/

As promised, the space Qh.E/ is simply the space Pk.E/ and as basis functions we
take the set of scaled monomialsMk.E/ defined in (2).

9 VEM Approximation of the Mixed Formulation

As show in [11], the VEM approximation of problem (9) is

8
ˆ̂̂
ˆ̂̂<
ˆ̂̂
ˆ̂̂:

Find .uh; ph/ 2 Vh � Qh such that
X
E

˚
aEh .uh; vh/ � . ph; div vh/0;E � .ˇ � ˘0

k vh; ph/0;E
� D 0 for all vh 2 Vh;

X
E

.divuh; qh/0;E C .�ph; qh/0;˝ D . f ; qh/0;˝ for all qh 2 Qh
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where

aEh .uh; vh/ WD .� ˘0
k uh; ˘0

k vh/0;E C SE
�
.I � ˘0

k /uh; .I � ˘0
k /vh

�
:

The symmetric and positive bilinear form SE.�; �/, needed for the stability of the
method, is defined by requiring

SE.�i; �j/ D �jEj ıij;

with � D mean value of � on E, or � D �.xc; yc/. The corresponding local stiffness
matrices are obtained by restricting all integrals to E and by setting uh D �j, vh D
�i, ph D m˛, qh D mˇ .

9.1 Computation of the L2-projection in Vh.E/

Let �i be a basis function for Vh.E/. We need to compute ˘0
k �i 2 ŒPk.E/	2. We

shall write ˘0
k �i in terms of the basis fgkI g D fgr;k

˛ ; g˚;k
� g of ŒPk.E/	2:

˘0
k �i D

nr

kX
˛D1

s˛
i g

r;k
˛ C

n˚

kX
�D1

s�
i g

˚;k
� D

2nkX
ID1

sIi g
k
I : (43)

Multiplying by fgr;k
ˇ ; g˚;k

� g and integrating, we get a linear system in the unknowns

fs˛
i ; s�

i g D sIi (note that
R
E ˘0

k �i � pk dx D R
E �i � pk dx):

8
ˆ̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂
:

nr

kX
˛D1

s˛
i

Z

E
gr;k

˛ � gr;k
ˇ dx C

n˚

kX
�D1

s�
i

Z

E
g˚;k

� � gr;k
ˇ dx D

Z

E
�i � gr;k

ˇ dx

nr

kX
˛D1

s˛
i

Z

E
gr;k

˛ � g˚;k
ı dx C

n˚

kX
�D1

s�
i

Z

E
g˚;k

� � g˚;k
ı dx D

Z

E
�i � g˚;k

ı dx:

Set

GIJ WD
Z

E
gkI � gkJ dx;

and define the 2nk � Ndof matrices

Œ
�
…0

k	Ii WD sIi and BIi WD
Z

E
�i � gkI dx: (44)
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We have

2nkX
JD1

GIJ Œ
�
…0

k	Ji D BIi i.e. G
�
…0

k D B so that
�
…0

k D G�1 B:

We split B as

B D
	
Br

B˚



:

We start from Br
ˇi D R

E �i � gr;k
ˇ dx. Since

gr;k
ˇ D rmˇC1;

we have

Br
ˇi D

Z

E
�i � rmˇC1 dx D �

Z

E
div�i mˇC1 dx C

Z

@E
�i � nE mˇC1 ds

DW Br
1 C Br

2 :

The term Br
2 can be readily computed because �i � n is a known polynomial on

the boundary of E. Concerning the term Br
1 , we first observe that we can directly

compute div�i 2 Pk.E/. In fact, write div�i as

div�i D
nkX


D1

d 

i m
 ;

multiply by m� and integrate over E:

nkX

D1

d 

i

Z

E
m
m� dx D

Z

E
div�i m� dx:

Define the nk � nk matrix H (as already done in (26)) by

H
� WD
Z

E
m
m� dx;

and the nk � Ndof matrices V andW as

V
 iW D d 

i ; W� i WD

Z

E
div�i m� dx (45)
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so that

HV D W and V D H�1W:

Now,

W� i D
Z

E
div�i m� dx D �

Z

E
�i � rm� dx C

Z

@E
�i � nE m� ds

DW ŒW1	� i C ŒW2	� i:

Observing that

rm� D gr;k�1
��1 ;

we have

ŒW1	� i D �jEj dofg��1.�i/ D
(

�jEj if i corresponds to � � 1

0 otherwise.
(46)

Concerning the term W2, we observe that it can be immediately computed since
�i � nE is a known polynomial on the boundary. Consider now Br

1 :

ŒBr
1 	ˇi D �

Z

E
div�i mˇC1 dx D �

nkX

D1

d 

i

Z

E
m
 mˇC1 dx:

Define the nr
k � nk matrix

H#
ˇ
 WD

Z

E
m
 mˇC1 dx:

Obviously, most of the entries of the matrix H# are also entries of the matrix H
already computed. Then

�
Z

E
div�i mˇC1 dx D �ŒH#V	ˇi D �ŒH#H�1W	ˇi

so that

Br
1 D �H#H�1.W1 C W2/:

Concerning the term B˚, we simply observe that

B˚
ıi D

Z

E
�i � g˚;k

ı D jEj dof˚
ı .�i/ D

(
jEj if ı corresponds to i

0 otherwise:
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We will also need ˘0
k �i in terms of the basis f�ig itself. To this end, we define �

j
i

as

˘0
k �i D

NdofX
jD1

�
j
i�j or �

j
i WD dofj.˘

0
k �i/ (47)

and the Ndof � Ndof matrix …0
k as

Œ…0
k	ji WD �

j
i :

From (43) we have

˘0
k �i D

2nkX
ID1

sIig
k
I D

2nkX
ID1

sIi

2
4

NdofX
jD1

dofj.gkI /�j

3
5 D

NdofX
jD1

"
2nkX
ID1

sIidofj.g
k
I /

#
�j;

and comparing with (47) we obtain

�
j
i D

2nkX
ID1

sIidofj.g
k
I /:

If we define the Ndof � 2nk matrix

DjI WD dofj.gkI /

we have:

…0
k D D

�
…0

k i.e. …0
k D DG�1B:

We observe that

GIJ D
Z

E
gkI � gkJ dx; and gkJ D

NdofX
iD1

dofi.gkJ/�i

so that

GIJ D
NdofX
iD1

dofi.gkJ/
Z

E
gkI � �i dx D

NdofX
iD1

DiJBIi hence G D BD: (48)

We have the following useful identities:

�
…0

kD D I since
�
…0

kD D G�1BD D G�1G D I
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and

…0
kD D D since …0

kD D D
�
…0

kD D DI D D:

Another way of arguing is that since ˘0
k is a projection, then .…0

k/
2 D …0

k. Hence

.…0
k/

2 D DG�1BDG�1B D DŒG�1BD	G�1B D …0
k D DG�1B

henceG�1BD must be the identity matrix as stated in (48).

Remark 2 It can be shown that the lower part of the matrix …0
k corresponding to

the internal dofs (last nr
k�1 C n˚

k rows) is the identity matrix. This property can be
exploited in the definition of the stability matrix (50) described below (see [11]).

10 Local Matrices

We are now ready to compute the VEM local matrices for the mixed formulation.

10.1 Term aEh .uh; vh/

The corresponding local matrix is given by

aEh .�i; �j/ D .� ˘0
k �j; ˘0

k �i/0;E C SE
�
.I � ˘0

k /�j; .I � ˘0
k /�i

�

WD .Ka
c/ij C .Ka

s/ij:

Using (43), the consistencymatrix Ka
c is given by

ŒKa
c	ij D

2nkX
ID1

2nkX
JD1

sIi s
J
j

Z

E
� gkI � gkJ dx:

Defining the 2nk � 2nk matrix G�

G�
IJ WD

Z

E
� gkI � gkJ dx;

and using (44) we obtain:

ŒKa
c	ij D

2nkX
ID1

2nkX
JD1

Œ
�
…0

k	IiŒ
�
…0

k	JjG
�
IJ
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i.e.

Ka
c D Œ

�
…0

k	
TG�

�
…0

k: (49)

If �.x/ � 1, i.e. we have the Laplace operator, then G� D G and

Ka
c D ŒG�1B	T G ŒG�1B	 D BTG�1B:

The stability matrix Ka
s can be taken as

Ka
s D N� jEj .I � …0

k/
T .I � …0

k/ (50)

where N� is a constant approximation of �.

10.2 Term �. ph; div vh/0;E

By (45) we see that the corresponding local matrix is �WT which has already been
computed.

The local matrix K corresponding to ˇ D .0; 0/ and � D 0 is then given by:

K D
	
Ka

c C Ka
s �WT

W 0




10.3 Term �.ˇ � ˘ 0
k vh; ph/0;E

The corresponding local matrix is

Tˇ
j
 WD �

Z

E
Œˇ � ˘0

k �j	m
k

 dx D �

2nkX
ID1

Œ
�
…0

k	Ij

Z

E
Œˇ � gkI 	mk


 dx:

Defining the matrix

UI
 WD
Z

E
Œˇ � gkI 	mk


 dx

we have

Tˇ D �.
�
…0

k/
TU:
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10.4 Term .�ph; qh/0;E

The corresponding local matrix is H� defined in (38).

10.5 Complete Stiffness Matrix

The local stiffness matrix K for the complete problem is then given by:

K WD
	
Ka

c C Ka
s �WT C Tˇ

W H�



:

11 Algorithm for the Mixed Formulation

We summarize here the steps needed to compute the VEM local matrix for the mixed
approximation. We indicate in square brackets the size of each matrix.

11.1 L2 Projection

1. Compute

GIJ D
Z

E
gkI � gkJ dx Œ2nk � 2nk	

2. Compute the Œnk � Ndof	 matrixW1

ŒW1	� i D �jEj dofg��1.�i/ D
(

�jEj if i corresponds to � � 1

0 otherwise

3. Compute

W2 (boundary term) Œnk � Ndof	

4. Set

W D W1 C W2 Œnk � Ndof	



68 L. Beirão da Veiga et al.

5. Compute

H
� D
Z

E
m
m� dx Œnk � nk	

6. Compute

H#
ˇ
 D

Z

E
m
 mˇC1 dx Œnr

k � nk	

7. Set

Br
1 D �H#H�1W Œnr

k � Ndof	

8. Compute

Br
2 (boundary term) Œnr

k � Ndof	

9. Set

Br D Br
1 C Br

2 Œnr
k � Ndof	

10. Compute the Œn˚
k � Ndof	 matrix B˚

ŒB˚	ıi D jEj dof˚
ı .�i/ D jEj ııi D

(
jEj if i corresponds to ı

0 otherwise

11. Set

B D
	
Br

B˚



Œ2nk � Ndof	

12. Set

�
…0

k D G�1B Œ2nk � Ndof	

13. Compute

DjI WD dofj.gkI / ŒNdof � 2nk	

14. Set

…0
k D D

�
…0

k Œ2Ndof � 2Ndof	
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15. Check that

G D BD

11.2 Coefficient Matrices

1. Compute

G�
IJ D

Z

E
� gkI � gkJ dx Œ2nk � 2nk	

2. Define

UI
 D
Z

E
Œˇ � gkI 	mk


 dx Œ2nk � nk	

3. Set

Tˇ D �.
�
…0

k/
TU: Œ2nk � nk	

4. Define

.H� /˛ˇ WD
Z

E
� m˛mˇ dx Œnk � nk	

11.3 Local Matrix

Set

Ka
c D Œ

�
…0

k	
TG�

�
…0

k and Ka
s D N� jEj .I � …0

k/
T .I � …0

k/:

The full local matrix is then

K WD
	
Ka

c C Ka
s �WT C Tˇ

W H�



:



70 L. Beirão da Veiga et al.

Appendix

We list here the basis gr;k
˛ and g˚;k

� obtained with MATLAB for k up to 5. We point
out that in order to have the right scaling, the variable x and y must be replaced by�x � xc

hE

�
and

�x � yc
hE

�
respectively.

gr;k
˛ g˚;k

�

k=1 [ 1, 0] [ -y, x]
[ 0, 1]
[ 2*x, 0]
[ y, x]
[ 0, 2*y]

k=2 [ 3*x^2, 0] [ -(x*y)/2, x^2]
[ 2*x*y, x^2] [ -2*y^2, x*y]
[ y^2, 2*x*y]
[ 0, 3*y^2]

k=3 [ 4*x^3, 0] [ -(x^2*y)/3, x^3]
[ 3*x^2*y, x^3] [ -x*y^2, x^2*y]
[ 2*x*y^2, 2*x^2*y] [ -3*y^3, x*y^2]
[ y^3, 3*x*y^2]
[ 0, 4*y^3]

k=4 [ 5*x^4, 0] [ -(x^3*y)/4, x^4]
[ 4*x^3*y, x^4] [ -(2*x^2*y^2)/3, x^3*y]
[ 3*x^2*y^2, 2*x^3*y] [ -(3*x*y^3)/2, x^2*y^2]
[ 2*x*y^3, 3*x^2*y^2] [ -4*y^4, x*y^3]
[ y^4, 4*x*y^3]
[ 0, 5*y^4]

k=5 [ 6*x^5, 0] [ -(x^4*y)/5, x^5]
[ 5*x^4*y, x^5] [ -(x^3*y^2)/2, x^4*y]
[ 4*x^3*y^2, 2*x^4*y] [ -x^2*y^3, x^3*y^2]
[ 3*x^2*y^3, 3*x^3*y^2] [ -2*x*y^4, x^2*y^3]
[ 2*x*y^4, 4*x^2*y^3] [ -5*y^5, x*y^4]
[ y^5, 5*x*y^4]
[ 0, 6*y^5]
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