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H(div) and H(curl)-conforming VEM

L. Beirão da Veiga ∗, F. Brezzi †, L. D. Marini ‡, and A. Russo §

Abstract

In the present paper we construct Virtual Element Spaces that are H(div)-conforming and
H(curl)-conforming on general polygonal and polyhedral elements; these spaces can be
interpreted as a generalization of well known Finite Elements. We moreover present the
basic tools needed to make use of these spaces in the approximation of partial differential
equations. Finally, we discuss the construction of exact sequences of VEM spaces.

1. Introduction

The Virtual Element Methods where initially introduced in [10], as a variant of classical
Lagrange Finite Element Methods to accommodate the use of polygonal and polyhedral
elements. Needless to say, they could be seen as an evolution of nodal Mimetic Finite
Differences (see [25, 13]) as well as a variant of other Galerkin methods for polygonal and
polyhedral elements (see e.g.[4, 7, 8, 9, 21, 18, 24, 34, 35, 36, 37, 41, 43, 45, 46, 47, 48, 49, 50]
and the references therein). Even more recently, in [26] we started the extension to polygonal
elements of Raviart-Thomas or BDM elements for mixed formulations (see e.g. [23] and the
references therein). These, in a sense, constitute the most natural and direct evolution of the
original “flux based” Mimetic Finite Differences, as for instance in [40]. See also, for the more
mathematical aspects, [28, 31, 29], as well as [16, 38, 14], the review papers [22, 33, 42], and
the book [15]. In addition to [10], see for instance [20, 11, 1, 17, 26] and references therein
for applications of the Virtual Element Method to various types of problems

On the other hand, to deal with a sufficiently wide range of mixed formulations (see again
[23] and the references therein), one needs to use a big variety of H(div) and H(curl)-
conforming spaces (to be used together with the more classical H1-conforming and L2-
conforming ones). See for instance [44] or [3]. See also the recent overview on Finite Element
spaces presented in [2].

The purpose of this paper is to indicate a possible strategy to construct the extensions of
all these types of spaces to more general elemental geometries, and typically to polygonal and
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polyhedral elements. The use of curved edges or curved faces (that so far, in this context,
was tackled only in [30]) will be the object of future research.

As a general matter, the (vector valued) functions to be used, in each element, in the
Virtual Element Methods are not polynomials (although they contain suitable polynomial
spaces within each element), and are presented as solutions of (systems of) partial differential
equations. However “the name of the game”, in the VEM context, is to avoid solving these
PDE systems, even in a roughly approximate way. Hence, in order to be able to construct,
element by element, the necessary local matrices, we have to be able to construct suitable
projectors from the local VEM spaces to some polynomial spaces (whose degree will determine
the final accuracy of the method).

In presenting our H(div)-conforming and H(curl)-conforming spaces we will therefore
take care to show how, for them, one can construct suitable L2-projection operators on the
corresponding polynomial spaces. This of course will not always solve all the problems,
but (as pointed out for instance in [1] for some particular cases) will surely be a precious
instrument.

As the variety of possible variants (required by different applications) is overwhelming,
we decided to limit ourselves, here, to the presentation of a few typical cases (that in our
opinion could be sufficient to give the general idea), leaving to the very last (and short)
section the task to give hints on some of the possible variants. In the same spirit, we decided
not to present direct applications. We believe that, for the readers with some experience in
the approximation of mixed formulations, the general ideas outlined in this paper should be
enough to understand the possible use of our spaces for most of the applications discussed
in [23]. Clearly, a lot of additional work, and a lot of numerical experiments, will be needed
for the tune-up of these methods in each particular type of application. To have an idea on
the implementation of Virtual Element Methods we refer to the guidelines given in [12] for
nodal virtual elements.

Here is an outline of the paper: in the next section we will introduce a suitable notation
and recall a few classical results of Calculus in several variables. Then we will present, each in
a separate section, the H(div)-conforming and the H(curl)-conforming spaces for polygonal
elements, and the corresponding ones for polyhedral elements. Next, we will briefly recall
the H1-conforming and L2-conforming spaces (as introduced for instance in [10]) and discuss
the possibility of having exact sequences of VEM spaces, in the spirit of [3].

In the last section, as announced already, we will give a short hint of the huge variety of
possible variants.

2. Notation, Assumptions, and Known Results

In what follows, we will detail the spaces and their degrees of freedom mainly at the
element level. One of the best features of Virtual Element Methods is the possibility to
use elements having a very general geometry, and actually, in order to give the definition of
the space we could use arbitrary simply connected polygons and polyhedra. In order to have
optimal interpolation errors, as well as suitable stability properties in the applications to
different problems, we would however need some mild assumptions. Here below, we give the
flavor of the type of assumptions that are generally used in Virtual Element Methods.

In two dimensions we will assume that we deal with a polygon E having `e edges and
containing a disk DE such that E is star-shaped with respect to all the points of DE.
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In three dimensions we will assume that we are dealing with a polyhedron P having `e
edges and `f faces, containing a ball BP such that P is star-shaped with respect to all points
of BP . We will also assume that each face f is star-shaped with respect to all the points of
a disk Df .

Note that under all these assumptions both E, P , and each face of P will have to be
simply connected.

Actually it will not be a problem to use elements that are suitable unions of pieces that
satisfy the assumptions above.

Needless to say, when dealing with a sequence of decompositions {Th}h, one should make
some further assumptions. To start with, for every geometrical object O that we are going
to use in what follows (edge, face, element, etc.) we will denote its diameter by hO. Then
we assume that there exists a positive number κ such that, in two dimensions, for every
decomposition Th and for every element E in Th, we have:

• hDE
≥ κhE

• for every edge e of E we have he ≥ κhE

and in three dimensions, for every decomposition Th and for every element P in Th, we have

• hBP
≥ κhP

• for every face f of P we have hDf
≥ κhP

• for every face f of P and for every edge e of f : he ≥ κhf .

We point out that these additional assumptions will imply, in particular, that there exists
an integer number K depending only on κ such that every element has less than K faces
and each face (and each element in two dimensions) has less than K edges.

We also point out that the above assumptions, that are indeed quite general, are very
likely unnecessarily restrictive. Indeed, from our numerical experiments, these methods
show a remarkable robustness, allowing for instance polygons with edges that are arbitrarily
small compared with the diameter of the element itself. We consider however that he present
generality is sufficient in almost every practical case, and we decided, for the moment, to
avoid unnecessary technical complications in order to increase it.

Here below we introduce now some additional notation.

• For a space of functions F(O) defined on O, we denote by F(O)/R (or simply by
F/R when the context is clear) the subset of functions having zero mean value on O.

• In two dimensions, for a polygon E, nE or simply n will be the outward normal
unit vector, and tE, or simply t, will be the tangent counterclockwise unit vector.
• For a scalar field q and a vector field v = (v1, v2), we will set (with a usual notation)

rot q :=
(∂q
∂y
,−∂q

∂x

)
rotv :=

∂v2

∂x
− ∂v1

∂y

• In three dimensions, for a face f of a polyhedron P , the tangential differential
operators will be denoted by a subscript 2, as in: div2, rot2, rot2, grad2, ∆2, and so
on.
• When dealing with a single polyhedron, we will always assume that all its faces are

oriented with the outward normal, while, when necessary, we will have to choose an
orientation for every edge. Obviously when dealing with a decomposition in several
polyhedra we will also have to decide an orientation for every face.



4

• On a polyhedron P , on each face f we will have to distinguish between the unit
outward normal to the plane of the face (that we denote by nf

P ), and the unit vector in
the plane of the face that is normal to the boundary ∂f (that will be denoted, on each
edge e, by ne

f ). On each face, tf or simply t will again be the unit counterclockwise
tangent vector on ∂f .
• For a (smooth enough) three dimensional vector-valued function ϕ on P , and for a

face f with normal nf
P , we define the tangential component of ϕ as

(2.1) ϕf := ϕ− (ϕ · nf
P )nf

P ,

while ϕt denotes the vector field defined on ∂P such that, on each face f ∈ ∂P , its
restriction to the face f satisfies:

(2.2) ϕt|f = ϕf .

• Note that ϕf as defined in (2.1) is different from

(2.3) ϕ ∧ nf
P ;

indeed, for instance, if nf
P = (0, 0, 1) and ϕ = (φ1, φ2, φ3), then

ϕf = (φ1, φ2, 0) ϕ ∧ nf
P = (φ2,−φ1, 0).

• With an abuse of language, sometimes we will treat both ϕf and ϕ ∧ nf
P as 2-d

vectors in the plane of the face. In the previous case, then, we would often take
ϕf = (φ1, φ2) and ϕ ∧ nf

P = (φ2,−φ1).

We will now recall some basic properties of Calculus of several variables, applied in par-
ticular to polynomial spaces. Before doing that, we recall once more that our assumptions
imply that all our elements are simply connected.

For a generic non negative number k and for a generic geometrical object O in 1,2, or 3
dimensions we will denote

• Pk(O) = Polynomials of degree ≤ k on O,

with the additional (common) convention that

• P−1(O) = {0}.
Moreover, with a common abuse of language, we will often say “polynomial of degree k”
meaning actually “polynomial of degree ≤ k”. Often the geometrical object O will be
omitted when no confusion arises.

In all the following diagrams (2.4), (2.5), and (2.6), as well as in the ones at the end, as
(8.1), (8.2), and (8.10) we will denote by i the mapping that to every real number c associates
the constant function identically equal to c, and by o the mapping that to every function
associates the number 0. Then we recall that, in 2 and in 3 dimensions, we have the exactness
of the following sequences.
In 2 dimensions

(2.4) R
i
−−→ Pr

grad
−−−−→ (Pr−1)2

rot
−−→ Pr−2

o
−−→ 0

or, equivalently,

(2.5) R
i
−−→ Pr

rot
−−→ (Pr−1)2

div
−−→ Pr−2

o
−−→ 0
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are exact sequences. In three dimensions we have that

(2.6) R
i
−−→ Pr

grad
−−−−→ (Pr−1)3

curl
−−−→ (Pr−2)3

div
−−→ Pr−3

o
−−→ 0

is also an exact sequence. We recall that the exactness means that the image of every operator
coincides with the kernel of the following one. To better explain the consequences of these
statements we introduce an additional notation. For s integer ≥ 1, in two dimensions we
denote by

• Gs−1 the set grad(Ps),
• Rs−1 the set rot(Ps),

and in three dimensions

• Gs−1 the set grad(Ps),

• Rs−1 the set curl
(

(Ps)
3
)

.

If we are considering polynomials on a domain O (not disgustingly irregular) we might use
the L2(O) or (in d dimensions) the (L2(O))d inner product, and introduce

• G⊥s as the orthogonal of Gs in (Ps)
d,

• and R⊥s as the orthogonal of Rs in (Ps)
d.

Obviously, (Ps)
d = Gs ⊕ G⊥s = Rs ⊕ R⊥s . In a similar way, the space Ps could be seen as

decomposed in the subspace of constants (the image of i : R −→ Ps) and the polynomials in
Ps having zero mean value on O (and hence orthogonal to the constants), that is (Ps(O))/R.

We recall now some of the properties following from the exactness of the above sequences.
The exactness of the sequence (2.4) implies in particular that for all integer s:

(2.7)

i) grad is an isomorphism from (Ps)/R to Gs−1,

ii) {v ∈ (Ps)
2} ⇒ {rotv = 0 iff v ∈ Gs},

iii) rot is an isomorphism from G⊥s to the whole Ps−1,

and equivalently (2.5) implies that

(2.8)

i) rot is an isomorphism from (Ps)/R to Rs−1,

ii){v ∈ (Ps)
2} ⇒ {div v = 0 iff v ∈ Rs},

iii) div is an isomorphism from R⊥s to the whole Ps−1.

Finally, the exactness of the sequence (2.6) implies in particular that, for all integer s:

(2.9)

i) {v ∈ (Ps)
3} ⇒ {curlv = 0 iff v ∈ Gs},

ii){v ∈ (Ps)
3} ⇒ {div v = 0 iff v ∈ Rs},

iii) grad is an isomorphism from (Ps)/R to Gs−1,

iv) curl is an isomorphism from G⊥s to Rs−1,

v) div is an isomorphism from R⊥s to the whole Ps−1.

Remark 2.1. Properties [2.7;ii)], [2.8;ii)], and [2.9;i) and ii)] are just particular cases of
well known results in Calculus. Indeed, on a simply connected domain, we know that a
(smooth enough) vector field v having rotv = 0 (in 2 dimensions) or curlv = 0 (in 3
dimensions) is necessarily a gradient, and a (smooth enough) vector v field having div v = 0
is necessarily a rot (in 2 dimensions) or a curl (in 3 dimensions).
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To all these spaces we can attach their dimensions. To start with, we denote by πk,d the
dimension of the space Pk(Rd), that is,

(2.10) πk,1 = k + 1; πk,2 =
(k + 1)(k + 2)

2
; πk,3 =

(k + 1)(k + 2)(k + 3)

6
.

We then consider the spaces of (vector valued) polynomials (Pk)d whose dimension is obvi-
ously

(2.11) dim{(Pk)d} = dπk,d.

Among them, we consider those that are gradients (that we already called Gk), and we denote
by γk,d their dimension:

(2.12) dim{Gk} in d dimensions ≡ γk,d = πk+1,d − 1.

Needless to say, γk,2 also equals the dimension ρk,2 of rot(Pk+1) (that is, Rk in two dimen-
sions):

(2.13) dim{Rk} in 2 dimensions = ρk,2 = γk,2 = πk+1,2 − 1.

We also have (obviously), in d dimensions,

(2.14) dim{G⊥k } in d dimensions = dπk,d − γk,d = dπk,d − πk+1,d + 1.

In 2 dimensions, looking at [2.7;iii)] and at [2.8;iii)] we see that the dimension of G⊥k as well
as that of R⊥k equal that of Pk−1, that is

(2.15) dim{G⊥k } = dim{R⊥k } = πk−1,2 in two dimensions.

On the other hand, for d = 3, we can use [2.9;iv)] and see that the dimension ρk−1,3 of
Rk−1 = curl((Pk)3) is given by

(2.16) ρk−1,3 = dim{Rk−1} = dim{G⊥k } = 3πk,3 − πk+1,3 + 1,

while, following [2.9;v], we have

(2.17) dim{R⊥k } = πk−1,3 in three dimensions

We summarize all the above results on the dimensions of polynomial spaces in the following
equations. In two dimensions:

(2.18) dim{Gk} = dim{Rk} = πk+1,2 − 1 dim{R⊥k } = dim{G⊥k } = πk−1,2

and in three dimensions:

(2.19) dim{Gk} = πk+1,3 − 1, dim{G⊥k } = 3πk,3 − πk+1,3 + 1

dim{Rk} = 3πk+1,3 − πk+2,3 + 1 dim{R⊥k } = πk−1,3.

As announced, the definition of our local Virtual Element spaces will be done as the
solution, within each element, of a suitable div-curl system. In view of that, it will be
convenient to recall the compatibility conditions (between the data inside the element and
the ones at the boundary) that are required in order to have a solution. To start with, for a
polygon E we define

(2.20) H(div;E) := {v ∈ (L2(E))2 such that div v ∈ L2(E)},
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(2.21) H(rot;E) := {v ∈ (L2(E))2 such that rotv ∈ L2(E)},
and for a polyhedron P

(2.22) H(div;P ) := {v ∈ (L2(P ))3 such that div v ∈ L2(P )},

(2.23) H(rot;P ) := {v ∈ (L2(P ))3 such that curlv ∈ (L2(P ))3}.
We now assume that we are given, on a simply connected polygon E, two smooth functions
fd and fr, and, on the boundary ∂E, two edge-wise smooth functions gn and gt. We recall
that the problem: find v ∈ H(div;E) ∩H(rot;E) such that:

(2.24) div v = fd and rotv = fr in E and v · n = gn on ∂E

has a unique solution if and only if

(2.25)

∫
E

div v dE =

∫
∂E

gn ds.

Similarly the problem: find v ∈ H(div;E) ∩H(rot;E) such that:

(2.26) div v = fd and rotv = fr in E and v · t = gt on ∂E

has a unique solution if and only if

(2.27)

∫
E

rotv dE =

∫
∂E

gt ds.

In three dimension, on a simply connected polyhedron P we assume that we are given a
smooth scalar function fd and a smooth vector valued function f r with div f r = 0. On
the boundary ∂P we assume that we are given a face-wise smooth scalar function gn and a
face-wise smooth tangent vector field gt whose tangential components are continuous (with a
natural meaning) at the edges of ∂P . Then we recall that the problem: find v ∈ H(div;P )∩
H(curl;P ) such that:

(2.28) div v = fd and curlv = f r in P and v · n = gn on ∂P

has a unique solution if and only if

(2.29)

∫
P

div v dP =

∫
∂P

gn ds,

and similarly the problem: find v ∈ H(div;P ) ∩H(curl;P ) such that:

(2.30) div v = fd and curlv = f r in P and vt = gt on ∂P

has a unique solution if and only if

(2.31) f r · n = rot2 gt on ∂P.

For more details concerning the solutions of the div-curl system we refer, for instance, to [5],
[6] and the references therein.

Finally, in order to help the reader to understand what we consider as feasible (in a
code), we recall that we assume to be able to integrate any polynomial on any polygon or
polyhedron, for instance through formulae of the type

(2.32)

∫
E

xk1 =
1

k + 1

∫
∂E

xk+1
1 n1 ds.
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3. 2D Face Elements

These spaces are the same of Brezzi-Falk-Marini [26], although here we propose a different
set of degrees of freedom.

3.1. The local space. On a polygon E, for k integer ≥ 1, we set:

(3.1) V face
2,k (E) := {v ∈ H(div;E) ∩H(rot;E) : v · n|e ∈ Pk(e) ∀ edge e of E,

grad div v ∈ Gk−2(E), and rotv ∈ Pk−1(E)}.

3.2. Dimension of the space V face
2,k (E). We recall from our introduction that, given

• a function g defined on ∂E such that g|e ∈ Pk(e) for all e ∈ ∂E,
• a polynomial fd ∈ Pk−1(E) such that

(3.2)

∫
E

fd dE =

∫
∂E

g ds,

• a polynomial fr ∈ Pk−1(E) ,

we can find a unique vector v ∈ V face
2,k (E) such that

(3.3) v · n = g on ∂E, div v = fd in E, rotv = fr in E.

This easily implies that the dimension of V face
2,k (E) is given by:

(3.4)
dimV face

2,k (E) = `e dimPk(e) + {dimPk−1(E)− 1}+ dimPk−1(E)

= `eπk,1 + πk−1,2 − 1 + πk−1,2

Remark 3.1. We note that, for a vector-valued function in H(div;E)∩H(rot;E), one can
define both the normal and the tangential trace on each edge of ∂E (see [32]).

3.3. The Degrees of Freedom. A convenient set of degrees of freedom for functions v in
V face

2,k (E) will be: ∫
e
v · n p k de for all edge e, for all pk ∈ Pk(e),(3.5) ∫

E
v · gk−2 dE for all gk−2 ∈ Gk−2,(3.6) ∫

E
v · g⊥k dE for all g⊥k ∈ G⊥k .(3.7)

Remembering (2.18) we easily see that number of degrees of freedom (3.5)–(3.7) equals the
dimension of V face

2,k (E) as given in (3.4).

3.4. Unisolvence. Since the number of degrees of freedom (3.5)-(3.7) equals the dimension
of V face

2,k (E), to prove unisolvence we just need to show that if for a given v in V face
2,k (E) all

the degrees of freedom (3.5)-(3.7) are zero, that is if∫
e
v · n p k de = 0 for all edge e, for all pk ∈ Pk(e),(3.8) ∫

E
v · gk−2 dE = 0 for all gk−2 ∈ Gk−2,(3.9) ∫

E
v · g⊥k dE = 0 for all g⊥k ∈ G⊥k ,(3.10)

then we must have v = 0. For this we introduce a couple of preliminary observations.
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Lemma 3.1. If v ∈ V face
2,k (E) and if (3.8) and (3.9) hold, then

(3.11)

∫
E

v · gradϕ dE = 0 ∀ϕ ∈ H1(E).

Proof. Using the fact that div v ∈ Pk−1 and setting qk−1 := div v we have

(3.12)

∫
E

| div v|2 dE =

∫
E

div v qk−1 dE =

∫
∂E

v · nqk−1 ds −
∫
E

v · grad qk−1 dE = 0,

where the last step follows from (3.8) and (3.9). Hence we have that div v = 0 and since
(using again (3.8)) v ·n = 0 on ∂E, the result (3.11) follows then using a simple integration
by parts. �

Lemma 3.2. If v ∈ V face
2,k (E) then there exist a q⊥k in G⊥k and a ϕ ∈ H1(E) such that

(3.13) v = q⊥k + gradϕ.

Proof. We first note that according to (3.1) if v ∈ V face
2,k (E) then rotv ∈ Pk−1. Looking at

[2.7;iii)] we have then that rotv = rot q⊥k for some q⊥k ∈ G⊥k . Now the difference v − q⊥k
satisfies rot(v − q⊥k ) = 0, and as E is simply connected the result follows from Remark
2.1. �

We can now easily prove the following theorem.

Theorem 3.1. The degrees of freedom (3.5)-(3.7) are unisolvent in V face
2,k (E).

Proof. Assume that for a certain v ∈ V face
2,k (E) we have (3.8)-(3.10). From Lemma 3.2 we

have v = q⊥k + gradϕ for some q ∈ G⊥k and some ϕ ∈ H1(E). Then

(3.14)

∫
E

|v|2 dE =

∫
E

v · (q⊥k + gradϕ) dE = 0

since the first term is zero by (3.10) and the second term is zero by (3.8)-(3.9) and Lemma
3.1. �

Remark 3.2. The degrees of freedom (3.5) are pretty obvious. A natural variant would be
to use, on each edge e, the values of v ·n at the k+ 1 Gauss points on e. On the other hand,
for the degrees of freedom (3.6) we could integrate by parts, and substitute them with

(3.15)

∫
E

div v qk−1 dE for all qk−1 ∈ Pk−1/R.

Finally, the degrees of freedom (3.7) could be replaced by

(3.16)

∫
E

rotv qk−1 dE for all qk−1 ∈ Pk−1

as we had in the original work [26].

Remark 3.3. Needless to say, certain degrees of freedom will be more convenient when
writing the code, and others might be more convenient when writing a proof. For instance,
from the above discussion it is pretty obvious that we can identify uniquely an element v of
V face

2,k (E) by prescribing its normal component v ·n (in Pk(e)) on every edge, its rotation rotv
(in Pk−1(E)), and its divergence div v (in (Pk−1(E))/R), provided the compatibility condition
(3.2) is satisfied. This will be convenient in some proof, but might be less convenient in the
code.
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3.5. Computing the L2 projection. Since the VEM spaces contain functions which are
not polynomials, and their reconstruction can be too hard, for the practical use of a virtual
element method it is often important to be able to compute different types of projections
onto spaces of polynomials. Here we show how to construct the one that is possibly the most
convenient, and surely the most commonly used: the L2 projection onto (Pk(E))2.

For this, we begin by recalling that to assign grad div v ∈ Gk−2(E) (as we do with our
degrees of freedom (3.6) for v ∈ V face

2,k (E)), is equivalent to assign div v ∈ Pk−1(E) up to an
additive constant. This constant will be assigned by the integral of v · n over ∂E, that can
be deduced from the degrees of freedom (3.5). Indeed, using the same integration by parts
applied in (3.12), the degrees of freedom (3.5) and (3.6) allow us to compute

∫
E

div v qk−1 dE
for all qk−1 ∈ Pk−1(E), and since div v ∈ Pk−1(E), we can compute exactly the divergence
of any v ∈ V face

2,k (E). In turn this implies, again by using an integration by parts and (3.5),
that we are able to compute also ∫

E

v · gk dE ∀gk ∈ Gk,

and actually ∫
E

v · gradϕ dE ∀ϕ polynomial on E.

The above property, combined with (3.7), allows to compute the integrals against any
qk ∈ (Pk(E))2 and thus yields the following important result.

Theorem 3.2. The L2(E) projection operator

Π0
k : V face

2,k (E) −→ (Pk(E))2

is computable using the degrees of freedom (3.5)–(3.7).

Remark 3.4. We point out that, for instance, the (L2(E))2 projection would be much more
difficult to compute if we used the degrees of freedom discussed in Remark 3.3.

3.6. The global 2D-face space. Given a polygon Ω and a decomposition Th of Ω into a
finite number of polygonal elements E, we can now consider the global space

(3.17) V face
2,k (Ω) := {v ∈ H(div; Ω) ∩H(roth; Ω) s. t. v · n|e ∈ Pk(e) ∀ edge e in Th,

grad div v ∈ Gk−2(E), and rotv ∈ Pk−1(E) ∀ element E inTh},

where, with a common notation, H(roth; Ω) is the space of vector valued functions v in
(L2(Ω))2 such that their rot, within each element E, belongs to L2(E). In other words

(3.18) H(roth; Ω) =
∏
E∈Th

H(rot;E).

Note that in (3.17) we assumed that the elements v of V face
2,k (Ω) have a divergence that

is globally (and not just element-wise) in L2(Ω). Hence the normal component of vectors
v ∈ V face

2,k (Ω) will have to be “continuous” (with obvious meaning) at the inter-element edges.
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From the local degrees of freedom (3.5)-(3.7) we deduce the global degrees of freedom:∫
e
v · n p k de for all edge e, for all pk ∈ Pk(e),(3.19) ∫

E
v · gk−2 dE for all element E, for all gk−2 ∈ Gk−2(E),(3.20) ∫

E
v · g⊥k dE for all element E, for all g⊥k ∈ G⊥k (E).(3.21)

From the above discussion it follows immediately that the degrees of freedom (3.19)-(3.21)
are unisolvent, and that the dimension of V face

2,k (Ω) is given by

dim(V face
2,k (Ω)) = πk,1 × {number of edges in Th}+

(2πk−1,2 − 1)× {number of elements in Th}.

4. 2D Edge Elements

The edge elements in 2D exactly correspond to the face elements, just rotating everything
by π/2. For the sake of completeness we just recall the definition of the spaces and the
corresponding degrees of freedom.

4.1. The local space. On a polygon E we set

(4.1) V edge
2,k (E) := {v ∈ H(div;E) ∩H(rot;E) : v · t|e ∈ Pk(e)∀ edge e of E,

rot rotv ∈ Pk−2(E), and div v ∈ Pk−1(E)}.

4.2. The Degrees of Freedom. A convenient set of degrees of freedom for elements v in
V edge

2,k (E) will be: ∫
e
v · t pk de for all edge e, for all pk ∈ Pk(e),(4.2) ∫

E
v · rk−2 dE for all rk−2 ∈ Rk−2,(4.3) ∫

E
v · r⊥k dE for all r⊥k ∈ R⊥k .(4.4)

Remark 4.1. Here too we could use alternative degrees of freedom, in analogy with the ones
discussed in Remarks 3.2 and 3.3. In particular we point out that we can identify uniquely
an element v of V edge

2,k (E) by prescribing its tangential component v · t (in Pk(e)) on every
edge, its rotation rotv (in (Pk−1(E))/R), and its divergence div v (in Pk−1(E)).

Remark 4.2. Obviously, here too we can define the L2−projection onto Pk, exactly as we
did in subsection 3.5, with R⊥k taking the role of G⊥k .

4.3. The global 2D-edge space. Given a polygon Ω and a decomposition Th of Ω into a
finite number of polygonal elements E, we can now consider the global space

(4.5) V edge
2,k (Ω) := {v ∈ H(divh; Ω) ∩H(rot;E) s. t. v · t|e ∈ Pk(e) ∀ edge e in Th,

div v ∈ Pk−1(E), and rot rotv ∈ Rk−2(E) ∀ element E inTh},

where, with a notation similar to that used in (3.18), we have here

(4.6) H(divh; Ω) =
∏
E∈Th

H(div;E).
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Note that the tangential component of vectors v ∈ V edge
2,k (Ω) will have to be “continuous”

(with obvious meaning) at the inter-element edges. From the local degrees of freedom (4.2)-
(4.4) we deduce the global degrees of freedom:∫

e
v · t p k de for all edge e, for all pk ∈ Pk(e),(4.7) ∫

E
v · rk−2 dE for all element E, for all rk−2 ∈ Rk−2(E),(4.8) ∫

E
v · r⊥k dE for all element E, for all r⊥k ∈ R⊥k (E).(4.9)

From the above discussion it follows immediately that the degrees of freedom (4.7)-(4.9) are

unisolvent, and that the dimension of V edge
2,k (Ω) is

dim(V edge
2,k (Ω)) = πk,1 × {number of edges in Th}+

(2πk−1,2 − 1)× {number of elements in Th}.

5. 3D Face Elements

The three-dimensional H(div)-conforming spaces follow in a very natural way the path of
their two-dimensional companions.

5.1. The local space. On a polyhedron P we set

(5.1) V face
3,k (P ) := {v ∈ H(div;P ) ∩H(curl;P ) s. t. v · nf

P ∈ Pk(f)∀ face f of P,

grad div v ∈ Gk−2(P ), curlv ∈ Rk−1(P )}.

5.2. Dimension of the space V face
3,k (P ). We recall from the introduction that given

• a function g defined on ∂P such that g|f ∈ Pk(f) for all f ∈ ∂E,
• a polynomial fd ∈ Pk−1(P ) such that

(5.2)

∫
P

fd dP =

∫
∂P

g dS,

• a vector valued polynomial f r ∈ Rk−1(P ) ,

we can find a unique vector v ∈ V face
3,k (P ) such that

(5.3) v · n = g on ∂P, div v = fd in P, curlv = f r in P.

This easily implies that the dimension of V face
3,k (P ) is given by: the number of faces, `f , times

the dimension of Pk (in R2), plus the dimension of Pk−1(P ) minus one (to take into account
the compatibility condition (5.2)) plus the dimension of Rk−1(P ), that is

(5.4) dim(V face
3,k (P )) = `fπk,2 + γk−2,3 + ρk−1,3.

5.3. The Degrees of Freedom. The degrees of freedom will be:∫
f
v · nf

P pk df for all face f , for all pk ∈ Pk(f),(5.5) ∫
P
v · gk−2 dP for all gk−2 ∈ Gk−2,(5.6) ∫

P
v · g⊥k dP for all g⊥k ∈ G⊥k .(5.7)

It is not difficult to check, using (2.12) and (2.16), that the number of the above degrees of
freedom is given by

(5.8) `fπk,2 + dim{Gk−2}+ dim{G⊥k } = `fπk,2 + γk−2,3 + ρk−1,3,
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which equals the dimension of V face
3,k (P ) as given in (5.4).

5.4. Unisolvence. Having already noticed that the number of degrees of freedom (5.5)-(5.7)
equals the dimension of V face

3,k (P ), we just have to show that if a v ∈ V face
3,k (P ) verifies∫

f
v · nf

P pk df = 0 for all face f , for all pk ∈ Pk(f),(5.9) ∫
P
v · gk−2 dP = 0 for all gk−2 ∈ Gk−2,(5.10) ∫

P
v · g⊥k dP = 0 for all g⊥k ∈ G⊥k ,(5.11)

then v = 0. We proceed as in the two dimensional case. For this we observe first that if
v ∈ V face

3,k (P ) and if (5.9) and (5.10) hold, then

(5.12)

∫
P

v · gradϕ dP = 0 ∀ϕ ∈ H1(P ).

The proof is identical to that of Lemma 3.1. Then we observe that for all v ∈ V face
3,k (P ) there

exist a q⊥k in G⊥k and a ϕ ∈ H1(P ) such that

(5.13) v = q⊥k + gradϕ.

Again the proof is identical to that of Lemma 3.2, this time using [2.9;iv)] to show the
existence of a q⊥k ∈ G⊥k such that curl(v − q⊥k ) = 0. Then using (5.13) we conclude that
v = 0 as in (3.14).

Remark 5.1. As we did in the 2D case, we point out that the degrees of freedom (5.6) or
(5.7) could be replaced by equivalent ones. In particular, the degrees of freedom (5.6) can
again be replaced by

(5.14)

∫
P

div v qk−1 dP for all qk−1 ∈ Pk−1/R,

and the degrees of freedom (5.7) could be substituted by

(5.15)

∫
P

curlv qk−1 dP for all qk−1 ∈ Rk−1.

Remark 5.2. Obviously, here too we can compute the L2−projection onto Pk, exactly as we
did in subsection 3.5.

Remark 5.3. In the same spirit of Remark 3.3, we point out that we can identify uniquely
an element v of V face

3,k (E) by prescribing its normal component v ·n (in Pk(f)) on each face,
its rotation curlv (in Rk−1(E)), and its divergence div v (in (Pk−1(E))/R).

5.5. The global 3D-face space. Having now a polyhedron Ω and a decomposition Th of
Ω into a finite number of polyhedral elements P , we can consider the global space:

(5.16)

V face
3,k (Ω) := {v ∈ H(div; Ω) ∩H(curlh; Ω) such that:

v · nf
P ∈ Pk(f)∀ face f in Th, grad div v ∈ Gk−2(P ),

and curlv ∈ Rk−1(P )∀ element P in Th},
with obvious notation (in agreement with (3.18) and (4.6)) for the operator curlh and the
corresponding space H(curlh; Ω). As we did for the 2D case, we note that the normal



14

component of the elements of V face
3,k (Ω) will be “continuous” at the inter-element face. In

V face
3,k we can take, as degrees of freedom:∫

f
v · nf

P pk df for all face f ∈ Th, for all pk ∈ Pk(f),(5.17) ∫
P
v · gk−2 dP for all element P ∈ Th, for all gk−2 ∈ Gk−2(P ),(5.18) ∫

P
v · g⊥k dP for all element P ∈ Th, for all g⊥k ∈ G⊥k (P ).(5.19)

From the above discussion it follows immediately that the degrees of freedom (5.17)-(5.19)
are unisolvent, and that the dimension of V face

3,k (Ω) is

dim(V face
3,k (Ω)) = πk,2 × {number of faces in Th}+

(πk−1,3 − 1 + ρk−1,3)× {number of elements in Th}.

6. 3D Edge Elements

This time we cannot just rotate the 3D-face case. However we can get some inspiration.
We recall, from the very beginning, the Green formula:

(6.1)

∫
P

curlψ ·ϕ dP =

∫
P

ψ · curlϕ dP +

∫
∂P

ψ · (ϕ ∧ n) dS,

as well as

(6.2)

∫
P

curlψ · curlϕ dP =

∫
P

ψ ·
[
−∆ϕ+ grad divϕ

]
dP +

∫
∂P

ψ · (curlϕ ∧ n) dS.

We also recall the observation that we made in Section 2 concerning the difference between
ϕ ∧ nf and ϕf . We introduce moreover the following space.

Definition 6.1. We define the boundary space B(∂P ) as the space of v in (L2(∂P ))3 such
that vf ∈ H(div; f) ∩H(rot; f) on each face f ∈ ∂P , and such that on each edge e (common
to the faces f1 and f2), vf1 ·te and vf2 ·te (where te is a unit tangential vector to e ) coincide
. Then we define Bt(∂P ) as the space of the tangential components of the elements of B(∂P ).

Definition 6.2. We now define the boundary VEM space Bedge
k (∂P ) as

Bedge
k (∂P ) =

{
v ∈ Bt(∂P ) such that vf ∈ V edge

2,k (f) on each face f ∈ ∂P
}
.

Recalling the previous discussion on the two-dimensional virtual elements V edge
2,k (f), we can

easily see that for a polyhedron with `e edges and `f faces the dimension βk of Bedge
k (∂P ) is

given by

(6.3) βk = `eπk,1 + `f (2πk−1,2 − 1).

6.1. The local space. On a polyhedron P we set

(6.4) V edge
3,k (P ) := {v| vt ∈ Bedge

k (∂P ), div v ∈ Pk−1(P ), and curl curlv ∈ Rk−2(P )}.
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6.2. Dimension of the space V edge
3,k (P ). We start by observing that, given a vector g in

Bedge
k (∂P ), a function fd in Pk−1, and a vector f r ∈ Rk−2(P ) we can find a unique v in

V edge
3,k (P ) such that

(6.5) vt = g on ∂P , div v = fd in P , and curl curlv = f r in P .

To prove it we consider the following auxiliary problems. The first is: find H in (H1(P ))3

such that

(6.6) curlH = f r in P , divH = 0 in P , and H · n = rot2 g on ∂P ,

that is uniquely solvable since

(6.7)

∫
∂P

rot2 g dS = 0.

The second is: find ψ in (H1(P ))3 such that

(6.8) curlψ = H in P , divψ = 0 in P , and ψt = g on ∂P ,

that is also uniquely solvable since

(6.9) H · n = rot2 g.

The third problem is: find ϕ ∈ H1
0 (P ) such that:

(6.10) ∆ϕ = fd in P ,

that also has a unique solution. Then it is not difficult to see that the choice

(6.11) v := ψ + gradϕ

solves our problem. Indeed, it is clear that (gradϕ)t = 0, that div(gradϕ) = fd and that
curl curl(gradϕ) = 0; all these, added to (6.6) and (6.8), produce the right conditions. It
is also clear that the solution v of (6.5) is unique.

Hence we can conclude that the dimension of V edge
3,k (P ) is given by

(6.12) dim(V edge
3,k (P )) = βk + πk−1,3 + ρk−2,3.

6.3. The Degrees of Freedom. A possible set of degrees of freedom will be:

• for every edge e:
(6.13)

∫
e

v · t pk de for all pk ∈ Pk(e),

• for every face f :
∫
f
v · r⊥k df for all r⊥k ∈ R⊥k (f),(6.14) ∫

f
v · rk−2 df for all rk−2 ∈ Rk−2(f),(6.15)

• and inside P
∫
P
v · r⊥k dP for all r⊥k ∈ R⊥k ,(6.16) ∫

P
v · rk−2 dP for all rk−2 ∈ Rk−2.(6.17)

The total number of degrees of freedom (6.13)-(6.15) is clearly equal to βk as given in (6.3)
and the number of degrees of freedom (6.17) is equal to ρk−2,3. On the other hand, using
[2.9;v)] we see that the number of degrees of freedom (6.16) is equal to πk−1,3, so that the

total number of degrees of freedom (6.13)-(6.17) is equal to the dimension of V edge
3,k (P ) as

computed in (6.12).



16

6.4. Unisolvence. Having seen that the number of degrees of freedom (6.13)-(6.17) equals

the dimension of V edge
3,k (P ), in order to see their unisolvence we only need to check that a

vector v ∈ V edge
3,k (P ) that satisfies∫

e
v · t pk de = 0 ∀ edge e of P and ∀ pk ∈ Pk(e),(6.18) ∫

f
v · r⊥k df = 0 ∀ face f of P and ∀ r⊥k ∈ R⊥k (f),(6.19) ∫

f
v · rk−2 df = 0 ∀ face f of P and ∀ rk−2 ∈ Rk−2(f),(6.20) ∫

P
v · r⊥k dP = 0 ∀ r⊥k ∈ R⊥k (P ),(6.21) ∫

P
v · rk−2 dP = 0 ∀ rk−2 ∈ Rk−2(P ),(6.22)

is necessarily equal to zero.
Actually, recalling the results of Section 4, it is pretty obvious that (6.18)-(6.20) imply

that vt = 0 on ∂P . Moreover, since curl curlv ∈ Rk−2(P ), we are allowed to take rk−2 =
curl curlv as a test function in (6.22). An integration by parts (using vt = 0) gives

(6.23) 0 =

∫
P

v · curl curlv dP =

∫
P

(curlv) · (curlv) dP

and therefore we get curlv = 0. Using this, and again vt = 0, we easily check, integrating
by parts, that

(6.24)

∫
P

v · curlϕ dP = 0 ∀ϕ ∈ (H1(P ))3.

Now we recall that from the definition (6.4) of V edge
3,k (P ) we have that div v is in Pk−1. From

[(2.9);v] we then deduce that there exists a q⊥k ∈ R⊥k with div q⊥k = div v, so that the
divergence of v − q⊥k is zero, and then (since P is simply connected)

(6.25) v − q⊥k = curlϕ

for some ϕ ∈ H(curl;P ). At this point we can use (6.24) and (6.25) to conclude as in (3.14)

(6.26)

∫
P

|v|2 dP =

∫
P

v · (q⊥k + curlϕ) dP =

∫
P

v · q⊥k dP +

∫
P

v · curlϕ dP = 0.

6.5. Alternative degrees of freedom. As we did in the previous cases, we observe that
the degrees of freedom (6.13)-(6.17) are not (by far) the only possible choice. To start with,
we can change the degrees of freedom in each face, according to Remark 3.2. Moreover, in
the spirit of (6.5) we could assign, instead of (6.16) and/or (6.17), curl curlv in Rk−2(P )
and/or div v in Pk−1(P ), respectively.

6.6. The global 3D-edge space. Here too we can assume that we have a polyhedral
domain Ω and its decomposition Th in a finite number of polyhedra P . In this case we can
define the global space

(6.27) V edge
3,k (Ω) := {v ∈ H(divh; Ω) ∩H(curl; Ω) s. t. ∀P ∈ Th we have:

vt ∈ Bedge
k (∂P ), div v ∈ Pk−1(P ), and curl curlv ∈ Rk−2(P )}.

Accordingly, we could take, as degrees of freedom:
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• for every edge e in Th:

(6.28)

∫
e

v · t pk de for all pk ∈ Pk(e),

• for every face f in Th:∫
f
vf · r⊥k df for all r⊥k ∈ R⊥k (f),(6.29) ∫

f
vf · rk−2 df for all rk−2 ∈ Rk−2(f)(6.30)

• and for every element P in Th∫
P
v · r⊥k dP for all r⊥k ∈ R⊥k ,(6.31) ∫

P
v · rk−2 dP for all rk−2 ∈ Rk−2.(6.32)

From the above discussion it follows immediately that the degrees of freedom (6.28)-(6.32)

are unisolvent, and that the dimension of V edge
3,k (Ω) is

(6.33)

dim(V edge
3,k (Ω)) =πk,1 × {number of edges in Th}

+ (2πk−1,2 − 1)× {number of faces in Th}
+ (πk−1,3 + ρk−1,3)× {number of elements in Th}.

6.7. An enhanced edge space. It is immediate to check that the degrees of freedom (6.16)-

(6.17) allow to compute the moments of v ∈ V edge
3,k (P ) up to order k − 2. Nevertheless, in

order to be able to compute the L2(P ) projection operator on the space (Pk(P ))3 we need
to be able to compute the moments up to order k. In the present section, in the spirit of
[1], we will introduce an enhanced space W edge

3,k (P ) with the additional property that the L2

projector on (Pk(P ))3 is computable.
We consider the larger virtual space

(6.34) Ṽ edge
3,k (P ) := {v| v|∂P ∈ Bedge

k (∂P ), div v ∈ Pk−1(P ), and curl curlv ∈ Rk(P )}.

Following the same identical arguments used in the previous section and introducing the
space

Rk/Rk−2(P ) :=
{
qk ∈ Rk :

∫
P

qk · rk−2 dP = 0 ∀rk−2 ∈ Rk−2

}
,

it is immediate to check that (6.13)-(6.17), with the addition of

(6.35)

∫
P

v · qk dP for all qk ∈ Rk/Rk−2(P ),

constitute a set of degrees of freedom for Ṽ edge
3,k (P ). Note moreover that V edge

3,k (P ) is a subset

of Ṽ edge
3,k (P ) and that the combination of (6.16), (6.17) and (6.35) allows, for any function

in Ṽ edge
3,k (P ), to compute all the integrals against polynomials in Pk(P ). Therefore the L2

projection operator

Π0
k : Ṽ edge

3,k (P )→
(
Pk(P )

)3

is computable.
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For the time being we assume the existence of a projection operator

(6.36) Π̃k : Ṽ edge
3,k (P )→

(
Pk(P )

)3

,

with the fundamental property of depending only on the degrees of freedom (6.13)-(6.17)

(meaning that if v satisfies (6.18)-(6.22) then Π̃kv = 0). We now introduce the space

(6.37) W edge
3,k (P ) := {v ∈ Ṽ edge

3,k (P ) such that:∫
P

(Π̃kv) · qk dP =

∫
P

(Π0
kv) · qk dP ∀qk ∈ Rk/Rk−2(P )}.

We then have the following lemma.

Lemma 6.1. The dimension of the space W edge
3,k (P ) is equal to the dimension of the original

edge space V edge
3,k (P ). Moreover, the operators (6.13)-(6.17) constitute a set of degrees of

freedom for W edge
3,k (P ).

Proof. By definition of W edge
3,k (P ) we have

dim
(
W edge

3,k (P )
)
≥ dim

(
Ṽ edge

3,k (P )
)
− dim

(
Rk/Rk−2(P )

)
= dim

(
V edge

3,k (P )
)
.

Therefore, in order to conclude the lemma, it is sufficient to show the unisolvence of (6.13)-

(6.17). For this, let v ∈ W edge
3,k (P ) satisfying (6.18)-(6.22). Note that, by the previously

mentioned property of the (linear) projection operator Π̃k, we immediately have that Π̃k(v)

is equal to 0. Therefore, by definition of W edge
3,k (P ), for all qk ∈ Rk/Rk−2(P ) it holds

(6.38)

∫
P

v · qk dP =

∫
P

(
Π0

kv
)
· qk dP =

∫
P

(
Π̃kv

)
· qk dP = 0.

Since W edge
3,k (P ) ⊆ Ṽ edge

3,k (P ) and the set of degrees of freedom (6.13)-(6.17) plus (6.35) is

unisolvent for Ṽ edge
3,k (P ), we conclude that (6.18)-(6.22) plus (6.38) imply v = 0. �

Note that, due to the above lemma, the enhanced space W edge
3,k (P ) has the same degrees

of freedom as V edge
3,k (P ). Moreover, since the condition in (6.37) is satisfied by polynomials

of degree k, we still have (Pk(P ))3 ⊆ W edge
3,k (P ). The advantage of the space W edge

3,k (P ) with

respect to V edge
3,k (P ) is that in W edge

3,k (P ) we can compute all the moments of order up to k.
Indeed, the moments ∫

P

v · qk−2 dP for all qk−2 ∈ Rk−2(P ),∫
P

v · q⊥k dP for all qk ∈ R⊥k (P )

can be computed using the degrees of freedom (6.16) and (6.17), while

(6.39)

∫
P

v · qk dP =

∫
P

(
Π0

kv
)
· qk dP =

∫
P

(
Π̃kv

)
· qk dP

for all qk ∈ Rk/Rk−2(P ).
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We are therefore left with the duty to build a projection operator Π̃k as in (6.36). Let N

denote the dimension of the space V edge
3,k (P ), i.e. the number of degrees of freedom (6.13)-

(6.17). Let us introduce the operator

D : Ṽ edge
3,k (P ) −→ RN

that associates, to any v ∈ Ṽ edge
3,k (P ), a vector with components given by the evaluation of all

the (ordered) operators (6.13)-(6.17) on v (in other words, D associates to every element of

Ṽ edge
3,k (P ) its “first N” degrees of freedom). Note that the operator D is not injective (as the

dimension of Ṽ edge
3,k (P ) is bigger than that of V edge

3,k , that in turn is equal to N). On the other

hand, since (Pk(P ))3 ⊆ V edge
3,k (P ) and the above N operators are a set of degrees of freedom

for V edge
3,k (P ), the operator D restricted to (Pk(P ))3 is injective. Given now any symmetric

and positive definite bilinear form S defined on RN × RN we define the projection operator

Π̃Sk as follows. For all v ∈ Ṽ edge
3,k (P ):

(6.40)

 Π̃Skv ∈
(
Pk(P )

)3

S
(
D Π̃Skv −Dv,Dqk

)
= 0 ∀qk ∈

(
Pk(P )

)3
.

By recalling that D is injective on (Pk(P ))3, it is immediate to check that the above operator
is well defined. Moreover, by definition it depends only on the degrees of freedom (6.13)-
(6.17).

Remark 6.1. Our construction is pretty general. Actually it is not difficult to prove that
for every projector P onto (Pk(P ))3 depending only on the degrees of freedom (6.13)-(6.17)
we can find a bilinear symmetric positive definite form S such that P = ΠSk .

Remark 6.2. The construction of the enhanced space W edge
3,k (P ) has basically a theoretical

interest. In practice (meaning, in writing the code) one doesn’t even need to know what this

space is. If one needs to use the L2 projection of the elements of V edge
3,k , one can just use the

construction (6.40) (typically, with S equal to the Euclidean scalar product in RN) in order

to define Π̃k, and then (6.39) to get the L2 projection.

7. Scalar VEM spaces

In the present section we restrict our reminders to the three dimensional case, the two
dimensional one being simpler and analogous. We denote as usual with P a generic polyhe-
dron.

7.1. VEM vertex elements. We start by recalling briefly the H1-conforming scalar space
introduced in [10], here generalized to three dimensions. For computing the L2−projection
in this case we refer to [1]. Let as usual k be an integer ≥ 1.

Definition 7.1. We define Bvert
k (∂P ) as the set of functions v ∈ C0(∂P ) such that v|e ∈ Pk(e)

on each edge e ∈ ∂P , and on each face f ∈ ∂P it holds ∆2v|f ∈ Pk−2(f) where ∆2 is the
planar Laplace operator on f .

We introduce the family of local vertex spaces V vert
3,k (P ) ⊂ H1(P ) as

(7.1) V vert
3,k (P ) := {v| v|∂P ∈ Bvert

k (∂P ) and ∆v ∈ Pk−2(P )},
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with the associated set of degrees of freedom:

• the pointwise value v(ν) for all vertex ν,(7.2)

•
∫
e

v pk−2 de for all edge e, for all pk−2 ∈ Pk−2(e),(7.3)

•
∫
f

v pk−2 df for all face f , for all pk−2 ∈ Pk−2(f),(7.4)

•
∫
P

v pk−2 dP for all pk−2 ∈ Pk−2(P ).(7.5)

The dimension of the space is thus given by

(7.6) dim
(
V vert

3,k (P )
)

= `v + `eπk−2,1 + `fπk−2,2 + πk−2,3 .

As in the above section we can also consider the global spaces. Assuming that we have a
polyhedral domain Ω and a decomposition Th in a finite number of polyhedra P , we can
define the global space

(7.7) V vert
3,k (Ω) := {v ∈ H1(Ω) such that v|∂P ∈ Bvert

k (∂P )

and ∆v ∈ Pk−2(P ) for all elements P ∈ Th},

with the associated set of degrees of freedom:

• the pointwise value v(ν) for all vertex ν,(7.8)

•
∫
e

v pk−2 de for all edge e, for all pk−2 ∈ Pk−2(e),(7.9)

•
∫
f

v pk−2df for all face f , for all pk−2 ∈ Pk−2(f),(7.10)

•
∫
P

v pk−2 dP for all element P, for all pk−2 ∈ Pk−2(P ).(7.11)

The dimension of the global space is given by

dim
(
V vert

3,k (Ω)
)

= {number of vertices ∈ Th}+ πk−2,1 × {number of edges ∈ Th}
+ πk−2,2 × {number of faces ∈ Th}+ πk−2,3 × {number of elements ∈ Th}.

7.2. VEM volume elements. We finally introduce, for all integer k ≥ 0, the family of
volume spaces V elem

3,K (P ) := Pk(P ) ⊂ L2(P ), with the associated degrees of freedom∫
P

v pk dP for all pk ∈ Pk(P ).

This is a actually a space of polynomials (like the ones used, for instance, in Discontinuous
Galerkin methods), and to deal with it doesn’t require any particular care. The correspond-
ing global space will be

(7.12) V elem
3,k (Ω) = {v ∈ L2(Ω) such that v|P ∈ Pk(P )∀ element P ∈ Th}.
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8. Virtual exact sequences

We show now that, for the obvious choices of the polynomial degrees, the set of virtual
spaces introduced in this paper constitutes an exact sequence. We start with the (simpler)
two-dimensional case.

Theorem 8.1. Let k ≥ 2, and assume that Ω is a simply connected polygon, decomposed in
a finite number of polygons E. Then the sequences

(8.1) R
i
−−→ V vert

2,k (Ω)
grad
−−−−→ V edge

2,k−1(Ω)
rot
−−→ Pk−2(Ω)

o
−−→ 0

and

(8.2) R
i
−−→ V vert

2,k (Ω)
rot
−−→ V edge

3,k−1(Ω)
div
−−→ Pk−2(Ω)

o
−−→ 0

are both exact sequences.

Proof. We note first that the two sequences are practically the same, up to a rotation of π/2.
Hence we will just show the exactness of the sequence (8.1). Essentially, the only non-trivial
part will be to show that

• a.1 for every v ∈ V edge
2,k−1 with rotv = 0 there exists a ϕ ∈ V vert

2,k such that gradϕ = v.

• a.2 for every q ∈ V elem
2,k−2(Ω) there exists a v ∈ V edge

2,k−1(Ω) such that rotv = q.

We start with a.1. As Ω is simply connected, we have that the condition rotv = 0 implies
that there exist a function ϕ ∈ H1(Ω) such that gradϕ = v in Ω. On every edge e of Th
such ϕ will obviously satisfy, as well:

(8.3)
∂ϕ

∂te
= v · te ∈ Pk−1(e).

Then the restriction of ϕ to each E ∈ Th verifies:

(8.4) ϕ|e ∈ Pk(e) ∀e ∈ ∂E; ∆ϕ ≡ div v ∈ Pk−2(E)

so that clearly ϕ ∈ V vert
2,k .

To deal with a.2, we first construct a ϕ in (H1(Ω))2 such that rotϕ = q and

(8.5) ϕ · t =

∫
Ω
q dx

|∂Ω|
on ∂Ω,

where t is the unit counterclockwise tangent vector to ∂Ω and |∂Ω| is the length of ∂Ω. Then

we consider the element v ∈ V edge
2,k−1(Ω) such that

(8.6) v · te := Π0
k−1(ϕ · te) ∀ edge e in Th

and, within each element E:

(8.7) rotv = rotϕ = q, div v = 0.

Clearly such a v solves the problem. �

Remark 8.1. The construction in the proof of a.2 could also be done if the two-dimensional
domain Ω is a closed surface, obtained as union of polygons. To fix the ideas, assume that



22

we deal with the boundary ∂P of a polyhedron P , and that we are given on every face f of
P a polynomial qf of degree k − 2, in such a way that

(8.8)
∑
f∈∂P

∫
f

qfdf = 0.

Then there exists an element v ∈ Bedge
k−1 (∂P ) such that on each face f we have rot2(v|f ) = qf .

To see that this is true, we define first, for each face f , the number

τf :=

∫
f

qfdf.

Then we fix, on each edge e, an orientation te, we orient each face f with the outward
normal, and we define, for each edge e of f , the counterclockwise tangent unit vector tfc .
Then we consider the combinatorial problem (defined on the topological decomposition Th) of
finding for each edge e a real number σe such that for each face f

(8.9)
∑
e∈∂f

σete · tfc = τf .

This could be solved using the same approach used in the above proof, applied on a flat
polygonal decomposition that is topologically equivalent to the decomposition of ∂P without
a face. The last face will fit automatically, due to (8.8). Then we take v such that on each
edge v · t ∈ Pk−1 with

∫
e
v · te de = σe, and for each face, div vf = 0, rotvf = qf .

We are now ready to consider the three-dimensional case.

Theorem 8.2. Let k ≥ 3, and assume that Ω is a simply connected polyhedron, decomposed
in a finite number of polyhedra P . Then the sequence

(8.10) R
i
−→ V vert

3,k (Ω)
grad
−−−−→ V edge

3,k−1(Ω)
curl
−−−→ V face

3,k−2(Ω)
div
−−→ Pk−3(Ω)

o
−→ 0

is exact.

Proof. It is pretty much obvious, looking at the definitions of the spaces, that

• a constant function is in V vert
3,k (Ω) and has zero gradient,

• the gradient of a function of V vert
3,k (Ω) is in V edge

3,k−1(Ω) and has zero curl,

• the curl of a vector in V edge
3,k−1(Ω) is in V face

3,k−2(Ω) and has zero divergence,

• the divergence of a vector of V face
3,k−2(Ω) is in V elem

3,k−3(Ω).

Hence, essentially, we have to prove that:

• b.1 for every v ∈ V edge
3,k−1(Ω) with curlv = 0 there exists a ϕ ∈ V vert

3,k such that
gradϕ = v.
• b.2 for every τ ∈ V face

3,k−2(Ω) with div τ = 0 there exists a ϕ ∈ V edge
3,k−1(Ω) such that

curlϕ = τ
• b.3 for every q ∈ V elem

3,k−3(Ω) there exists a σ ∈ V face
3,k−2 such that divσ = q.

The proof of b.1 is immediate, as in the two-dimensional case [2.1]: the function (unique
up to a constant) ϕ such that gradϕ = v will verify (8.3) on each edge. Moreover, its
restriction ϕf to each face f will satisfy grad2 ϕ = vf , and so on.
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Let us therefore look at b.2. Given τ ∈ V face
3,k−2(Ω) with div τ = 0 we first consider (as in

Remark 8.1) the element g ∈ Bedge
k−1 (∂Ω) such that, on each face f ∈ ∂Ω

(8.11) rot2(g|f ) = τ · n (∈ Pk−2(f)).

Note that

(8.12)
∑
f∈∂Ω

∫
f

τ · nf
Ω df =

∫
Ω

div τ dΩ = 0,

so that the compatibility condition (8.8) is satisfied. Then we solve in Ω the Div − Curl
problem

(8.13) divψ = 0 and curlψ = τ in Ω, with ψt = g on ∂Ω.

The (unique) solution of (8.13) has enough regularity to take the trace of its tangential
component on each edge e, and therefore, after deciding an orientation te for every edge e
in Th, we can take

(8.14) ηe := Π0
k−1(ψ · te) on each edge e in Th.

At this point, for each element P we construct ϕ ∈ Bedge
k−1 (∂P ) by requiring that

(8.15) ϕ · te = ηe on each edge, rot2ϕf = τ · nf
P and divϕf = 0 in each face f ∈ ∂P.

Then we can define ϕ inside each element by choosing, together with (8.15),

(8.16) curlϕ = τ and divϕ = 0 in each element P.

It is easy to see that the boundary conditions given in (8.15) are compatible with the re-
quirement curlϕ = τ , so that the solution of (8.16) exists. Moreover it is easy to see that
all the necessary orientations fit, in such a way that curlϕ is globally in (L2(Ω))3, so that

actually ϕ ∈ V edge
3,k−1(Ω).

Finally, we have to prove b.3. The proof follows very closely the two dimensional case:
given q ∈ V elem

3,k−3(Ω), we first choose η ∈ (H1(Ω))3 such that

(8.17) div η = q in Ω and η · nΩ =

∫
Ω
q dΩ

|∂Ω|
where, now, |∂Ω| is obviously the area of ∂Ω. Then on each face f of Th we take

(8.18) σ · nf = Π0
k−2(η · nf )

and inside each element P we take divσ = q and curlσ = 0. Note again that condition
divσ = q is compatible with the boundary conditions (8.18) and the orientations will fit in
such a way that actually divσ ∈ L2(Ω), so that σ ∈ V face

3,k−2(Ω).
�

Remark 8.2. Although here we are not dealing with applications, we point out that, as is well
known (see e.g. [19], [44], [39], [3]), the exactness of the above sequences are of paramount
importance in proving several properties (as the various forms of inf-sup, the ellipticity in
the kernel, etc.) that are crucial in the study of convergence of mixed formulations (see e.g.
[23]).
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9. A hint on more general cases

As already pointed out in the final part of [26] for the particular case of 2D face elements,
we observe here that actually in all four cases considered in this paper (face elements and
edge elements in 2D and in 3D), we have at least three parameters to play with in order to
create variants of our elements.

For instance, considering the case of 3D face elements, we could choose three different
integers kb, kr and kd (all ≥ −1) and consider, instead of (5.1) the spaces

(9.1)
V face

3,k (P ) := {v ∈ H(div;P ) ∩H(curl;P ) such that: v · nf
P ∈ Pkb(f)∀ face f of P,

grad div v ∈ Gkd−1(P ), curlv ∈ Rkr(P )},
where obviously k is given by k := (kb, kd, kr). Taking, for a given integer k, the three
indices as kb = k, kd = k− 1, kr = k− 1 we re-obtain the elements in (5.1), that in turn are
the natural extension of the BDM H(div)-conforming elements. On the other hand, taking
instead kb = k, kd = k, kr = k − 1, for k ≥ 0 we would mimic more the Raviart-Thomas
elements.

We also point out that if we know a priori that (say, in a mixed formulation) the vector
part of the solution of our problem will be a gradient, we could consider the choice kb =
k, kd = k − 1, kr = −1 obtaining a space that contains all polynomial vectors in Gk (that
is: vectors that are gradients of some scalar polynomial of degree ≤ k + 1), a space that is
rich enough to provide an optimal approximation of our unknown.

Similarly, for the spaces in (6.4) one can consider the variants

(9.2) V edge
3,k (P ) := {v| vt ∈ Bedge

kb
(∂P ), div v ∈ Pkd(P ), and curl curlv ∈ Rkr−1(P )}.

On the other hand, for nodal VEMs we can play with two indices, say kb and k∆, to have

(9.3) V vert
3,k (P ) := {v| v|∂P ∈ Bvert

kb
(∂P ) and ∆v ∈ Pk∆−2(P )},

and, needless to say, in the definition of Bkb(∂P ), the degree of ∆2 in each face could be
different from kb.

Actually, to be sincere, the amount of possible variants looks overwhelming, and the need
of numerical experiments (for different applications of practical interest) is enormous.
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