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a b s t r a c t 

We introduce a new variant of Nodal Virtual Element spaces that mimics the “Serendipity Finite Ele- 

ment Methods” (whose most popular example is the 8-node quadrilateral) and allows to reduce (of- 

ten in a significant way) the number of internal degrees of freedom. When applied to the faces of a 

three-dimensional decomposition, this allows a reduction in the number of face degrees of freedom: an 

improvement that cannot be achieved by a simple static condensation. On triangular and tetrahedral de- 

compositions the new elements (contrary to the original VEMs) reduce exactly to the classical Lagrange 

FEM. On quadrilaterals and hexahedra the new elements are quite similar (and have the same amount of 

degrees of freedom) to the Serendipity Finite Elements, but are much more robust with respect to element 

distortions. On more general polytopes the Serendipity VEMs are the natural (and simple) generalization 

of the simplicial case. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The original Virtual Element Methods, as introduced in [6] , 

show a surprising robustness with respect to the variety of shapes 

allowed for the geometry of elements, and compared to Finite El- 

ements allow a much easier construction of C 1 elements (and ac- 

tually also C 2 or more). These aspects raised the interest of several 

groups working on various applications (as for instance topology 

optimization in elasticity problems [14] , fractured materials [10] , 

plate bending problems [12] , or the Cahn–Hilliard equation [2] ). 

An interesting feature is surely the possibility of joining classi- 

cal Finite Elements (on rectangles or quadrilaterals) in some part 

of the domain, and VEMs in some other part, as the two methods 

share the same trial functions and degrees of freedom on edges. 

But as far as the internal degrees of freedom are concerned, on 

simple geometries, as on triangles, VEMs are more expensive than 

the traditional Finite Elements: for a given accuracy k , VEMs on tri- 

angles use (together with polynomials of degree k on every edge) 

a number of internal degrees of freedom equal to k (k − 1) / 2 , in- 

stead of the (k − 1)(k − 2) / 2 used by Finite Elements. This would 

also imply that the possibility of combining FEM and VEM is not 

∗ Corresponding author. Tel.: +39 0382461771. 

E-mail addresses: lourenco.beirao@unimib.it (L. Beirão da Veiga), brezzi@ 

imati.cnr.it (F. Brezzi), marini@imati.cnr.it (L.D. Marini), alessandro.russo@unimib.it 

(A. Russo). 

immediate in three dimensions even when the common face is a 

triangle. 

On quadrilaterals, VEMs have again k (k − 1) / 2 internal degrees 

of freedom, that now should be compared to the (k − 1) 2 inter- 

nal degrees of freedom of Q k -Finite Elements, or to the (k − 2)(k −
3) / 2 internal d.o.f.s of Serendipity FEM (on quadrilaterals). 

However, on non-affine quadrilaterals the Serendipity Finite El- 

ements suffer a severe deterioration of accuracy: see e.g. [4] or the 

more recent [3,15] . See also [5] for a general survey on the var- 

ious Finite Element choices. On the contrary, VEMs have in their 

robustness with respect to distortion one of their most relevant ad- 

vantages. 

On the other hand, the biggest advantage of classical FEM (over 

Virtual Elements and similar methods) is surely the fact that the 

values of trial or test functions of FEMs can be easily computed at 

any point, while VEMs are easily computed only along the edges. 

The common remedy, for VEMs, is to use (for computing point 

values and for similar information), instead of the true trial and 

test functions, their L 2 -projection on some polynomial space of 

degree, say, r . For the original VEMs in [6] we could take only 

r = k − 2 (with an obvious lack of accuracy) or use other, non or- 

thogonal, projectors (a procedure that needed a theoretical justifi- 

cation). However, for their advanced versions, as in [1] , we could 

reach r = k still using k (k − 1) / 2 internal degrees of freedom. This 

however, on simple elements like triangles or tetrahedra, was still 

higher than the FEM counterpart. 

http://dx.doi.org/10.1016/j.compfluid.2016.02.015 

0045-7930/© 2016 Elsevier Ltd. All rights reserved. 
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Fig. 1. Element shapes allowed in our construction. 

Here we propose a variant of VEMs that mimics, in some sense, 

the Serendipity approach of FEMs. The new variant coincides ex- 

actly, on triangles, with traditional Finite Elements, and on quadri- 

laterals can (in some sense) keep all the good aspects of Finite El- 

ements without most drawbacks. In particular, on parallelograms 

we use (k − 2)(k − 3) / 2 degrees of freedom (as for Serendipity 

FEMs) and we can easily compute the L 2 -projection on P k , but 

we can also keep the same accuracy when the element is strongly 

distorted. The only degeneracy that is not fully allowed is when 

the quadrilateral element becomes a triangle (as in the second el- 

ement of Fig. 6 below). But in that case (even in the limit, when 

the quadrilateral is exactly a triangle), we can keep optimal accu- 

racy just by using (k − 1)(k − 2) / 2 degrees of freedom (the same 

amount that we would use on a triangle). 

Moreover, the edge degrees of freedom are exactly the same as 

for finite elements, so that in 2 dimensions we can combine the 

two methods (using each in a different part of the domain). The 

same is now true also in three dimensions, if the matching VEM- 

FEM is done on triangular faces, and even the matching through 

quadrilateral faces could be easily arranged (for instance with a 

slightly nonconforming matching). 

Our construction is a mixture of Serendipity ideas and of the 

ones coming from enhanced elements of [1] . Roughly speaking, in- 

stead of keeping (among the degrees of freedom) the moments up 

to the order k − 2 (as in the original VEMs), we go down to k − 3 , 

and we use the boundary d.o.f.s and the internal moments up to 

k − 3 to compute a rough projector from the VEM space onto P k . 

Then we use such a rough projector to define the moments of de- 

gree up to k as a byproduct. 

Throughout the paper we will use the following notation. 

For k ≥ 0 and d ≥ 1 integer we denote by P k,d the set of poly- 

nomials of degree ≤ k in d variables. Often, the dimension d will 

be omitted when it is reasonably clear form the context. With a 

(rather common) abuse of language we also set P −1 ≡ { 0 } . When- 

ever convenient, for a generic geometric object O in d dimensions 

we will denote by P k,d (O) the restriction to O of P k,d . 

Following [7] we denote by π k, d the dimension of P k,d (that 

is, for instance, (k + 1)(k + 2) / 2 in two variables and (k + 1)(k + 

2)(k + 3) / 6 in three variables). 

An outline of the paper is as follows. In Section 2 we recall the 

original VEMs in 2 dimensions, and we compare them with classi- 

cal Lagrange Finite Elements on triangles, and with classical Q k and 

Serendipity Finite Elements on parallelograms and quadrilaterals. 

In Section 3 we introduce our new Serendipity Virtual Elements 

in 2 dimensions, and we extend them to the three dimensional 

case in Section 4 . Numerical examples involving the convection- 

diffusion-reaction equation are presented in Section 5 . 

2. Original nodal VEMs 

2.1. Original nodal Elements in 2 dimensions 

Here below we recall the original “nodal Virtual Element” as 

reported in [6,8] for the two dimensional case, and in [1] for the 

three-dimensional one. As common, we will concentrate on the de- 

scription of the finite dimensional spaces within a single element 

(polygon) E . The assembling of the spaces on the whole computa- 

tional domain will then be done with the same procedure followed 

for H 

1 -conforming Finite Elements. 

As is already well known, Virtual Elements allow an enormous 

generality in the geometry of the elements to be used in the de- 

composition of the computational domain, and the precise limits 

of this generality are, in some cases, still to be understood. For 

simplicity, here we will consider the typical assumption (see for 

instance [6] ): there exists a fixed number ρ0 > 0, independent of 

the decomposition, such that for every element E (with diameter 

h E ) we have that: (i) E is star-shaped with respect of all the points 

of a ball of radius ρ0 h E , and (ii) every edge e of E has length | e | 

≥ ρ0 h E . Actually, more general assumptions could be allowed in 

the definition of our VEM spaces, but this goes beyond the scope 

of the present paper (again, see for instance [6] ). Fig. 1 will show 

some examples of polygons that are indeed acceptable for our con- 

structions. 

For k integer ≥ 1 we define 

V k ( E ) = 

{
ϕ ∈ C 0 

(
E 
)
: ϕ | e ∈ P k ( e ) for all edge e, 

and �ϕ ∈ P k −2 ( E ) } . (2.1) 

The degrees of freedom in V k ( E ) are taken as 

• the values of ϕ at the vertices , (2.2) 

•
∫ 
e 

ϕ q d s for all q ∈ P k −2 (e ) ∀ edge e, (2.3) 

•
∫ 
E 

ϕ q d E for all q ∈ P k −2 (E) . (2.4) 

It is immediate to verify that the degrees of freedom (2.2) –(2.4) 

are unisolvent (see [6] ). For convenience of the reader we recall 

the proof. The number of degrees of freedom in (2.2) –(2.4) is ob- 

viously equal to the dimension of the space V k ( E ) in (2.1) : for a 

polygon of N e edges, they are both equal to k N e (number of bound- 

ary d.o.f.s) plus πk −2 , 2 (dimension of P k −2 in two variables). As- 
sume now that for a given ϕ ∈ V k ( E ) we have that all (2.2) –(2.4) 

are identically zero. Then clearly ϕ would be zero on the bound- 

ary (from (2.2) and (2.3) ) and then using (2.4) we would have ∫ 
E |∇ϕ | 2 d E = − ∫ 

E ϕ �ϕ d E = 0 since �ϕ is a polynomial of degree 

k − 2 . This ends the proof. 

The spaces V k ( E ) are, in some sense, the basic ones in the VEM 

theory, similarly to, say, Lagrange finite elements on triangles for 

the FEM theory. However, compared with FEM (on triangles and on 

quadrilaterals) they show some differences, already in the number 

of internal degrees of freedom. 

Comparing these (original) VEMs with the classical Finite Ele- 

ments, whenever possible (meaning, here, for triangular or quadri- 

lateral elements) we find that on the boundary of the elements 

we have (or we can easily take) the same degrees of freedom. In 

the interior, however, this is not the case. In particular, on tri- 

angles, Virtual Elements have more degrees of freedom than the 

corresponding Finite Elements, and more precisely: the number of 

internal degrees of freedom for Virtual Elements of degree k is 

equal to πk −2 , 2 while that of the corresponding Finite Elements is 
πk −3 , 2 (see Fig. 2 ). For quadrilaterals, instead, the number of inter- 
nal nodes for Finite Elements is equal to the dimension of Q k −2 
(which is (k − 1) 2 ), while for Virtual Elements the internal degrees 
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VEM k=3

FEM k=2FEM k=1 FEM k=3

VEM k=1 VEM k=2

Fig. 2. Triangles: Classical FEM and original VEM. 

VEM k=3

FEM k=2FEM k=1 FEM k=3

VEM k=1 VEM k=2

Fig. 3. Quads: Classical Q k -FEM and original VEM. 

of freedom equal the dimension of P k −2 (that is k (k − 1) / 2 ). See 

Fig. 3 . 

Remark 1. As we already mentioned, for the present 2- 

dimensional case the restriction to each edge of Finite Elements 

and of Virtual Elements is the same (both being polynomials of 

degree ≤ k in one dimension), so that we could actually allow a 

combined use of traditional Finite Elements (in some parts of the 

computational domain) and of Virtual Elements (in other parts). 

Remark 2. In addition to the previous remark, we observe that for 

Virtual Elements we could very easily consider cases in which dif- 

ferent degrees are used (say, in (2.3) ) for different edges of the 

same polygon. In this case we note that: i) the order of accuracy on 

every polygon will be reduced to the lowest among the orders of 

the single edges, and ii) in the global setting, to ensure conformity, 

the degrees of freedom on an edge shared by two polygons must 

obviously be the same. This generalization could be, for instance, 

useful to develop hp Virtual Elements in a very natural way. 

Needless to say, the number of degrees of freedom for a given 

accuracy is not, by far, the whole story. One has to see what should 

be done with them; but this goes beyond the aims of the present 

paper. 

2.2. More general nodal VEMs 

For integers k ≥ 1 and k � ≥ −1 we define 

V k,k � (E) = { ϕ ∈ C 0 ( E ) : ϕ | e ∈ P k (e ) ∀ edge e, and �ϕ ∈ P k � (E) } . 
(2.5) 

The degrees of freedom in V k,k �(E) are taken as 

• the values of ϕ at the vertices , (2.6) 

•
∫ 
e 

ϕ q d s for all q ∈ P k −2 (e ) , (2.7) 

•
∫ 
E 

ϕ q d E for all q ∈ P k � (E) . (2.8) 

Clearly, the previous case (2.1) corresponds to the choice 

k � = k − 2 . 

The extension of the previous unisolvence proof to the more 

general case of the degrees of freedom (2.6) –(2.8) is an exercise. 

We also point out that, for k � ≥ 0 the degrees of freedom (2.8) 

allow for the computation of the L 2 -orthogonal projection opera- 

tor �0 
k �

, from V k,k �(E) to P k �
(E) . As we shall see, the possibil- 

ity to compute this operator with an algorithm that uses only the 

degrees of freedom is one of the crucial steps in Virtual Element 

Methods. 

We remark that the space V k,k �(E) clearly contains the space of 

polynomials P s (E) for all s ≤ min { k, k � + 2 } , but �0 
r can be com- 

puted (out of the degrees of freedom), only for r ≤ k �. 

It is also clear that a smaller k � will correspond to a smaller 

number of degrees of freedom. However, as we have seen, for k � < 

k − 2 the space V k,k � will fail to contain all polynomials of P k . 

On the other hand, the choice k � = k would allow an imme- 

diate computation of the moments up to the order k , and hence 

the computation of the L 2 -projection operator �0 
k 
that, as we said, 

is extremely useful. But for k � = k the degrees of freedom (2.8) 

would be very expensive. 

Nevertheless, looking at Fig. 2 , we feel that there should be 

something better that can be done. To explain it, we start with 

some simple observations on polynomials that vanish on the 

boundary of a polygon. 

2.3. Polynomials that vanish on ∂E 

We start by noting that: If a polynomial p k ( x, y ) of degree ≤ k 

vanishes identically on a segment (of positive length) that belongs to 

the straight line with equation, say, ax + by + c = 0 , then p k can be 

written as p k = (ax + by + c) q k −1 with q k −1 a polynomial of degree 

≤ k − 1 . The property is very well known, but if one needs more 

details we refer, for instance, to Lemma 3.1.10 of [11] . 

As a consequence, a polynomial that vanishes identically on 

∂E will contain, in its expression, the product of all the different 
straight lines that contain at least one edge of ∂E . Note that even if 
several edges belong to the same line, (see for instance the fourth 

case in Fig. 1 ) the equation of the line will always appear once (and 

not as many times as there are edges). For instance, looking again 

at the fourth case of Fig. 1 , we have ten edges but we have to 

count only five lines. 

In general, given a polygon E , we will denote by ηE the number 

of distinct straight lines that contain at least one edge of E . This is 

an important notation, that deserves to be better highlighted: 

ηE = minimum number of straight lines needed to cover all ∂E. 

(2.9) 

Having said that, we note that for every k < ηE we obviously 

have 

∀ p k ∈ P k, 2 { p k = 0 on ∂E} 	⇒ { p k ≡ 0 } . (2.10) 

With this, and noting that for every polygon E we always have 

ηE ≥ 3, it is not difficult to see that, for instance, a polynomial 

of degree k ≤ 2 is uniquely identified by its values at the bound- 

ary of any polygonal element E . As a consequence, knowing the 

boundary value of a polynomial of degree ≤ 2 we know the whole 

polynomial, and hence we know its mean value (and, if needed, its 

moments of any degree). Why should we need internal degrees of 

freedom? 
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More generally, for k ≥ 3 on triangles it is easy to see (looking 

for instance at the classical Finite Elements, see again Fig. 2 ) that 

a polynomial of degree ≤ k is uniquely identified by its boundary 

values and by its moments of degree ≤ k − 3 , and we shouldn’t 

need the moments of degree k − 2 . And on a more general polygon 

E , with ηE > 3, the boundary values should count even more. So 

why should we need the moments of degree k − 2 ? 

A solution to this unsatisfactory situation could be found in a 

reduction of the VEM space similar to what is done in Finite Ele- 

ments for quadrilaterals, with the introduction of the Serendipity 

elements. 

3. Serendipity Virtual Elements in 2 dimensions 

To fix ideas, and to keep things as simple as possible, we start 

from the space V k, k ( E ), although, as it will be clearer later on, 

other choices of the type V k,k �(E) are possible. We recall that if 

E has N e edges, then the dimension of the space will be N E := 

k N e + πk, 2 . 

3.1. The property S 

Now let us assume that we have chosen a positive integer S 

with π k , 2 ≤ S ≤ N E , and that the degrees of freedom in (2.6) –(2.8) 

are ordered as δ1 , δ2 , . . . δN E in such a way that the first S of them, 
that is 

δ1 , δ2 , . . . δS (3.1) 

have the following property: 

(S ) ∀ p k ∈ P k, 2 (E) 

{ δ1 (p k ) = δ2 (p k ) = · · · = δS (p k ) = 0 } ⇒ { p k ≡ 0 } . (3.2) 

As it will become clearer in a while, the S chosen degrees of 

freedom will be the ones kept and used in the final system (the 

other ones being left, in each element, as “dummies”). 

As a consequence, in boundary order to save the conformity of 

the whole space (defined on the whole computational domain) it 

will be always convenient to keep, among the first S degrees of 

freedom, all the boundary ones (2.6) and (2.7) . For simplicity, we 

will consider only the case in which this has been done, and we 

then assume that: 

The d.o.f.s δ1 , δ2 , . . . δS contain all the ones (2 . 6) and (2 . 7) . 

(3.3) 

In a certain number of cases the boundary degrees of freedom 

will be sufficient to give the property S , but in other cases it will 

be necessary to add some internal degrees of freedom from (2.8) . 

The number of these additional degrees of freedom will end up 

being equal to the number of internal degrees of freedom that will 

be kept in our Serendipity Virtual Elements. Hence it is clear that 

property S in (3.2) has a crucial relevance, and deserves a more 

detailed analysis. 

3.2. Sufficient conditions for property S 

To start with, together with ηE it will also be convenient to in- 

troduce the basic bubble b E (or simply b ), that is, the function given 

by the product of the equations of the ηE different straight lines 

that contain all the edges of E . 

Using assumption (3.3) we note that a polynomial p k ∈ P k that 

satisfies 

δ1 (p k ) = δ2 (p k ) = · · · = δS (p k ) = 0 (3.4) 

will be identically zero on all edges of ∂E , and in particular its 
expression will contain the bubble b E as a factor. We also recall 

that the degree of b E is equal to ηE . Then, in particular, we have 

that a polynomial p k that satisfies (3.4) will necessarily have the 

form p k = b E q k −ηE 
with q k −ηE 

a polynomial of degree k − ηE . We 

will consider, separately, several cases. 
• Case k < ηE 

From the above discussion we deduce in particular the follow- 

ing result. 

Proposition 3.1. For k < ηE assumption (3.3) implies that property 

S is always satisfied. 

We then split the analysis of the case k ≥ ηE in two cases. 
• Case k ≥ ηE and E convex 

For values of k ≥ ηE , together with the boundary degrees of 

freedom, we would need in general some additional internal ones. 

In particular we have the following result. 

Proposition 3.2. Assume that k ≥ ηE , that E is convex, and that as- 

sumption (3.3) is satisfied. Assume moreover that the degrees of free- 

dom δ1 , δ2 , . . . δS include all the moments of order ≤ k − ηE in E as 
well. Then property S is satisfied. 

Proof. We first note that if E is convex then b E will not change sign 

inside E . Hence, if p k vanishes on ∂E (and hence p k = b E q 
∗
k −ηE 

) and 

if moreover ∫ 
E 

p k q d E = 0 ∀ q ∈ P k −ηE 
, (3.5) 

then it is enough to take q = q ∗
k −ηE 

in (3.5) to deduce that 

0 = 

∫ 
E 

p k q 
∗
k −ηE 

d E = 

∫ 
E 

b E (q 
∗
k −ηE 

) 2 d E 

and therefore p k = 0 . � (3.6) 

From the two above propositions we see in particular that: for 

k = 2 we will never need internal moments (for any shape of E ) 

and property S will always hold; for k = 3 we will need the mean 

value only when ηE = 3 , and no internal d.o.f.s for a bigger ηE ; for 

k = 4 we will need all the moments up to the degree 1 for ηE = 3 , 

but only the mean value when ηE = 4 and E is convex . And so on. 
• Case k ≥ ηE and E non convex 

The case of non-convex polygons, for k ≥ ηE , is more tricky. 

For instance if E is a non convex quadrilateral (as the third case 

in Fig. 6 ), then b E will indeed change sign in E , and the argu- 

ment in (3.9) will not apply. However, indicating by w 2 the sec- 

ond degree polynomial made by the product of the equations of 

the two “re-entrant” edges, it is easy to check that the product 

b E w 2 does not change sign inside E (as the equations of the re- 

entrant edges will be taken twice ). The same will obviously be true 

for more general polygons, whenever we have only two re-entrant 

edges (as, for instance the fourth element in Fig. 1 ). Actually what 

counts is the number of re-entrant lines , as in the third example 

of Fig. 1 . For the sake of simplicity, however, we restrict ourselves 

to the case of two re-entrant edges, and present the following 

result. 

Proposition 3.3. Assume that k ≥ ηE , that assumption (3.3) is satis- 

fied, and that E has only two “re-entrant edges”. Let w 2 be the sec- 

ond degree polynomial made by the product of the equations of the 

two “re-entrant” edges. Assume moreover that the degrees of freedom 

δ1 , δ2 , . . . δS include also all the moments ∫ 
E 

p k q w 2 d E ∀ q ∈ P k −ηE 
. (3.7) 

Then property S is satisfied. 

Proof. We remark first that if E has two re-entrant corners then 

ηE ≥ 4, and therefore k − ηE + 2 (the degree of the test function 

q w 2 in (3.7) ) is ≤ k − 2 , so that the degrees of freedom in (3.7) 
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are still part of the degrees of freedom (2.4) in V k ( E ). Then, let p k 
be a polynomial of degree ≤ k vanishing on ∂E and such that ∫ 
E 

p k q w 2 d E = 0 ∀ q ∈ P k −ηE 
. (3.8) 

We first deduce, as before, that p k = b ηE q 
∗
k −ηE 

for some q ∗
k −ηE 

∈ 

P k −ηE 
. Then we take q = q ∗

k −ηE 
in (3.8) to get 

0 = 

∫ 
E 

p k w 2 q 
∗
k −ηE 

d E = 

∫ 
E 

b E w 2 (q 
∗
k −ηE 

) 2 d E, (3.9) 

that implies again p k = 0 since b E w 2 does not change sign in E . �

So far we discussed (long enough) the cases in which assump- 

tion S holds true, or it does not. It is now time to see some of its 

consequences. 

3.3. The operator �S 
k 

As we shall see in a little while, given a set of degrees of free- 

dom δ1 , δ2 , . . . δS (subset of (2.6) –(2.8) ) that satisfy property S 

(see (3.2) ), it will always be possible to construct an operator �S 
k 

from V k, k ( E ) to P k (E) with the following properties: 

• �S 
k 
is computable using only the d.o.f. δ1 , . . . , δS , (3.10) 

and 

• �S 
k 
q k = q k for all q k ∈ P k . (3.11) 

3.4. The reduced (Serendipity) VEM spaces 

Once the operator �S 
k 
has been defined, we can use it to con- 

struct our Serendipity VEM spaces. The basic idea can be summa- 

rized as follows. 

• we work in V k, k ( E ), 
• for each ϕ ∈ V k, k ( E ) we use the first S degrees of freedom to 

construct �S 
k 
ϕ, 

• then we use δr (�S 
k 
ϕ) , for S < r ≤ N E to define the values of 

the remaining N E − S degrees of freedom in V k, k ( E ) . 

In other words, given ϕ ∈ V k, k ( E ) we construct another element 

(say, ˜ ϕ ) such that 

δr ( ̃  ϕ ) = δr (ϕ) for (1 ≤ r ≤ S) , (3.12) 

and 

δr ( ̃  ϕ ) = δr (�
S 
k ϕ) for (S + 1 ≤ r ≤ N E ) . (3.13) 

Clearly, the elements ϕ ∈ V k, k ( E ) such that ˜ ϕ = ϕ form the space 

V S k (E) = { ϕ ∈ V k,k (E) s. t. δr (ϕ) = δr (�
S 
k ϕ) ∀ r = S + 1 , . . . , N E } , 

(3.14) 

that we identify as our reduced (Serendipity) Virtual Element Space . 

It is immediate to see that the space V S 
k 
(E) has the following prop- 

erties: 

• the dimension of V S 
k 
(E) is S , 

• δ1 , . . . , δS is a unisolvent set of degrees of freedom for V S 
k 
(E) , 

• P k, 2 (E) ⊆ V S 
k 
(E) , 

• the L 2 -projection �0 
k 
is computable from the d.o.f. of V S 

k 
(E) . 

It is also immediate to see that for triangles the new spaces 

V S 
k 
(E) have now the same number of degrees of freedom as the 

classical Lagrange Finite Elements, and are, actually, the same 

spaces, since P k, 2 (E) and V S 
k 
(E) have the same dimension. See 

Fig. 4 . 

Serendipity Finite Elements on quadrilaterals are in general de- 

fined on squares and on their affine images (that is, on parallel- 

ograms), while their extension to more general quadrilaterals (via 

VEMS k=3

FEM k=2FEM k=1 FEM k=3

VEMS k=1 VEMS k=2

Fig. 4. Triangles: Classical FEM and Serendipity VEM. 

VEMS k=4

FEMS k=1 FEMS k=2 FEMS k=3 FEMS k=4

VEMS k=1 VEMS k=2 VEMS k=3

Fig. 5. Quads: S-FEM (Arnold–Awanou) and S-VEM. 

YES YES YES

Fig. 6. Allowed distortions for quadrilaterals. 

isoparametric mappings) suffers, in general, a loss of accuracy (see 

e.g. [4] ). 

For parallelograms , our Serendipity Virtual Elements have the 

same number of degrees of freedom as the Serendipity Finite Ele- 

ments: for a general k both use the boundary degrees of freedom 

plus the internal moments of degree ≤ k − 4 , although, in general, 

with a different space. 

For more general quadrilaterals Serendipity Virtual Elements 

and Serendipity Finite Elements have again the same number of 

degrees of freedom (see Fig. 5 , and, for instance, papers [3] or 

[13] ), although Finite Elements allow much less general distortions, 

and even for small deviations from parallelograms show a lack of 

accuracy that disappears only if the mesh (progressively, as the 

mesh-size h goes to zero) tends to be made of parallelograms (see 

[4] ). On the other hand, Virtual Elements are extremely robust, and 

can survive several types of severe distortion. The only degenera- 

tion that must be avoided, in the present context, occurs, clearly, 

when two edges fit in the same straight line (as, for instance, in 

the second example of Fig. 6 ). But even when the element de- 

generates to a triangle we could still survive in a cheap-and-easy 

way, just by using also the internal moments of degree up to k − 3 . 

Clearly, for stability reasons, when two edges are almost on the 
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same straight line it would still be wise to use also the moments 

of degree k − 3 . Hence we can say that for quadrilateral elements 

we have the same number of degrees of freedom that Serendipity 

Finite Elements use on affine elements, but our construction works 

in much more general cases, using a different space that is more 

robust to distortions. In Fig. 6 we show some example of allowed 

distortions. In the first case depicted, only moments of degree up 

to k − 4 need to be included, while in the second case also the 

moments of degree k − 3 are needed. In the third case we can use 

moments of degree up to k − 4 with the quadratic multiplicative 

factor defined in (3.7) . 

Finally it is still worth mentioning that Serendipity VEM can 

also be defined (and perform very well) on much more general 

polygons where Serendipity Finite Elements (as well as classical 

Finite Elements) do not exist. On the other hand, VEM require 

a heavier local work, and even on quadrilaterals the greater ro- 

bustness (related to a different local space) has to be paid with a 

(small) additional work at the element level. 

3.5. Construction of �S 
k 

There is just one item that we have to detail in order to com- 

plete the description of the nodal Serendipity Virtual Elements on 

polygons: the construction of the operator �S 
k 
starting from a set 

of degrees of freedom that satisfy property S . For this, we assume 

that, for a given k , we are given a set δ1 , δ2 , . . . δS of degrees of 
freedom having the property S , and we define the operator D
D : V k,k (E) → R 

S defined by Dϕ := (δ1 (ϕ ) , . . . , δS (ϕ )) . (3.15) 

Needless to say, the operator D will have the properties: 

• D can be computed using only the d.o.f δ1 , . . . , δS , (3.16) 

• D q = 0 ⇒ q = 0 for all q ∈ P k . (3.17) 

Property (3.16) is trivial, and property (3.17) is inherited by (3.2) . 

We observe that, for coding purposes, the operator D corre- 

sponds to take the first S rows of the matrix D given in [8] , formula 

(3.17) . 

We are now going to use D to construct �S 
k 
as follows: for ev- 

ery ϕ ∈ V k, k ( E ) we can define �
S 
k 
ϕ ∈ P k through 

(D(�S 
k ϕ − ϕ) , Dq ) R S = 0 ∀ q ∈ P k , (3.18) 

where (· , ·) 
R S 

is the Euclidean scalar product in R 

S (or, if more con- 

venient, any positive definite symmetric bilinear form on R 

S ). Prop- 

erty (3.17) ensures that the matrix 

(D p, D q ) R S p, q ∈ P k (3.19) 

is nonsingular, so that for every right-hand side (D ϕ, D q ) 
R S 

the 

linear system (3.18) in the unknown �S 
k 
ϕ will have a unique so- 

lution. It is an easy exercise to check that the operator �S 
k 
, as de- 

fined in (3.18) , satisfies the required properties (3.10) and (3.11) . 

3.6. Different options 

We first point out that, in our presentation, the reason why we 

delayed the construction of the operator �S 
k 
is the presence, in its 

construction, of an excessive freedom. Indeed, there are zillions of 

possible choices for the basic degrees of freedom to be used (in 

the construction of the operator D) and zillions of possible choices 
for the symmetric and positive definite bilinear form to be used 

(if convenient) in place of the Euclidean scalar product (· , ·) 
R S 

in 

R 

S . In principle, the presence of many choices could allow a strat- 

egy toward a final space with suitable properties (we shall see an 

example later on). But in many cases the presence of too many 

options is more a drawback than an advantage. 

We did not consider so far the scaling and stability problems. 

As pointed out in several occasions (actually, almost everywhere) 

in the VEM literature, it is (much) wiser to use degrees of freedom 

that scale in the same way. Otherwise (for instance) the choice of 

the Euclidean scalar product should not be recommended, since 

degrees of freedom that scale differently should be treated in dif- 

ferent ways. 

It should be said, however, that the situation is not as bad as it 

could seem. Indeed, once we took care of choosing degrees of free- 

dom that scale in the same way, the methods show a remarkable 

robustness, and the use of the Euclidean scalar product, or of the 

Euclidean scalar product multiplied or divided by 10, or of other 

similar bilinear forms, would end up in equally good final schemes. 

3.7. The lazy choice and the stingy choice 

We have seen that, for an order of accuracy k , and for a poly- 

gon (for simplicity, convex) whose edges belong to ηE different 

straight lines, in our serendipity spaces only internal moments up 

to the degree k − ηE can be used. We also pointed out that, how- 

ever, for stability reasons one should also take care of the cases 

where two (or more) edges belong almost to the same straight line, 

and consider them as actually belonging to the same straight line . 

This would decrease the number ηE for the polygon, and increase 

the number k − ηE of moments to be used. An additional difficulty, 

with this choice, would then be to decide the precise meaning of 

the above term “almost ”, for instance in terms of the angle be- 

tween the two ( almost coincident) straight lines that contain the 

two (or more) edges under scrutiny. 

In light of the above discussion (and always for a given fixed 

order of accuracy k ) we see that, in the actual implementation of 

a code in which many different shapes of polygonal elements are 

expected, one faces a very important choice. A first possibility (let 

us call it, the stingy choice ) would be: to fix a minimum angle θ0 
> 0 and then, for every polygon E , to count the number ηE ( θ0 ) of 
different straight lines that contain all the edges of E , by consid- 

ering “different from each other” two straight lines only when the 

smaller angle between them is bigger than θ0 . Then, use moments 
up to the order k − ηE (θ0 ) as degrees of freedom inside E. Another 

possibility (let us call it, the lazy choice ) would be to use always 

internal moments of degree up to k − 3 , since our assumptions im- 

ply that ηE ( θ0 ) is always ≥ 3 for θ0 small enough compared to ρ0 

(say, for ρ0 ≥ tan ( θ0 /2)). Needless to say, many strategies in be- 
tween are possible, and the choice among all of them would de- 

pend on the type of code one is writing, and on the use one wants 

to make of it. We shall come back to this problem when dealing 

with the three-dimensional case. 

4. Serendipity V irtual E lements in 3 dimensions 

Let us consider now the case of three-dimensional VEM. Again, 

for the sake of simplicity, we will make some simple assumptions 

on the geometry of our elements. In particular we will consider 

the typical assumption (see for instance [1] ): there exists a fixed 

number ρ0 > 0, independent of the decomposition, such that for 

every polyhedron P (with diameter h P ) we have that: (i) P is star- 

shaped with respect of all the points of a ball of radius ρ0 h P , 

(ii) every edge e of P has length | e | ≥ ρ0 h P , and (iii) every face 

f is star-shaped with respect of all the points of a ball of radius 

ρ0 h P . Here too, more general assumptions could be allowed but 

again this goes beyond the scope of the present paper. See for 

instance [1] . 

As we did for the two-dimensional case, we shall concentrate 

on the choice of the spaces on a single polyhedron P. 
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Moreover, still to keep things as simple as possible, we assume 

that, in the terminology of Section 3.7 , we follow for every face the 

lazy choice. 

4.1. Polynomials that vanish on ∂P 

We point out that, for the faces of a three-dimensional decom- 

position, the difference between the two choices (stingy and lazy) 

would be decidedly more dramatic than in two dimensions. In- 

deed, for 2D-decompositions the degrees of freedom internal to 

the elements could always be eliminated (easily and cheaply) by 

static condensation . But in three dimensions the degrees of free- 

dom internal to faces cannot be (easily and cheaply) eliminated 

by static condensation, and in general they still appear in the fi- 

nal (global) stiffness matrix. The difference would become more 

and more expensive for higher choices of the accuracy k . To make 

an example, for k = 8 on an hexagonal face f (with η f = 6 ) the 

lazy choice would require the use of all the moments of degree 

up to 8 − 3 (that is, 21 d.o.f.) while the stingy choice would re- 

quire only the moments of degree up to 8 − 6 (that is, 6 d.o.f.). 

Hence, the systematic use of the lazy choice on all faces (as done 

here) is more a way of keeping the presentation simple rather 

than a suggestion on what to do in a practical code. Indeed, for 

higher order of accuracy and for decompositions in which many 

faces have (each) many edges, we would not recommend the lazy 

choice, which could be much more expensive. We think, however, 

that once the basic idea is understood it will be quite immediate 

for the users to see how and when to shift from the lazy choice to 

more cheap ones. 

We then take an integer k ≥ 1 and we consider for every face f 

(that for simplicity we assume to be convex) the Serendipity space 

V S 
k 
( f ) (as we said, to fix ideas, with the lazy choice). 

Then for k � ≥ −1 we define the space 
V k,k � ( P ) := 

{
ϕ ∈ C 0 

(
P 
)
such that 

ϕ | f ∈ V S k ( f ) ∀ face f in ∂ P , and �ϕ ∈ P k � ( P ) 
}
(4.1) 

with the degrees of freedom 

• the values of ϕ at the vertices , (4.2) 

•
∫ 
e 

ϕ q d s ∀ edge e for all q ∈ P k −2 (e ) , (4.3) 

•
∫ 
f 

ϕ q d f ∀ face f for all q ∈ P k −3 ( f ) . (4.4) 

•
∫ 
P 

ϕ q d P for all q ∈ P k � ( P ) . (4.5) 

We point out that the degrees of freedom (4.4) follow from our 

decision to always take the lazy choice on every face and from 

the simplified assumption of convex faces. For non convex faces 

we should adapt the nature of the degrees of freedom (although, 

in general, not the number), as discussed in Section 3.2 . 

4.2. D, �S 
k 
, and the Serendipity spaces 

At this point we could restart mutatis mutandis the reduction 

procedure that we followed for the two-dimensional case. The 

two cases (2-dimensional and 3-dimensional) are very similar, and 

therefore we will summarize the 3-dimensional one very shortly. 

We start by taking k � = k in (4.1) as we did at the beginning of 

Section 3 . Let N P be the number of degrees of freedom of V k, k (P). 

We order them in such a way that the boundary ones (4.2) –(4.4) 

come first (and, typically, the internal moments are ordered from 

lowest to highest degree). Then we choose an integer S such that 

the first S degrees of freedom are: the boundary ones, and the in- 

ternal moments of degree up to k − ηP , where now, in general, ηP 
is the number of distinct planes that contain all the faces of P. Here 

too, we could make the lazy choice of taking always ηP = 4 . 

We note that our degrees of freedom will satisfy the property 

(that we still call S ): 

(S ) ∀ p k ∈ P k, 3 ( P ) , 

{ δ1 (p k ) = δ2 (p k ) = · · · = δS (p k ) = 0 } ⇒ { p k ≡ 0 } , (4.6) 

and therefore we can use them to construct, following the same 

path that we took in Section 3.5 , a projection operator �S 
k 
such 

that : 

• �S 
k 
is computable using only the d.o.f. δ1 , . . . , δS , (4.7) 

and 

• �S 
k 
q k = q k for all q k ∈ P k . (4.8) 

Once we have the operator �S 
k 
we can define the Serendipity Vir- 

tual Element space V S 
k 
( P ) as 

V S k ( P ) = { ϕ ∈ V k,k ( P ) s. t. δr (ϕ) = δr (�
S 
k ϕ) ∀ r = S + 1 , . . . , N P } . 

(4.9) 

As degrees of freedom for the space V S 
k 
( P ) , defined in (4.9) , we 

take 

• the values of ϕ at the vertices , (4.10) 

•
∫ 
e 

ϕ q d s ∀ edge e for all q ∈ P k −2 (e ) , (4.11) 

•
∫ 
f 

ϕ q d f ∀ face f for all q ∈ P k −3 ( f ) , (4.12) 

•
∫ 
P 

ϕ q d P for all q ∈ P k −ηP ( P ) , (4.13) 

and we point out that in (4.12) we could use, for each face f , the 

moments only up to the degree k − η f if we chose a more stingy 

strategy. Just to make a toy-example, on a regular dodecahedron 

(12 pentagonal faces, with a total of 20 vertexes and 30 edges) for 

k = 4 we would have, with the most stingy choice (on faces and 

inside), only one d.o.f. per vertex and three additional degrees of 

freedom per edge (for a total of 110 degrees of freedom: the abso- 

lute minimum, if you want a P 4 conforming element). The original 

VEMs would have required 12 × π2 , 2 + 1 × π2 , 3 = 82 additional de- 

grees of freedom (6 for each of the 12 faces, and 10 for the interior 

of the polyhedron). Adopting the lazy choice, instead, we would 

add (to the 110 ones on vertices and edges) 3 degrees of freedom 

per face and one inside (for a total of 37 additional d.o.f.s). 

Remark 3. The extension of the present idea to construct a 

Serendipity version of H (div) and H ( curl )-conforming vector valued 

spaces (as the ones in [7] ) can be done in a reasonably easy way, 

and is the object of a paper in preparation (by the same authors). 

4.3. Different degrees of freedom 

An obvious generalization of our procedure (among several oth- 

ers) would be (for simplicity: in two dimensions) to substitute part 

of the original degrees of freedom (2.2) –(2.4) with some equiva- 

lent ones. For instance, for k ≥ 2 one can use, instead of the mo- 

ments (2.3) , the values of ϕ at k − 1 nodes inside each edge (a typ- 

ical convenient choice would be given by the k − 1 Gauss–Lobatto 

nodes inside the edge). 

Another example has been suggested already in Proposition 3.3 : 

for non convex polygons, we could use suitable polynomial weights 
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in the degrees of freedom, including the equations (among those 

defining the edges) that change sign inside E . 

But more imaginative variants could come out being convenient 

in some circumstances. In particular, it is not necessary that the 

functionals in (3.1) (the ones used to construct D and then �S 
k 
), 

are a subset of the original degrees of freedom: we only need to 

select S linear functionals, and then, if convenient, use in (3.1) a 

different set of d.o.f.s that can be deduced from the chosen ones. 

For instance, one could keep the nodal values (2.2) and the mo- 

ments (2.3) as degrees of freedom (for obvious conformity rea- 

sons), but then use in (3.1) , in place of (2.2) and (2.3) : 

• the mean value of ϕ over ∂E (4.14) 

and (after ordering the vertices V 1 , . . . , V N , V N+1 ≡ V 1 in the, say, 

counterclockwise order) the integrals 

• I j,k := 

∫ V j+1 
V j 

∂ϕ 

∂t 
q k −1 d s for j = 1 , 2 , . . . , N and q k −1 ∈ P k −1 

(4.15) 

(under the obvious condition that 
∑ 

j I j, 1 ≡ ϕ(V N+1 ) − ϕ(V 1 ) = 0 ). 

Clearly, as we said, the boundary degrees of freedom would remain 

(2.2) and (2.3) , but the new ones (that is, (4.14) and (4.15) ) could 

be employed (possibly together with other data) to define D and 

then to construct �S 
k 
. A choice like this might be interesting when 

combining Serendipity VEM spaces of various nature (like, say, the 

nodal ones here and the edge-ones mentioned in Remark 3 above). 

5. Numerical experiments 

As pointed out before, the Serendipity variant of the Virtual Ele- 

ment Method raises several problems of computational nature, like 

for instance the definition of ηE in the case of almost-degenerate 

polygons, or the choice of the scalar product in the definition of 

the projector �S 
k 
. 

In this paper we will limit ourselves to the presentation of very 

simple numerical experiments showing that the method works as 

expected for an elliptic equation in two cases: quadrilateral ele- 

ments and a more general Voronoi mesh made of convex polygons. 

In both cases we have taken k = 2 , 3 , 4 . The error shown is always 

the relative L 2 error; the H 

1 error behaves similarly. 

We set � =]0 , 1[ 2 and consider the elliptic problem {
div (−κ∇p + b p) + γ p = f in �

p = g on ∂�. 
(5.1) 

The variational form of problem (5.1) is given by ∫ 
�

κ∇ p · ∇ q d x −
∫ 
�
p( b · ∇ q ) d x + 

∫ 
�

γ p q d x = 

∫ 
�
f q (5.2) 

and, as shown in [9] , its Virtual Element approximation consists in 

replacing in each element 

p with �0 
k −1 p h and ∇p with �0 

k −1 ∇p h . (5.3) 

The difference with respect to [9] is that here the L 2 projections 

are computed using the operator �S 
k 
instead of �∇ 

k 
for the miss- 

ing moments. The stabilization term is defined in terms of the 

L 2 -projection. 

5.1. Quadrilateral meshes 

In the quadrilateral case we have considered the trapezoidal 

mesh studied in [4] for which the authors have proved that the 

classical serendipity finite elements do not converge with the op- 

timal rates. We have compared our serendipity VEM with the clas- 

sical serendipity finite elements S k and with the standard Q k el- 

ements. The sequence is composed of four meshes with 8 × 8, 

Fig. 7. Trapezoidal mesh. 

Fig. 8. Voronoi mesh. 

16 × 16, 32 × 32 and 64 × 64 trapezoids respectively. In Fig. 7 

the 16 × 16 mesh is shown. 

We have considered the Poisson problem, i.e. we have taken in 

(5.1) 

κ = 

(
1 0 
0 1 

)
, b = (0 , 0) , γ = 0 , (5.4) 

with the right hand side f and the Dirichlet data g defined in such 

a way that the exact solution is the fifth-degree polynomial 

p ex (x, y ) := x 3 + 5 y 2 − 10 y 3 + y 4 + x 5 + x 4 y. (5.5) 

In Figs. 9 –11 we show the relative L 2 error for the three methods. 

We observe that the serendipity VEM (“stingy”) behaves like the 

Q k element but with much fewer degrees of freedom. 

5.2. Polygonal meshes 

The polygonal meshes are made of 25, 10 0, 40 0 and 1600 poly- 

gons and have been obtained starting with a random Voronoi mesh 

and then regularized by means of Lloyd iterations. The 100 polygon 

mesh is shown in Fig. 8 . 

The equation that we solve is the same used for the numerical 

experiments in [9] . We take 

κ = 

(
y 2 + 1 −xy 
−xy x 2 + 1 

)
, b = (x, y ) , γ = x 2 + y 3 , (5.6) 
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Fig. 9. k = 2 , L 2 error for the trapezoidal meshes. Note the non-optimal convergence rate for the classical serendipity finite element method S k compared with the serendipity 

VEM (“stingy”); both have the same number of degrees of freedom. 

Fig. 10. k = 3 , L 2 error for the trapezoidal meshes. 

Fig. 11. k = 4 , L 2 error for the trapezoidal meshes. 

and right hand side f and Dirichlet boundary condition g defined 

in such a way that the exact solution is 

p ex (x, y ) := x 2 y + sin (2 πx ) sin (2 πy ) + 2 . (5.7) 

In Figs. 12–14 we show the L 2 error for the “stingy” and the “lazy”

strategies, and we compare them to the original VEM. Note that 

we have always taken ηE equal to the number of edges of the 

polygon E . 

In all cases we observe that the errors are very simi- 

lar even if the number of degrees of freedom is considerably 

different. 
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Fig. 12. k = 2 , L 2 error for the Lloyd meshes. 

Fig. 13. k = 3 , L 2 error for the Lloyd meshes. 

Fig. 14. k = 4 , L 2 error for the Lloyd meshes. 

6. Conclusions 

Virtual Element Methods generalize Finite Elements from sim- 

ple geometric shapes (triangles, tetrahedrons, quadrilaterals, hex- 

ahedrons, etc.) to much more general shapes, including several 

types of “degenerations”. However, when restricted to simple 

geometries they do not reproduce the traditional FEM, not even 

in the number of degrees of freedom. For simplexes (in 2 or 3 

dimensions), FEMs of order k have a number of internal degrees 

of freedom that is equal to πk −d−1 ,d (the dimension of the space 
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of polynomials of degree ≤ k − d − 1 in d dimensions), while the 

number of internal d.o.f. of traditional VEMs is equal to πk −d,d . 

On quadrilaterals and hexahedrons traditional FEMs have πk −d,d 

internal nodes (the dimension of the space of polynomials of de- 

gree ≤ k − d in each variable in d dimensions) while VEMs do bet- 

ter with only πk −d,d . Serendipity FEMs, however, can go down to 

πk −d−3 ,d , but they suffer dramatic losses of accuracy when the el- 
ements are not parallelograms. Something quite similar also hap- 

pens for hexahedrons. 

Here we introduced a new family of VEMs that mimicks (in 

some sense) the Serendipity idea of FEM. These new elements re- 

duce in a significant way the number of internal degrees of free- 

dom of traditional VEMs, without losing the good features of being 

able to deal with very general shapes and distortions. 

On triangles, the new VEMs coincide now with Finite Elements, 

so that we don’t gain anything apart from the conceptual satisfac- 

tion of equaling the “competitors” (in a friendly sense) where and 

when they are at their best. 

On quads, however, the new VEMs can match the number of 

degrees of freedom of Serendipity FEM with much more generality 

in the geometry, and could therefore become a competitor even 

for rather simple element shapes (as it is clearly shown by the nu- 

merical experiments of the previous section). On top of that, they 

allow extremely general geometries that are totally out of reach for 

Finite Elements. 

We point out that in three dimensions our discussion ap- 

plies as well to the degrees of freedom that are internal to 

the faces , that therefore cannot be eliminated by a simple static 

condensation. 
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