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We present, on the simplest possible case, what we consider as the very basic features of
the (brand new) virtual element method. As the readers will easily recognize, the virtual
element method could easily be regarded as the ultimate evolution of the mimetic finite
differences approach. However, in their last step they became so close to the traditional
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finite elements that we decided to use a different perspective and a different name.
Now the virtual element spaces are just like the usual finite element spaces with the

addition of suitable non-polynomial functions. This is far from being a new idea. See for
instance the very early approach of E. Wachspress [A Rational Finite Element Basic
(Academic Press, 1975)] or the more recent overview of T.-P. Fries and T. Belytschko
[The extended/generalized finite element method: An overview of the method and its
applications, Int. J. Numer. Methods Engrg. 84 (2010) 253–304]. The novelty here is to
take the spaces and the degrees of freedom in such a way that the elementary stiffness
matrix can be computed without actually computing these non-polynomial functions,
but just using the degrees of freedom. In doing that we can easily deal with complicated
element geometries and/or higher-order continuity conditions (like C1, C2, etc.). The
idea is quite general, and could be applied to a number of different situations and
problems. Here however we want to be as clear as possible, and to present the simplest
possible case that still gives the flavor of the whole idea.

Keywords: Virtual elements; mimetic finite differences.

AMS Subject Classification: 65N30, 65N12, 65G99, 76R99

1. Introduction

Since their very beginning, mimetic finite differences (MFD) (see for instance
Refs. 28, 24, 17, 25 and 26), and in particular their mathematical framework and
setting, have been evolving from the original finite difference/finite volumes point
of view towards more finite element-like presentations and analyses.13,15,8,14

In their last presentation they could be considered as a form of approximations
either by means of cochains, or by finite element methods (FEMs) in which only the
degrees of freedom are used (since the trial functions are not available in the interior
of the elements).31,19,1,21 This however allowed them to mimic (together with sev-
eral fundamental physical laws, as their name suggests) most types of finite element
spaces of lowest order (from the traditional Lagrange FEM, to the more sophisti-
cated ones used for mixed formulations) on rather general element geometries (see
for instance Refs. 18, 2, 11, 3, 10 and the references therein).

In the past years some attempts have been made to introduce higher-order MFD,
making use of more general degrees of freedom7,23,5 such as moments on faces, edges,
and elements. A mimetic discretization method with arbitrary polynomial order was
presented recently in Ref. 6. But the non-existence of trial and test functions inside
the elements (or even inside the faces) was still making the presentation rather
cumbersome.

Very recently it became clear that life would be much simpler if the degrees of
freedom (typical unknowns for MFD) were attached to trial/test functions inside the
elements, although not necessarily polynomials. This of course makes the method
now closer to other attempts to generalize finite elements on polygons, like the
PFEM (polygonal finite element methods, see for instance Refs. 29 and 30) or the
extended FEMs (see Ref. 22 and the references therein). However, these methods
rely on the (quite interesting) idea of adding particular shape functions that could
take care of the singularities of the exact solution, and provide a better accuracy.
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Here instead we want to do something simpler, preserving the polynomial accuracy
that one has on simplexes while working on polyhedra. This will also allow us
to cope with more general continuity requirements, such as H(curl)-conformity,
H(div)-conformity, or, at the other end, Cr continuity with r ≥ 1.

At this point it seemed more convenient to have a new, different name for this
last evolution, and we chose Virtual Element Methods. The new approach, being
much easier to deal with, and to elaborate, soon opened the way to a number of
extensions of classical FEMs.

However we felt that, when proposing a new approach to the scientific com-
munity, it would be more convenient to start with a very basic paper, presenting
the heart of the novelty on the simplest possible case. This is such a paper: the
virtual element method is presented here on the two-dimensional Laplace equation.
We preserve the generality of the shape of the elements in the decomposition of
the computational domain, and the generality in the degree k of accuracy that we
require to the method. All other generalizations are put aside, and left to other
papers to follow.

What we consider as the core idea of the virtual element method can be sum-
marized as follows:

• The trial and test functions (that here coincide) contain, on each element, all
the polynomials of degree ≤k, plus other functions that, in general, will not be
polynomials.

• When computing, on each element, the local stiffness matrix (or rather the local
stiffness bilinear form) we take particular care of the cases where one of the two
entries is a polynomial of degree ≤k. The degrees of freedom are carefully chosen
in order to allow us to compute the exact result using only the degrees of freedom
of the other entry that in general will not be a polynomial.

• We can show that for the remaining part of the local stiffness bilinear form (when
a non-polynomial encounters another non-polynomial) we only need to produce
a result with right order of magnitude and stability properties.

In a sense, instead of using, in a more traditional way, nearly exact entries in
the local stiffness bilinear form (as with the use of numerical integration formulae)
we have exact values when one of the two entries is a polynomial, and only right
order of magnitude and stability properties in the other cases.

Note that the three properties above bring us quite close to the patch test used
by engineers, as they imply, roughly speaking, that the method should be able to
give the exact solution whenever this is a global polynomial of degree ≤k.

Our goal in this paper is to make each of these three ingredients as clear as
possible, avoiding all non-indispensable complications, and keeping the paper as
short, as simple and as clear as possible.

Throughout the paper, we will follow the usual notation for Sobolev spaces and
norms (see, e.g. Ref. 20). In particular, for an open bounded domain D, we will use
| · |s,D and ‖ · ‖s,D to denote seminorm and norm, respectively, in the Sobolev space
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Hs(D), while (·, ·)0,D will denote the L2(D) inner product. Often the subscript will
be omitted when D is the computational domain Ω. For k a non-negative integer,
Pk(D) will denote the space of polynomials of degree ≤k on D. Conventionally,
P−1(D) = {0}. Moreover, PD

k will denote the usual L2(D)-orthogonal projection
onto Pk(D). Finally, C will be a generic constant independent of the decomposition
that could change from one occurrence to the other.

The layout of the paper is the following. In Sec. 2 we present the model problem,
and in Sec. 3 the abstract framework for the virtual element method, including the
required fundamental assumptions and the ensuing convergence estimates. In Sec. 4
we address the actual construction of the method, in terms of the virtual discrete
space Vh, the bilinear form ah and the loading term fh. In Sec. 5 we draw some
conclusions.

2. The Continuous Problem

We consider the problem

−∆u = f in Ω, u = 0 on Γ = ∂Ω, (2.1)

where Ω ⊂ R
2 is a polygonal domain and f ∈ L2(Ω). The variational formulation

reads {
find u ∈ V := H1

0 (Ω) such that

a(u, v) = (f, v) ∀ v ∈ V,
(2.2)

with (·, ·) = scalar product in L2, a(u, v) = (∇u,∇v), |v|21 = a(v, v). It is clear that
Poincaré inequality and the boundary conditions imply that the seminorm | · |1 is
actually a norm on H1

0 (Ω), equivalent to the usual H1(Ω)-norm. It is also well
known that problem (2.2) has a unique solution, since

a(u, v) ≤ M |u|1|v|1, a(v, v) ≥ α|v|21 ∀u, v ∈ V, (2.3)

with α = M = 1 in our simplified case.

3. The Discrete Problem: Abstract Framework

Let {Th}h be a sequence of decompositions of Ω into elements K, and let Eh be the
set of edges e of Th. As usual, h will also denote the maximum of the diameters of
the elements in Th. For the moment we just assume that:

A0.1. For every h, the decomposition Th is made of a finite number of simple
polygons (meaning open simply connected sets whose boundary is a non-intersecting
line made of a finite number of straight line segments — not very far away from
what every kid would draw).

The bilinear form a(·, ·) and the norm | · |1 can obviously be split as

a(u, v) =
∑

K∈Th

aK(u, v) ∀u, v ∈ V, |v|1 =

( ∑
K∈Th

|v|21,K

)1/2

∀ v ∈ V. (3.1)
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Since in what follows we shall also deal with functions belonging to the space
H1(Th) :=

∏
K∈Th

H1(K), we need to define a broken H1-seminorm:

|v|h,1 :=

( ∑
K∈Th

|∇v|20,K

)1/2

. (3.2)

Note that, for discontinuous functions, this is really a seminorm and not a norm:
for instance, |ch|h,1 ≡ 0 for every piecewise constant function ch.

Additional conditions on the decompositions will be introduced in Assumption
A0.2 in Sec. 4.2 and in Assumption A0.3 in Sec. 4.6.

A1. We assume to have, for each h,

• a space Vh ⊂ V ;
• a symmetric bilinear form ah from Vh × Vh to R which can be split as

ah(uh, vh) =
∑

K∈Th

aK
h (uh, vh) ∀uh, vh ∈ Vh, (3.3)

where aK
h (·, ·) is a bilinear form on Vh|K × Vh|K ;

• an element fh ∈ V ′
h.

We will do this in such a way that the discrete problem:{
find uh ∈ Vh such that

ah(uh, vh) = 〈fh, vh〉 ∀ vh ∈ Vh,
(3.4)

has a unique solution uh, and good approximation properties hold. Namely, if k ≥ 1
is the target degree of accuracy, and the solution u of (2.2) is smooth enough, we
want to have

|u − uh|1 ≤ Chk|u|k+1,Ω. (3.5)

3.1. An abstract convergence theorem

Together with A1 we further assume the following crucial properties.

A2. There exists an integer k ≥ 1 (that will be our order of accuracy) such that
for all h, and for all K in Th, we have Pk(K) ⊂ Vh|K and

• k-Consistency: For all p ∈ Pk(K) and for all vh ∈ Vh|K ,

aK
h (p, vh) = aK(p, vh). (3.6)

• Stability: There exist two positive constants α∗ and α∗, independent of h and of
K, such that

∀ vh ∈ Vh|K , α∗ aK(vh, vh) ≤ aK
h (vh, vh) ≤ α∗ aK(vh, vh). (3.7)
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We notice that the symmetry of ah, property (3.7) and the definiton of aK easily
imply the continuity of ah:

aK
h (u, v) ≤ (aK

h (u, u))1/2(aK
h (v, v))1/2 ≤ α∗(aK(u, u))1/2(aK(v, v))1/2

= α∗|u|1,K |v|1,K for all u, v ∈ Vh|K . (3.8)

We have the following convergence theorem.

Theorem 3.1. Under Assumptions A1–A2, the discrete problem: Find uh ∈ Vh

such that
ah(uh, vh) = 〈fh, vh〉 ∀ vh ∈ Vh, (3.9)

has a unique solution uh. Moreover, for every approximation uI ∈ Vh of u and for
every approximation uπ of u that is piecewise in Pk, we have

|u − uh|1 ≤ C(|u − uI |1 + |u − uπ|h,1 + Fh),

where C is a constant depending only on α∗ and α∗, and, for any h, Fh

(≡‖f − fh‖V ′
h
) is the smallest constant such that

(f, v) − 〈fh, v〉 ≤ Fh|v|1 ∀ v ∈ Vh. (3.10)

Proof. Existence and uniqueness of the solution of (3.9) is a consequence of (3.7)
and (2.3). Next, setting δh := uh − uI we have

α∗|δh|21 = α∗a(δh, δh) ≤ ah(δh, δh)

= ah(uh, δh) − ah(uI , δh) (use (3.9) and (3.3))

= 〈fh, δh〉 −
∑
K

aK
h (uI , δh) (use ± uπ)

= 〈fh, δh〉 −
∑
K

(aK
h (uI − uπ, δh) + aK

h (uπ, δh)) (use (3.6))

= 〈fh, δh〉 −
∑
K

(aK
h (uI − uπ, δh) + aK(uπ, δh)) (use ± u and (3.1))

= 〈fh, δh〉 −
∑
K

(aK
h (uI − uπ, δh) + aK(uπ − u, δh)) − a(u, δh) (use (2.2))

= 〈fh, δh〉 −
∑
K

(aK
h (uI − uπ, δh) + aK(uπ − u, δh)) − (f, δh)

= 〈fh, δh〉 − (f, δh)−
∑
K

(aK
h (uI − uπ, δh) + aK(uπ − u, δh)). (3.11)

Now use (3.10), (3.8) and the continuity of each aK in (3.11) to obtain

|δh|21 ≤ C(Fh + |uI − uπ|h,1 + |u − uπ|h,1)|δh|1 (3.12)

for some constant C depending only on α∗ and α∗. Then the result follows easily
by the triangle inequality.
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4. Discretization

4.1. Degrees of freedom on each element

We consider now a simple polygon K with n edges and

xK = barycenter of K, hK = diameter of K.

We define for k ≥ 1

Bk(∂K) := {v ∈ C0(∂K) : v|e ∈ Pk(e)∀ e ⊂ ∂K}. (4.1)

It is not difficult to see that Bk(∂K) is a linear space of dimension n+n(k−1) = nk.
Indeed, a continuous function on ∂K which is a polynomial of degree ≤k on each
edge is uniquely determined by its values at the vertices (n conditions) plus, for
k > 1, by its values at k−1 additional points on each edge (hence n+n(k−1) = nk

conditions in total).
We then consider for k ≥ 1 the finite-dimensional space V K,k defined as

V K,k = {v ∈ H1(K) : v|∂K ∈ Bk(∂K), ∆v|K ∈ Pk−2(K)}. (4.2)

Recall that P−1(K) = {0}.
For k = 1 this is made of functions that are linear on each edge, completely

determined by their value at the n vertices. Inside, V K,1 is made of harmonic
functions and its total dimension is equal to n.

For k = 2 we have, on the boundary, functions that are polynomials of degree ≤2
on each edge: they can be identified (always on ∂K), by the values at the vertices
and at the midpoint of each edge, and the dimension of their boundary values is
2n. Inside, according to the definition (4.2), their Laplacian is constant. For every
constant c and for every boundary value g ∈ B2(∂K) we can find a unique function
v ∈ H1(K) such that ∆v = c in K and v = g on ∂K. Hence the dimension of V K,2

is equal to 2n + 1.
More generally, for every given qk−2 ∈ Pk−2(K) and for every g ∈ Bk(∂K) there

is a unique function v ∈ H1(K) such that ∆v = qk−2 in K and v = g on ∂K. Hence
the dimension of V K,k is given by

NK := dim V K,k = nk + k(k − 1)/2, (4.3)

where the last term corresponds to the dimension of polynomials of degree ≤k − 2
in two dimensions.

In V K,k we can choose the following degrees of freedom:

• VK,k: The values of vh at the vertices.
• EK,k: For k > 1, the values of vh at k−1 uniformly spaced points on each edge e.
• PK,k: For k > 1, the moments 1

|K|
∫

K m(x)vh(x)dx ∀m ∈ Mk−2(K),

where we have denoted by Mk−2 the set of (k2 − k)/2 monomials

Mk−2 =
{(

x− xK

hK

)s

, |s| ≤ k − 2
}

, (4.4)
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and for a multi-index s, we denoted |s| := s1 + s2 and xs := xs1
1 xs2

2 . Note that
Mk−2 is a basis for Pk−2(K); the interest of this choice will be clear later on.

It is not difficult to check that the dimension NK of V K,k, computed in (4.3),
equals the total number of degrees of freedom VK,k plus EK,k plus PK,k.

Remark 4.1. We note that the degrees of freedom VK,k plus EK,k uniquely deter-
mine a polynomial of degree ≤k on each edge of K, that is, VK,k plus EK,k are
equivalent to prescribe vh on ∂K. On the other hand, the degrees of freedom PK,k

are equivalent to prescribe PK
k−2vh in K. We recall that PK

k−2 is the projection
operator, in the L2(K)-norm, onto the space Pk−2(K).

For the space V K,k and the degrees of freedom VK,k plus EK,k plus PK,k we
have the following unisolvence result.

Proposition 4.1. Let K be a simple polygon with n edges, and let the space V K,k be
defined as in (4.2). The degrees of freedom VK,k plus EK,k plus PK,k are unisolvent
for V K,k.

Proof. According to Remark 4.1, to prove the proposition it is enough to see that
a function vh ∈ V K,k, such that

vh = 0 on ∂K ∀K ∈ Th, (4.5)

and

PK
k−2vh = 0 in K ∀K ∈ Th, (4.6)

is actually identically zero in K. In order to prove this, we show that ∆vh = 0
in K (that joined with (4.5) gives vh ≡ 0). To this end, we first solve, for every
q ∈ Pk−2(K), the following auxiliary problem: Find w ∈ H1

0 (K) such that

aK(w, v) = (q, v)0,K ∀ v ∈ H1
0 (K), (4.7)

which could also be written as

−∆w = q in K, w = 0 on ∂K, or else w = −∆−1
0,K(q). (4.8)

Next, we consider the map R, from Pk−2(K) into itself, defined by

Rq := PK
k−2(−∆−1

0,K(q)) ≡ PK
k−2w. (4.9)

We claim that R, with this definition, is an isomorphism. Indeed, from (4.9), the
definition of PK

k−2, and (4.7) we have, for every q ∈ Pk−2(K),

(R(q), q)0,K = (PK
k−2(−∆−1

0,K(q)), q)0,K = (PK
k−2w, q)0,K = (w, q)0,K = aK(w, w).

Since w is in H1
0 (K) we have then that

{R(q) = 0} ⇔ {aK(w, w) = 0} ⇔ {w = 0} ⇔ {q = 0}. (4.10)

We notice that, if vh = 0 on ∂K, then

PK
k−2vh = PK

k−2(−∆−1
0,K(−∆vh)) = R(−∆vh).
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Hence, PK
k−2vh = 0 ⇒ R(−∆vh) = 0 ⇒ −∆vh = 0, and the proof is concluded.

Remark 4.2. We point out that the Laplace operator ∆ appearing in defini-
tion (4.2) is the most natural choice, but it could be replaced by other second-order
elliptic operators. More generally, we could just require that the space V K,k: has
dimension NK , is made of functions that are polynomials of degree ≤k on each
edge, contains Pk, and is such that the degrees of freedom VK,k, EK,k, and PK,k

are unisolvent.

4.2. Projection error

The assumption A0.1 that we made so far would not be enough to ensure, given a
smooth function w on K, the existence of a local approximation wπ ∈ Pk(K) with
optimal approximation properties. In order to have it we might add, for instance,
the following assumption.

A0.2. We assume that there exists a γ > 0 such that, for all h, each element K in
Th is star-shaped with respect to a ball of radius ≥γhK , where hK is the diameter
of K.

According to the classical Scott–Dupont theory (see, e.g. Ref. 9) we have then
the following result.

Proposition 4.2. Assume that assumption A0.2 is satisfied. Then there exists a
constant C, depending only on k and γ, such that for every s with 1 ≤ s ≤ k + 1
and for every w ∈ Hs(K) there exists a wπ ∈ Pk(K) such that

‖w − wπ‖0,K + hK |w − wπ|1,K ≤ Chs
K |w|s,K . (4.11)

Remark 4.3. Always following Ref. 9 we note that we could take the weaker
assumption that (roughly speaking) every K is the union of a finite (and uniformly
bounded) number of star-shaped domains, each satisfying A0.2.

4.3. Construction of Vh

We can now use what we learned on individual polygons in order to design a virtual
element space on the whole Ω. For every decomposition Th of Ω into simple polygons
K and for every k ≥ 1 we define

Vh = {v ∈ V : v|∂K ∈ Bk(∂K) and ∆v|K ∈ Pk−2(K)∀K ∈ Th}. (4.12)

Arguing as we did in the case of a single polygon (but remembering that on ∂Ω we
set homogeneous Dirichlet boundary conditions (meaning, u = 0)), we can easily
see that the dimension of the whole space Vh is given by

N tot ≡ dimVh = NV + NE(k − 1) + NP
k(k − 1)

2
, (4.13)

where NV , NE and NP are, respectively, the total number of internal vertices,
internal edges and elements (polygons) in Th.
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In agreement with the local choice of the degrees of freedom, in Vh we choose
the following degrees of freedom:

• V : The values of vh at the internal vertices.
• E : For k > 1, the values of vh at k − 1 uniformly spaced points on each internal

edge e.
• P : For k > 1, the moments 1

|K|
∫

K
q(x)vh(x)dx ∀ q ∈ Mk−2(K) in each ele-

ment K.

We explicitly recall once more that the request Vh ⊂ V implies vh = 0 on the nodes
and on the edges belonging to the boundary ∂Ω.

It is not difficult to check that, here too, the dimension N tot of Vh, computed
in (4.13), equals the total number of degrees of freedom V plus E plus P . Proposi-
tion 4.1 will now easily imply that the global degrees of freedom are unisolvent for
the global space Vh. Exactly as it happens for the usual finite element spaces.

4.4. Interpolation error

For each element K ∈ Th we denote by χi, i = 1, . . . , NK , the operator that to
each smooth enough function ϕ associates the ith local degree of freedom χi(ϕ). It
follows easily from the above construction that for every smooth enough w there
exists a unique element wI of V K,k such that

χi(w − wI) = 0, i = 1, . . . , NK . (4.14)

More generally, always following for instance Ref. 9 it is not difficult to see that the
following result holds.

Proposition 4.3. Assume that assumption A0.2 is satisfied. Then there exists a
constant C, depending only on k and γ, such that for every s with 2 ≤ s ≤ k + 1,

for every h, for all K ∈ Th and for every w ∈ Hs(K) there exists a wI ∈ V K,k

such that

‖w − wI‖0,K + hK |w − wI |1,K ≤ Chs
K |w|s,K . (4.15)

Remark 4.4. As in Remark 4.3 we could replace in A0.2 “star-shaped domain”
with “union of a finite number of star-shaped domains”. We will not insist on these
struggles for generality.

4.5. Construction of ah

First of all, we observe that the local degrees of freedom allow us to compute exactly
aK(p, v) for any p ∈ Pk(K) and for any v ∈ V K,k. Indeed,

aK(p, v) =
∫

K

∇p · ∇vdx = −
∫

K

∆pvdx +
∫

∂K

∂p

∂n
vds. (4.16)
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Since ∆p ∈ Pk−2(K), ∂p
∂n ∈ Pk−1(e) and v ∈ Pk(e) for all e ⊂ ∂K, the last two

integrals can be computed exactly without knowing v in the interior of K.

Remark 4.5. In general, one can use on each edge e the values at the vertices
and at k − 1 internal points, not necessarily uniformly spaced, to reconstruct vh

(which is a polynomial of degree k on e). In particular, we point out that, using
as degrees of freedom the k − 1 internal Gauss–Lobatto points on each edge one
can compute the boundary integrals in (4.16) exactly using only the given degrees
of freedom (and without reconstructing vh on each edge). This is indeed what was
done in Ref. 6 in the spirit of MFD.

At this point we are left to show how to construct a (computable!) ah that
satisfies (3.6) and (3.7). For any K ∈ Th and for any sufficiently regular function ϕ

we set

ϕ :=
1
n

n∑
i=1

ϕ(Vi), Vi = vertices of K. (4.17)

Next, we define the operator ΠK
k : V K,k → Pk(K) ⊂ V K,k as the solution of{

aK(ΠK
k v, q) = aK(v, q) ∀ q ∈ Pk(K),

ΠK
k v = v,

(4.18)

for all v ∈ V K,k. We notice that (4.18) clearly implies

ΠK
k q = q ∀ q ∈ Pk(K), (4.19)

since the first equation will tell us that q and ΠK
k q have the same gradient, and the

second equation takes care of the constant part.
At this point, choosing aK

h (u, v) = aK(ΠK
k u, ΠK

k v) would ensure property (3.6),
but (3.7) in general would not be verified. We need to add a term able to
ensure (3.7). Let then SK(u, v) be any symmetric positive definite bilinear form
to be chosen to verify

c0a
K(v, v) ≤ SK(v, v) ≤ c1a

K(v, v) ∀ v ∈ V K,k with ΠK
k v = 0 (4.20)

for some positive constants c0, c1 independent of K and hK . Then set

aK
h (u, v) = aK(ΠK

k u, ΠK
k v) + SK(u − ΠK

k u, v − ΠK
k v) ∀u, v ∈ V K,k. (4.21)

We point out that definition (4.21) imitates the following identity:

aK(u, v) = aK(ΠK
k u, ΠK

k v) + aK(u − ΠK
k u, v − ΠK

k v) ∀u, v ∈ V K,k, (4.22)

which for u = v is nothing else but the Pythagoras theorem.

Theorem 4.1. The bilinear form (4.21) satisfies the consistency property (3.6)
and the stability property (3.7).
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Proof. Property (3.6) follows immediately from (4.19) and (4.18): for p in
Pk(K) (4.19) implies SK(p− ΠK

k p, v − ΠK
k v) = 0. Hence, for all v ∈ V K,k it holds

aK
h (p, v) = aK(ΠK

k p, ΠK
k v) = aK(p, v). (4.23)

Property (3.7) follows from (4.20) and (4.22): for all v ∈ V K,k

aK
h (v, v) ≤ aK(ΠK

k v, ΠK
k v) + c1a

K(v − ΠK
k v, v − ΠK

k v)

≤ max{1, c1}(aK(ΠK
k v, ΠK

k v) + aK(v − ΠK
k v, v − ΠK

k v)) = α∗aK(v, v).

Similarly, for all v ∈ V K,k,

aK
h (v, v) ≥ min{1, c0}(aK(ΠK

k v, ΠK
k v) + aK(v − ΠK

k v, v − ΠK
k v))

= α∗a
K(v, v).

4.6. Choice of SK

In general, the choice of the bilinear form SK would depend on the problem and
on the degrees of freedom. From (4.20) it is clear that SK must scale like aK(·, ·)
on the kernel of ΠK

k . Choosing then the canonical basis ϕ1, . . . , ϕNK as

χi(ϕj) = δij , i, j = 1, 2, . . . , NK , (4.24)

the local stiffness matrix is given by

aK
h (ϕi, ϕj) = aK(ΠK

k ϕi, ΠK
k ϕj) + SK(ϕi − ΠK

k ϕi, ϕj − ΠK
k ϕj). (4.25)

In our case it is easy to check that, on a “reasonable” polygon, aK(ϕi, ϕi) � 1.
Note that this holds true for all i = 1, 2, . . . , NK since we defined the local degrees
of freedom suitably, and this explains the choice of Mk−2 instead of the usual Pk−2

in the definition of the internal degree of freedom.
However, several types of misbehavior can occur for awkwardly-shaped poly-

gons, in particular if two or more vertices tend to coalesce, although, in our numer-
ical experiments, the method appears to be quite robust in this respect. Hence it
would be wiser to introduce a further, and last requirement for the elements of our
decompositions.

A0.3. We assume that there exists a γ > 0 such that for all h and for each element
K in Th the distance between any two vertices of K is ≥γhK .

If assumption A0.3 is verified, then indeed we will have aK(ϕi, ϕi) � 1 for all i.
As a consequence it will be sufficient to take the simple choice

SK(ϕi − ΠK
k ϕi, ϕj − ΠK

k ϕj) =
NK∑
r=1

χr(ϕi − ΠK
k ϕi)χr(ϕj − ΠK

k ϕj)

in order to satisfy (4.20).
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Remark 4.6. The present method uses the same degrees of freedom as the mimetic
discretization method for linear elliptic problems introduced in Ref. 6. The stabi-
lizing part (here depending on SK) will in general be different, but this is not
so important. In our opinion the major novelty here is in the construction of the
method, and in particular the construction of a subspace Vh of V that puts the
method back in the framework of conforming Galerkin methods. Hence the present
methodology is much easier to describe, and much better suited for the extension
to other problems.

Remark 4.7. The construction (4.21) of the local stiffness matrix is not really too
far away from the classical constructions done in MFD. Indeed, looking closer, one
might recognize that the first part, that is aK(ΠK

k u, ΠK
k v), is what is commonly

used in MFD to take care of the polynomial consistency, while the second part
SK(u− ΠK

k u, v −ΠK
k v) is the one usually added to recover stability. Note however

that, in particular, here the construction does not require to choose a set of linearly
independent vectors among the ones that are locally orthogonal to polynomials, as
done, from the very beginning of these constructions, in Ref. 15.

4.7. Construction of the right-hand side

We consider first the case k ≥ 2, and define fh on each element K as the L2(K)-
projection of f onto the space Pk−2, that is,

fh = PK
k−2f on each K ∈ Th.

Consequently, the associated right-hand side

〈fh, vh〉 =
∑

K∈Th

∫
K

fhvhdx ≡
∑

K∈Th

∫
K

(PK
k−2f)vhdx =

∑
K∈Th

∫
K

f(PK
k−2vh)dx

can be exactly computed using the degrees of freedom for Vh that represent the
internal moments. Then, standard L2-orthogonality and approximation estimates
on star-shaped domains yield

〈fh, vh〉 − (f, vh) =
∑

K∈Th

∫
K

(PK
k−2f − f)(vh − PK

0 vh)dx

≤ C
∑

K∈Th

hk−1
K |f |k−1,KhK |vh|1,K

≤ Chk

(∑
K∈Th

|f |2k−1,K

)1/2

|vh|1, (4.26)

and thus, recalling (3.10),

Fh ≤ Chk

( ∑
K∈Th

|f |2k−1,K

)1/2

. (4.27)
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For k = 1 we approximate f by a piecewise constant, and define

〈fh, vh〉 =
∑

K∈Th

∫
K

PK
0 f vhdx =

∑
K∈Th

|K|PK
0 f vh, (4.28)

with vh defined as in (4.17). We have

〈fh, vh〉 − (f, vh) =
∑

K∈Th

∫
K

((PK
0 f − f)vh + f(vh − vh))dx

≤ C
∑

K∈Th

(hK |f |1,K‖vh‖0,K + ‖f‖0,KhK |vh|1,K)

≤ Ch

( ∑
K∈Th

|f |21,K

)1/2

|vh|1.

Thus,

Fh ≤ Ch

( ∑
K∈Th

|f |21,K

)1/2

. (4.29)

Remark 4.8. Optimal order error estimates in the L2-norm can be easily derived
with the usual duality argument techniques. However, we remark that in the case
k = 1, 2 a more accurate approximation of the right-hand side is needed. This is the
reason why we decided not to include the L2-analysis in the present paper. More
details can be found in Ref. 4.

5. Conclusions

We have presented the virtual element method in the simplest possible case to show
the essential features of the method. The virtual element method approach main-
tains, as MFD, the capability to reproduce several physical laws exactly, and to deal
with complicated element geometries. At the same time, it shares the advantages
of finite element-like formulations. Virtual elements have already been applied to
other problems, such as linear elasticity4 and plate bending problems.16 The method
seems to be particularly suited to deal with higher-order continuity requirements,
and it allows to design easily C1-approximations, as shown in Ref. 16. We believe
that the new methodology might open the way to new perspectives in a number of
different directions.
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