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Abstract Among Numerical Methods for PDEs, the Virtual Element Methods were intro-
duced recently in order to allow the use of decompositions of the computational domain in
polytopes (polygons or polyhedra) of very general shape. The present paper investigates the
possible interest in their use (together or in alternative to Finite Element Methods) also for
traditional decompositions (in triangles, tetrahedra, quadrilateral or hexahedra). In partic-
ular their use looks promising in problems related to high-order PDEs (requiring C

p finite
dimensional spaces with p � 1), as well as problems where incompressibility conditions are
needed (e.g. Stokes), or problems (like mixed formulation of elasticity problems) where sev-
eral useful features (symmetry of the stress tensor, possibility to hybridize, �inf-sup stability
condition, etc.) are requested at the same time.
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1 Introduction

Virtual Element Methods (VEM) are a recent technology in Scientific Computing, designed
to use decompositions of the computational domain into polygons or polyhedra. As it is well
known, the decompositions commonly used by the Finite Element community and in the
related commercial codes, so far, have been almost exclusively concentrated on triangles,
tetrahedra, quadrilaterals, hexahedra and little more. VEM, instead, are conceived for allow-
ing also complicated geometries, typically polytopes with many faces/edges and complicated
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shapes. The purpose of the present paper is to show that VEM can also prove to be interesting
on simple geometries. Escaping the limit of piecewise polynomial shape functions, VEM
can indeed allow more performant local spaces, and could, whenever convenient, be used
also on simpler elements, like triangles, quads, and their 3d counterpart. Hence, they could
as well be included as useful variants in a Finite Element code.

Indeed, we shall see that even on simple geometries Virtual Elements might come out
to be extremely useful, both when used in combination with Finite Elements and when
used as an innovative powerful alternative. Throughout the paper we will keep comparing
VEM and FEM: we would like to point out, from the very beginning, that this should not
be taken as a (rather childish) competition between two very useful instruments. In most
cases the main purpose of the comparison with FEM will be to help the reader towards a
better understanding of the new instrument (with its pros and cons) just by comparing with
an instrument that is already well known, and concentrating on the di�erences. One should
keep in mind that the main original motivation for VEM is to deal with decompositions that

are geometrically complicated and not to replace FEM on simpler cases. However, the use
of VEM on simple geometries might also prove to be convenient on several occasions.

Actually we shall see that the possibility of adding to the polynomial spaces a few
additional non polynomial functions can alleviate many types of troubles and give rise to
very interesting alternatives. These additional functions are never computed explicitly, but
one can use, in the code, some related quantities (typically, some kinds of projection) that
are computable directly out of the degrees of freedom.

As examples of use of VEM on simple geometries that perform easily where FEM
pose nontrivial di�culties, in this paper we take: the use of C

p discretizations (for p � 1),
the treatment of the incompressibility condition for Fluids and for Elastic Materials, and the
mixed (stress-displacement) formulation of linear elasticity problems à la Hellinger Reissner.
We will see that the construction of H

s-conforming approximations (for s � 2), the use of
perfectly incompressible approximations, as well as the use of symmetric-and hybridizable
stress fields come out more easily in the VEM context than in the traditional FEM approaches.

An outline of the paper is as follows. In the next section, we will present the basic ideas
of Virtual Element Methods, taking as a first example the simple Poisson problem. We will
show how to deal with the non-polynomial functions appearing in the local spaces, how
to construct a consistent conforming approximation, and how to stabilize it in order to get
a well-posed discrete problem. Next, a sort of Serendipity procedure will be presented for
reducing the number of degrees of freedom internal to the elements. We will see that on
triangles Serendipity VEM coincide exactly with the usual polynomial approximation, while
on quads we have several little variants that might have some interest here and there. Finally,
we will present the nonconforming VEM-approximation where some di�erences between
FEM and VEM start to pop out already on triangles.

In Section 3, we will consider the VEM approximation of vector spaces like H(div;⌦)
and H(rot;⌦), and in the following Section 4 we will show how the VEM approach can easily
help in the construction of C

1 elements (to deal, e.g., with plate problems). We shall also
see that, in the VEM context, the construction of C

p discretized spaces for p � 2 becomes
reasonably feasible, whereas (as is well known) with FEM the construction of C

1 spaces
poses already several di�culties.

Next, in Section 5 we will deal with the incompressibility problem. The treatment of
these problems in the FEM context has been the object of a number of quite interesting papers
in the recent years. Here, a general comparison between VEM and FEM becomes nearly
unfeasible, since every FEM approach is di�erent and has di�erent features, pros and cons.
We took a (questionable) decision: to make the comparison of VEM with some older and well
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known method (actually the Crouzeix–Raviart: P2+bubbles velocities and discontinuous P1
pressures). This is, in our opinion, justified by our target of helping in understanding VEM,
and not fighting for being the best method (whatever that means...). We provide however a
rich list of references to the latest, quite interesting, FEM developments.

Finally, in the last Section 6 we deal with the Hellinger–Reissner mixed formulation of
linear elasticity. Here, we face a situation quite similar but even worse than that of the previous
section, in the presence of a wealth of recent di�erent FEM approaches trying to satisfy,
at the same time, a number of important requests (stability, symmetry of the stress tensor,
possible hybridization, etc.). Here too we decided to compare the VEM approach with one of
the best known FEM approach (the Arnold–Awanou–Winther element), although the most
similar FEM approach would have been the one by Guzman–Neilan in [38], that however
would have required a more detailed description.

1.1 Notation

Throughout the paper, if k is an integer � 0, Pk will denote the space of polynomials of
degree  k. In Rd its dimension ⇡k ,d is given by:

⇡k ,1 = k + 1, ⇡k ,2 = (k + 1)(k + 2)/2, ⇡k ,3 = (k + 1)(k + 2)(k + 3)/6.

As usual, P�1 = {0}. When no confusion can occur, we will use the simpler ⇡k .
Next, for a domain O we will denote by ⇧0,O

k
(or simply by ⇧0

k
when no confusion can

occur) the L
2(O)-orthogonal projection operator onto Pk (O), defined, as usual, for every

v 2 L
2(O), by

⇧0,O
k

(v) 2 Pk (O) and
π
O

⇣
v � ⇧0,O

k
(v)

⌘
qkdO = 0 8qk 2 Pk (O).

For s integer � 1 we define also

bPs(O) :=
⇢
qs 2 Ps such that

π
O

qsdO = 0
�
.

and assuming the origin to be in the barycenter of O:

Phom
s

(O) := {homogeneous polynomials of degree s}.

Moreover, given a function  2 L
2(O) and an integer s � 0, we recall that the moments of

order  s of  on O are defined as:π
O

 qs dO for qs 2 Ps(O).

Hence, to assign the moments of  up to the order s on O will amount to ⇡s conditions.
Typically this will be used when these moments are considered as degrees of freedom. Then,
we will take in Ps a basis {qi} such that kqi kL1 ' 1.

We recall that, in two dimensions, the curl operator has two aspects (as grad and div)
given by

rot(v1, v2) := @xv2 � @yv1, rot(') := (@y',�@x').
Finally, for a vector v = (v1, v2) we indicate by v

? the vector v
? = (v2,�v1).
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Throughout the paper we will follow the common notation for scalar products, norms,
and seminorms. In particular, (v,w)0,O (sometimes, just (v,w)0) and kvk0,O (sometimes,
just kvk0) will denote the L

2(O) scalar product and norm, whereas |v |1,O (sometimes, just
|v |1) and kvk1,O (sometimes, just kvk1) will denote the H

1 semi-norm and norm.
Finally, we point out that throughout the paper, as common in the VEM literature, we

will consider that the same geometrical entity (say, a triangle) might be considered as a
polygon (for instance, a quadrilateral or a pentagon, hexagon, etc.) according to the number
of points on its boundary that we consider as vertices (and, as natural, considering as edge

the portion of boundary in between two consecutive vertices, in the usual counterclockwise
ordering. See Fig. 1. This feature can be extremely helpful for example when doing adaptive
mesh refinement (see the leftmost case in Fig. 1).

Fig. 1 Each of the three above polygons is considered as a hexagon

2 H
1

Approximations

Let us consider a second order linear elliptic problem, with variational formulation

find u 2 V such that a(u, v) = h f , vi 8v 2 V . (1)

To fix ideas one may think of the usual toy problem ��u = f in ⌦, u = 0 on @⌦, with
⌦ ⇢ R2 a polygonal domain, f 2 L

2(⌦), and V = H
1
0 (⌦), although what follows applies to

more general operators. Problem (1) is then

find u 2 V = H
1
0 (⌦) such that

π
⌦
ru · rv dx =

π
⌦

f v dx 8v 2 V .

Let Th be a decomposition of ⌦ into polygons P , and let Vh ⇢ V be a finite dimensional
subspace. We can write the discrete problem as

find uh 2 Vh such that ah(uh, vh) = h fh, vhi 8vh 2 Vh, (2)

and we have to define Vh , ah(·, ·), and fh in such a way that problem (2) has a unique solution
and optimal error estimates hold. In the next subsection we will recall the original approach
of [15] and indicate the general path of Virtual Element approximations.
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2.1 Original Virtual Element Approximation

We first recall the definition of the discrete spaces from [15]. Let P be a generic polygon in
Th . For k � 1 we define

Vk (P) :=
n
v 2 C

0(P) : v |e 2 Pk (e) 8 edge e ⇢ @P, �v 2 Pk�2(P)
o
, (3)

with the degrees of freedom given by

(D1) : the values of v at the vertices,

(D2) : for k � 2 the moments
π
e

vpk�2ds 8pk�2 2 Pk�2(e) 8 edge e, (4)

(D3) : for k � 2 the moments
π
P

vpk�2dx 8pk�2 2 Pk�2(P).

Instead of the moments D2 one could use the values at k � 1 distinct points on each edge,
more in the spirit of FEM:

(D0
2) : the value of v at k � 1 distinct points on each edge e.

The global space is then defined as

Vh := {v 2 V : v |P 2 Vk (P) 8P 2 Th}. (5)

It can be shown ([15]) that out of the dofs (4) we can compute on each element P the
operator ⇧r

k
: Vk (P) ! Pk (P) defined by

π
P

r
⇣
⇧r
k
v � v

⌘
· rqkdx = 0 8qk 2 Pk,

π
@P

⇣
⇧r
k
v � v

⌘
ds = 0. (6)

Then, a discrete bilinear form is constructed, on each element P , as

a
P

h
(vh,wh) := a

P

⇣
⇧r
k
vh,⇧

r
k
wh

⌘
+ S

P

⇣⇣
I � ⇧r

k

⌘
vh,

⇣
I � ⇧r

k

⌘
wh

⌘
vh, wh 2 Vh, (7)

where S
P is any symmetric bilinear form that scales like a

P (·, ·). There are various recipes
for S

P , the most commonly used being the so-called dofi-dofi:

S
P (vh,wh) :=

#dof s’
i=1

do fi(vh)do fi(wh). (8)

We can also define a right-hand side fh directly computable from the degrees of freedom
(D1)–(D3). Denoting by V1, . . . ,Vn the vertices of P) we set:

h fh, vhiP =
8>>><
>>>:

for k = 1
π
P

⇧0
0 f vhdx with vh =

Õ
i vh(Vi)

n
,

for k � 2
π
P

⇧0
k�2 f vhdx.

(9)

The global bilinear form and right-hand side are defined, as in FEM, by summing over
the elements of Th:

ah(vh,wh) =
’

P 2Th

a
P

h
(vh,wh), h fh, vhi =

’
P 2Th

h fh, vhiP .
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VEM k=3

FEM k=2FEM k=1 FEM k=3

VEM k=1 VEM k=2

Fig. 2 Triangles: d.o.f.s for FEM and original VEM

VEM k=3

FEM k=2FEM k=1 FEM k=3

VEM k=1 VEM k=2

Fig. 3 Quads: d.o.f.s for FEM and original VEM

With these choices (and mild assumptions on the mesh) it has been proved that problem
(2) has a unique solution, and optimal estimates hold

ku � uh kV  Ch
k |u|k+1.

Figures 2 and 3 show a comparison between FEM and VEM on triangles and quads.
From Fig. 2 we see that triangular VEM have more degrees of freedom than FEM for

k � 2. Looking for simplicity at the case k = 2 we point out that the additional degree of
freedom in the VEM space corresponds to the function �2 defined by:

�2 = 0 on @P, and ��2 = 1 in P (10)

that, clearly, is not in P2.
Instead, from Fig. 3 we see that for quads VEM have less degrees of freedom for k � 3:

indeed, the number of internal d.o.f.s for FEM equals the dimension of Qk�2, i.e. (k � 1)2,
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while that of VEM is equal to the dimension of Pk�2, given by k(k � 1)/2. We also underline
that, as it can be seen in Figs. 2–3, the internal dofs for VEM do not change with the element
shape; what changes when going from a triangle to a quad or to a generic polygon is just the
number of edge-dofs, which depends on the number of edges.

2.2 Enhanced and Serendipity Virtual Elements

Following [1] and [17], in order to eliminate as many internal dofs as possible, and, at the
same time, to allow the computation of all the moments of order  k, we first define the
local space

eVS

k
(P) := {v 2 C

0(P) : v |e 2 Pk (e) 8e ⇢ @P, �v 2 Pk (P)}, (11)

with the degrees of freedom

(D1) � (D2) plus the moments of order up to k :
π
P

vpkdx 8pk 2 Pk (P).

Clearly the space (11) is bigger than (3), apparently in contradiction with our first aim, but
now the L

2-orthogonal projection onto Pk is directly available from the internal dofs. Then
we begin by defining locally an operator ⇧k : H

1(P) ! Pk (P) as follows:

⇧kv 2 Pk (P) :
π
@P

(⇧kv � v)qk ds = 0 8qk 2 Pk (P). (12)

Clearly, system (12) has a unique solution unless Pk contains polynomials that are identically
zero on the boundary, i.e., unless Pk contains bubbles. This happens for k � 3 on triangles
(b3 = product of the equations of the three edges) and for k � 4 on “true" quads (b4 =
product of the equations of the four edges). In these cases we need to add internal conditions,
namely:π

P

(⇧kv � v)qsdx = 0 8qs 2 Pk�3

|                                        {z                                        }
on triangles

or
π
P

(⇧kv � v)qsdx = 0 8qs 2 Pk�4,

|                                        {z                                        }
on quads

(13)

and then solve the system (12)–(13) in the least-squares sense. Once the polynomial ⇧kv has
been computed, we define the new space by “copying" its moments. Namely, setting N =

maximum degree of internal moments used to define ⇧k :

V
S

k
(P) :=

⇢
v 2 eVS

k
(P) s.t.

π
P

vpsdx =

π
P

⇧kvpsdx 8ps 2 Phoms
, N < s  k

�
(14)

Figure 4 shows that on triangles serendipity VEM have the same number of dofs as FEM
(and actually the two spaces coincide), while Fig. 5 compares the dofs of serendipity VEM
and FEM (see [3]). The number is the same, although serendipity FEM are known to su�er
from distorsion (see [6]), while VEM do not, as shown in [17].

A typical variant of this procedure can be identified in the original enhancement trick as
designed first in [1]. For a given integer � � k � 2 one considers the space

eVE

� (P) := {v 2 C
0(P) : v |e 2 Pk (e) 8e ⇢ @P, �v 2 P�(P)},
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VEMS k=3

FEM k=2FEM k=1 FEM k=3

VEMS k=1 VEMS k=2

Fig. 4 Triangles: dofs for serendipity VEM

VEMS k=4

FEMS k=1 FEMS k=2 FEMS k=3 FEMS k=4

VEMS k=1 VEMS k=2 VEMS k=3

Fig. 5 Quads: dofs for serendipity FEM and VEM

with the degrees of freedom

(D1) � (D2) plus the moments of order up to � :
π
P

vp�dx 8p� 2 P�(P).

Then, using the boundary dofs and the moments up to k � 2, we construct the ⇧r
k

operator
as in (6), and use it (mimicking (14), with ⇧r

k
instead of ⇧k ) to define the moments of v of

all orders between k � 1 and �. Thus, the new space is

V
E

k
(P) :=

⇢
v 2 eVE

� (P) s.t.
π
P

vpsdx =

π
P

⇧r
k
vpsdx 8ps 2 Phoms

, k � 1  s  �

�
.

(15)

Remark 1 The advantage of the enhancement trick is that it can always be done, for every
polygon P , without recurring to a least-squares solution. On the other hand, the Serendipity
approach becomes more and more powerful when the number of non-aligned edges of P in-
creases. For instance, on a decomposition made by non degenerate hexagons, the Serendipity
VEM spaces of order k will have no internal degrees of freedom whenever k  5. This of
course will not be true for degenerate polygons, as for instance, in Fig. 1, for the leftmost
example, where the first bubble appears for k = 3, and for the rightmost one, where the first
bubble will appears for k = 5.

Remark 2 Serendipity FEM were introduced on quadrilaterals in order to reduce the number
of internal degrees of freedom, and avoid the need for higher order numerical integration
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schemes. For VEM, as we have seen, Serendipity elements are also convenient on triangles.
But, in spite of the fact that we use the name “Serendipity" for both VEM and FEM, the
spirit of the procedure is rather di�erent from one case to the other. In the FEM context,
the Serendipity approach is usually performed by: i) choosing the degrees of freedom that
one wants to eliminate (typically, one or more internal node), and ii) choosing, accordingly
(in general, kicking out one or more monomials), a polynomial subspace where the new,
reduced set of degrees of freedom, is unisolvent. See for instance the classical [54] and the
references therein, as well as the more evolved [3]. Instead in Serendipity VEM, as we have
seen, we look first for a projector, onto the space of polynomials, that can be computed using
a smaller number of degrees of freedom. Then we restrict ourselves to the subspace (of the
original VEM space) where the values to be assigned to the other degrees of freedom (not
used in constructing the projector) are taken from the values of the projector. See again [17].

Remark 3 One might argue that static condensation could be a simpler procedure to reduce
the internal degrees of freedom. This is true in two dimensional problems, but it is not
anymore the case for three dimensional problems, where the reduction of dofs on faces is
important. Static condensation on faces might turn into a nightmare, while the serendipity
approach works very well.

2.3 Non-conforming Virtual Elements

Another typical Finite Element variant of Galerkin approximations is given by the so-called
Nonconforming methods, where the inclusion Vh ⇢ H

1(⌦) does not hold anymore, and the
continuity across interelement boundaries is required only in a weak sense (typically, on each
edge the average and the moments up to the order k � 1, where k is, as before, the order of
the polynomials that we want to be included). See e.g. [29] and the references therein.

We just try to give the flavor of the Nonconforming Virtual Elements, referring for
instance to [2,12,48,53]. The local space is:

V
NC

k
(P) :=

⇢
v 2 H

1(P) :
@v

@n |e
2 Pk�1(e) 8 edge e, �v 2 Pk�2(P) 8P

�
.

Before introducing the global space we need some notation. We introduce the space H
1(Th) =Œ

P 2Th
H

1(P), and for ' 2 H
1(Th) we denote by [[']] its jump on internal edges e 2 Th .

Then, the natural counterpart of (5), for k � 1 is now

V
NC

h
:=

⇢
v 2 H

1(Th) : v |P 2 V
NC

k
(P) 8P,

π
e

[[v]]pk�1ds = 0 8 internal edge e, 8pk�1 2 Pk�1(e),π
e

vpk�1ds = 0 8e on @⌦, 8pk�1 2 Pk�1(e)
�
.

The degrees of freedom are given by

(D0
1) : the moments

π
e

vpk�1ds 8pk�1 2 Pk�1(e) 8e,

(D0
2) : for k � 2 the moments

π
P

vpk�2dx 8pk�2 2 Pk�2(P).
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It is not di�cult to see that these are indeed a set of degrees of freedom for V
NC

h
. It is also

easy to see that, using them, for every v 2 V
NC

h
and for each polygon P we can compute its

r-projection ⇧r
k
v defined as in (6). Using the ⇧r

k
operator as in (7) one can now construct

the local as well as the global approximate bilinear form ah . Then, basically, we deal with
them as with usual nonconforming Finite Elements.

Just to give an idea of the possible comparison between nonconforming FEM and VEM,
we consider the case of k = 2 on triangles. Both for FEM and VEM we take first as boundary
degrees of freedom the moments, on each edge, of order  1. But on triangles (and on
quadrilaterals as well), since k = 2 is even, FEM also need an additional degree of freedom
inside; indeed the six values at the 3 ⇥ 2 Gauss points do not identify a polynomial of
degree  2 on the triangle in a unique way (take an ellipses through the six points and you
get a p2 , 0 that vanishes at all six points). VEM are not better o�, since their internal
degree of freedom cannot be eliminated through some sort of Serendipity trick, (exactly
for the same reason: there is a p2 that is orthogonal, on each edge, to all linear and to all
constant functions). The typical escape for FEM is to add a seventh polynomial (see e.g.
[33]): referring to Fig. 6, indicating with �A, �B, and �C the usual barycentric coordinates,
we add

⇣ := �A�B(�A � �B) + �B�C (�B � �C ) + �C�A(�C � �A) (16)

and take the mean value on P as seventh degree of freedom.

c1

c2

B a1 a2

A

C

b1

b2

Fig. 6 Toward Nonconforming VEM

When using VEM we already have seven functions and the distinction between k odd or
k even is not necessary. In some sense, the nonconforming VEM are already happy as they
are, no matter whether k is even or odd. The di�erence is that for k even we could not play
some smart Serendipity trick in order to get rid of some internal degrees of freedom, while
this would be allowed for k odd. In the case k = 2 we see that the VEM space obviously
contains all polynomials of degree  2. The additional (non polynomial) element could be
thought of as being generated by adding to the space P2 one function. For instance we can
choose the VEM function, say �(x, y), that, with the notation of Fig. 6, could be identified
by the following conditions:

π
P

�dx = 0,
π
e

� ds = 0 8 edge e,

1
|ea |

π
ea

�qads =
1
|eb |

π
eb

�qbds =
1
|ec |

π
ec

�qcds = 1,
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where: the edge ea, with length |ea |, is opposite to the vertex A, and qa is the polynomial of
degree 1 such that qa(a1) = 1 and qa(a2) = �1 (and similar notation for the edges eb and
ec). We point out that on the boundary of our triangle the function � cannot be the trace of
a polynomial of degree  2. Indeed, it is easy to check that every v 2 P2 verifies

1
|ea |

π
ea

vqads +
1
|eb |

π
eb

vqbds +
1
|ec |

π
ec

vqcds = 0.

On the boundary the behaviour of � is quite similar to that of ⇣ given in (16), but the
normal derivative of � is on each edge a polynomial of degree 1 (and not 2 as ⇣) and (most
important) �� is constant (instead of linear): a feature that might turn out to be convenient
in certain problems where some equilibrium or conservation properties could be enforced
strongly and not “only on average".

2.4 Conforming VEM in 3 Dimensions

Let P be a polyhedron, and let f be a face. We begin by defining the space

Vk (P) :=
n
v 2 C

0(P) : v | f 2 Vk ( f ) 8 f ⇢ @P, �v 2 Pk�2(P)
o
,

where Vk ( f ) is the space defined in (3). The degrees of freedom will be

(D1) : the values of v at the vertices,

(D2) : for k � 2 the moments
π
e

vpk�2ds 8pk�2 2 Pk�2(e) 8 edge e, (17)

(D3) : for k � 2 the moments
π
f

vpk�2dx 8pk�2 2 Pk�2( f ) 8 face f ,

(D4) : for k � 2 the moments
π
P

vpk�2dx 8pk�2 2 Pk�2(P).

Proceeding as we did before, the next step is to compute the ⇧r
k

operator as in (6). To this
end, integrating by parts we obtain

π
P

r⇧r
k
v · rqk :=

π
P

rv · rqk = �
π
P

v�qk +
’
f 2@P

π
f

v
@qk

@n
,

and we realize that the integrals on faces cannot be computed out of the dofs (17). Indeed, we
would need moments of order k � 1 and not just k � 2. We then use the enhanced procedure
explained in Section 2.2 (see (15)), and define the new space

eVk (P) :=
n
v 2 C

0(P) : v | f 2 V
E

k
( f ) 8 f ⇢ @P, �v 2 Pk�2(P)

o
.

We point out that the serendipity approach could be used on faces to reduce the number of
dofs. We refer to [17] for details.
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3 H(div) and H(rot) Conforming FEM/VEM on Triangles

3.1 FEM for H(div;⌦) and H(rot;⌦) Spaces

Similarly to what we did for VEM discretizations of H
1 we can now present the VEM

discretizations of vector-valued spaces H(div;⌦) and H(rot;⌦). We recall that in Finite
Elements we have, essentially, two families of spaces for H(div;⌦) that go under the name
of Raviart–Thomas [51] and Brezzi–Douglas–Marini [21] (in short: RT and BDM), and two

families of spaces for H(rot;⌦) that go under the name of Nédélec of first kind [49] and
Nédélec of second kind [50] (in short:N1 and N2). We recall them here below, for triangular
elements: For k integer

RTk := {(Pk )2 + xPk }, N1k := {(Pk )2 + x
?Pk }, k � 0

and
BDMk ⌘ N2k := (Pk )2, k � 1.

The boundary degrees of freedom are, for all edge e:
π
e

v · nqkds 8qk 2 Pk (e) for RTk and BDMk,π
e

v · tqkds 8qk 2 Pk (e) for N1k and N2k .

The internal degrees of freedom are, for k � 1 and for all triangles T ,

For RTk :
π
T

v · qdx 8q 2 BDMk�1 and for BDMk :
π
T

v · qdx 8q 2 N1k�2 (18)

as well as

For N1k :
π
T

v · qdx 8q 2 N2k�1 and for N2k :
π
T

v · qdx 8q 2 RTk�2. (19)

Clearly, for k = 1 both RTk�2 and N1k�2 are empty, and the corresponding dofs (in (18) and
in (19), respectively) are not there.

For the three-dimensional case, as well as for the case of quadrilaterals and hexahedra,
where, however, the definitions are less straightforward, we refer for instance to [20–23] or
to [4].

Moreover, for the two dimensional case on triangles, we remark the perfect symmetry
between the H(div;T) and the H(rot;T) case: changing n with t as well as grad with rot

and div with rot. Hence, from now on, in this section we will restrain ourselves to the case
of H(div;P) spaces on triangles.

3.2 VEM H(div;P) Spaces on Triangles

Here too we still have to distinguish between RT-like and BDM-like spaces: roughly speaking,
for v · n a polynomial of order k on the boundary, we will have spaces having the divergence
in Pk (the RT case, for k � 0) and spaces having the divergence in Pk�1 (the BDM case, for
k � 1). We refer to [22] and [16] for more details.
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RT k=1

BDM k=1 BDM k=2

RT k=2

Fig. 7 Face FEM, k = 1 and k = 2

On a (general) polygon P , for k = degree of v · n on each edge, and � = degree of the
divergence (equal to k or k � 1) we set

Vk ,�(P) := {v 2 H(div : P) \ H(rot : P) s.t. v · n |e 2 Pk (e) 8e,

div v 2 P�(P), rot v 2 Pk�1(P)}.

The degrees of freedom in Vk ,�(P) are

• (D1)
π
e

v · nqkds 8qk 2 Pk (e) 8 edge e in @P,

• (D2) (for k > 0 and � > 0)
π
P

v · grad q�dx 8q� 2 P�(P),

• (D3) (for k > 0)
π
P

rot vqk�1dx 8qk�1 2 Pk�1(P).

See Fig. 8 where the blue d.o.f.s are common to FEM and VEM, and the green ones are the
additional dofs needed for VEM.

A comparison with FEM shows that, as in the scalar case, VEM exhibit more internal
dofs: one more for k = 1 (the green bullet), and three more for k = 2. As we did for scalar
approximations (see (14) and (15)), they could be eliminated by the enhancement or by the
serendipity approaches. See e.g. [18].

Considering again the simplest case, here k = 1, we see that the additional degree of
freedom corresponds to the addition (to the FEM space BDM1 or RT1) of rot �2, where �2 is
the function defined in (10). For k = 2, at first sight we could think that we are adding, to the
FEM space, the rot of the three functions �3 such that �3 = 0 on @P and ��3 2 P1. There are
three independent ones, but on a triangular domain one of them is the cubic bubble, whose
rot is already in the BDM2 space as well as in the RT2 space. Hence, we are just adding two

new ones to the FEM case (see the green dots in Fig. 8).
Here too, we point out that for VEM the passage from triangles to quadrilaterals (of

very general shape) is immediate (as well as the passage to more general polygons), while
the FEM spaces, already for quadrilaterals, and more on hexahedra, require a considerable
additional work. See for instance [8] and the references therein.
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BDM−like k=2

RT−like k=2RT−like k=1

BDM−like k=1

Fig. 8 Face VEM k = 1 and k = 2

4 C
p

VEM for p � 1

With Virtual Elements it is quite easy to construct high-regularity approximations. Here we
shall deal mostly with C

1 approximations, having in mind, as an example of fourth order
problem, a plate bending problem:

D�2w = f in ⌦, w =
@w

@n
on @⌦,

where D is the bending rigidity. The variational formulation looks like (1), with V = H
2
0 (⌦),

and

a(v,w) = D


(1 � ⌫)

π
⌦
w/i jv/i jdx + ⌫

π
⌦
�w�vdx

�
, h f , vi =

π
⌦

f vdx. (20)

In (20) ⌫ is the Poisson’s ratio, v/i = @v/@xi, i = 1,2, and we used the summation convention
of repeated indices. Throughout this section w/n will denote the normal derivative, w/t the
tangential derivative in the counterclockwise ordering of the boundary, and so on. When
no confusion occurs we might also use wn, wt ... As we said, we will concentrate on C

1

elements. But at the end of this section we will give a hint on C
p elements for p � 2.

4.1 C
1-elements

The possibilities of constructing C
1-elements with the VEM approach are almost endless.

To fix the ideas we will recall the approach given in [24,26]. Let P be a generic polygon in
Th . For given integers r � 0, s � 0 and m � �1 we consider the space

Vr ,s,m(P) :=
�
w 2 H

2(P) : w |e 2 Pr (e) andwn |e 2 Ps(e) 8 edge e, �2w 2 Pm in P
 
.
(21)

Clearly, for the above space to have some sense, and for allowing the construction of H
2

spaces on the whole domain ⌦, we need adding some restriction. In the vertices of the
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decompositions we will need our spaces to be continuous with their first derivatives. This
would require to have as degrees of freedom in each P

• (D0) the values of w,w/1 and w/2 at the vertices,

and in practice this will require, in a natural way, that

r � 3, s � 1.

Moreover, we would need to have the traces of w and of w/n to be single-valued on edges.
This will require to take as additional degrees of freedom

• (D1) for r � 4, the moments
π
e

wqr�4ds 8qr�4 2 Pr�4(e), 8e 2 @P,

• (D2) for s � 2, the moments
π
e

w/n qs�2dx 8qs�2 2 Ps�2(e), 8e 2 @P .

Finally we will have as internal degrees of freedom

• (D3) for m � 0, the moments
π
P

wqmdx 8qm 2 Pm.

The smallest space will then correspond to r = 3, s = 1, m = �1, and is an extension
to polygons of the reduced Hsieh–Clough–Tocher composite triangular element (see for
instance, [29]). The VEM space (for a general polygon P) will then be

V(P) :=
�
w 2 H

2(P) : w |e 2 P3(e), wn |e 2 P1(e) 8 edge e, and �2w = 0 in P
 
,

whose degrees of freedom are only the values of w and of its two derivatives at the vertices
of P , that is, (D0). See Fig. 9.

Ww, D

Fig. 9 C
1 VEM, reduced HCT-like

Another example (for r = 3, s = 2, m = �1) is given in Fig. 10; the corresponding
element will have (D0) and (D2) as degrees of freedom and is a sort of VEM counterpart of
the original Hsieh–Clough–Tocher composite triangular element (see again [29]).

In general, the space (21) will contain all polynomials P for

 = min{r, s + 1,m + 4} (⌘ order of precision)

and out of the degrees of freedom (D0), . . . , (D3), (integrating by parts twice) we can compute
an operator ⇧P

 : Vr ,s,m(P) �! P (P) defined on each element by

a
P

⇣
⇧P

 v � v,q
⌘
= 0 8q 2 P (P),

π
@P

⇣
⇧P

 v � v
⌘

q1ds = 0 8q1 2 P1(P).
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The discrete bilinear form, for vh and wh in Vr ,s,m(P), is then defined as in (7)

a
P

h
(vh,wh) := a

P

⇣
⇧P

 vh,⇧
P

 wh

⌘
+ S

P

⇣⇣
I � ⇧P



⌘
vh,

⇣
I � ⇧P



⌘
wh

⌘

with S
P (vh,wh) taken, for instance, as in (8), provided that the dofs (D0)–(D3) are properly

treated in order to scale all of them in the same way. For the treatment of the right-hand side
and for the error estimates we refer to [24,26].

2

Dw,w, Wn

Fig. 10 C
1 VEM, HCT-like

Following a similar path, without any e�ort, and still on general polygons, we can design
a huge variety of methods. See, for instance, Fig. 11, corresponding to the case  = 3 (r = 4,
s = 3, m = �1), where the degrees of freedom are those of Fig. 10 plus the value (at the
midpoint of every edge) of w and of w/nt .

2

nn tDW WWWw,

Fig. 11 C
1 VEM, Quartic w and cubic w/n

If one wants to put as many degrees of freedom as possible on vertices (less numerous
than edges) one can consider the Argyrys-like elements of Figs. 12 and 13.

Comparing with their FEM analogues, we see that we have here some additional internal
degrees of freedom. However, these could be easily eliminated by adapting the Serendip-
ity/Enhancement approach described in Subsection 2.2 for C

0 VEM.

4.2 A Hint on C
p VEM for p � 2

Along the same lines, still for general polygons, we might easily construct C
p elements for

p � 2. Just to give an example, we might consider the elements of Fig. 14 (where we also
indicate the degrees of freedom).
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2Dw, Ww,D nW Moments of order 0 and 1

Fig. 12 C
1 VEM, Quintic w and quartic w/n

2Dw, W Mean valuew,D

Fig. 13 C
1 VEM, Quintic w and cubic w/n

Dw, n nWWW

2

tnn n tCIRCLES: Dw, W SQUARES2

Fig. 14 Examples of C2 elements

In particular, Fig. 14 refers to the local spaces

V(P) :=
�
v 2 H

3(P) : v |e 2 P5(e), vn |e 2 P4(e), vnn |e 2 P3(e) 8e 2 @P, �3v = 0 in P
 
.

Out of the degrees of freedom we can once more compute an operator ⇧P

5 : V(P) !
P5(P) defined byπ
P

⇣
D

3
⇣
⇧P

5 v � v
⌘⌘

: (D3
q5)dx = 0 8q5 2 P5,

π
@P

⇣
⇧P

5 v � v
⌘

q2ds = 0 8q2 2 P2(P).

The discrete bilinear form is then constructed as before as

a
P

h
(vh,wh) := a

P

⇣
⇧P

5 vh,⇧
P

5 wh

⌘
+ S

P

⇣⇣
I � ⇧P

5

⌘
vh,

⇣
I � ⇧P

5

⌘
wh

⌘
vh,wh 2 V(P),

with S
P (vh,wh) taken, for instance, again as in (8).

Remark 4 A family of nonconforming elements for plates was introduced independently in
[2,53], which we refer to for a detailed description.
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Remark 5 As a general consideration, we underline the fact that, in particular for two-
dimensional cases, the construction of Virtual Element spaces is extremely easy: one should
only set the degrees of freedom (for the function and the normal derivatives) on each edge.
The edges being one-dimensional, this is elementary.

Remark 6 On the other side, we must also point the attention to the fact that, so far, the
choice of a convenient stabilization procedure seems here to be less easy than for other cases.
To be more precise: it is not di�cult to construct stabilising bilinear forms that make the
discrete problem well posed. However, in many cases the guidelines for an optimal choice of
the “stabilizing parameters" in front of them, or in front of some individual pieces of them,
is far from clear. Just to make an example, the HCT-like element of Fig. 10 can be easily
stabilised with, essentially, any of the di�erent strategies used for C

0 elements. But this is
not the case for its reduced-HCT-like companion of Fig. 9. In each particular case a suitable
choice of the stabilising parameter can be (relatively) easily found by trial and error, but...
this is not what we like. At a more general level we feel that a novel point of view should
be found, allowing the determination of clear guidelines for the choice of stabilising terms.
Indeed, in our opinion, this is possibly the weakest point of VEM in general, and all new
points of view would be more than welcome!

5 VEM for Stokes and Incompressible Elasticity

5.1 Stokes 2D

We recall (to set the notation) the incompressible Stokes equations for a polygon ⌦ with
homogeneous Dirichlet boundary conditions, and forcing term f 2 (L2(⌦))2:
Find u 2 (H1

0 (⌦))2 and p 2 L
2(⌦) such that:

��u + rp = f in ⌦,
div u = 0 in ⌦. (22)

Setting: V := (H1
0 (⌦))2, Q := L

2
0 (⌦) (= L

2 functions with zero mean value), and

a(u,v) :=
π
⌦
"(u) : "(v)d⌦ 8u,v 2 V, b(v,q) :=

π
⌦

div vqd⌦ 8v 2 V, 8q 2 Q,

where "(v) = (rv + (rv)T )/2 is the symmetric gradient, the variational formulation of the
problem can be written as: Find u 2 V, p 2 Q such that

⇢
a(u,v) + b(v, p) = (f,v) 8v 2 V,
b(u,q) = 0 8q 2 Q.

(23)

Remark 7 From a purely mathematical point of view, as it is well known, the equations in (23)
coincide, up to the aspects related to the material properties, with the ones of incompressible
elasticity in the mixed (u, p). formulation. Hence the title of this section, where, indeed, we
will limit ourselves to the discussion of the Stokes case alone.

Remark 8 For the sake of simplicity we will keep the viscosity coe�cient equal to 1, and
we will stick to the (widely unrealistic) case of homogeneous Dirichlet boundary conditions
on the whole boundary @⌦, as it is (quite often) done in the Mathematical literature.



Finite Elements and Virtual Elements on Classical Meshes 19

Taking a sequence of conforming discretizations of this problem with Vh ⇢ V and
Qh ⇢ Q, and suitable approximations ah and bh of the bilinear forms a and b, respectively,
one can write the discretized version as: Find uh 2 Vh and ph 2 Qh such that⇢

ah(uh,vh) + bh(vh, ph) = (fh,vh) 8vh 2 Vh,
bh(uh,qh) = 0 8qh 2 Qh,

(24)

where, in turn, fh is (if needed) a suitable approximation of f. It is well known that convergence
of the method with optimal error bounds relies on the inf-sup stability condition

9� > 0 such that inf
qh 2Qh

sup
vh 2Vh

b(vh,qh)
kvh kV kqh kQ

� � 8h. (25)

A huge number of di�erent stable pairs pairs (Vh,Qh) satisfying (25) can be found in the
FEM literature. We refer, for simplicity, to [20] and the references therein. Once a stable pair
has been chosen, one can wonder whether the resulting solution uh would satisfy exactly

div uh ⌘ 0 in ⌦, (26)

a condition that would be of considerable help in the mathematical treatment of the discretized
problem, and, most important, would be quite relevant from the physical point of view
(ensuring the exact incompressibility of the discrete solution). Clearly this (for conforming
approximations) will hold if, in every element P of the decomposition, we had that⇢

{uh 2 Vh} and
⇢π

P

div uhqhdx = 0 8qh 2 Qh

��
) {div uh = 0 in P} . (27)

A simple (and rather natural) su�cient condition for (27) is clearly

div{Vh} ✓ Qh

that however, joined with (25), would imply

div{Vh} ⌘ Qh, (28)

a rather stringent requirement, verified only with very few (and somehow rather cumbersome)
choices of discretizations (and in general only for special types of decompositions). Among
the many recent papers on Finite Element discretizations of the problem we mention [27,
28,32,34,39,37,38,40,41,52] and refer especially to the excellent review [47], and to the
references therein.

Let us see how to design divergence-free Virtual Elements on practically arbitrary grids.
We concentrate on the 2D case, and refer to the results in [19].

For the velocity space we look first at the boundary, and we define, for k � 2 and for a
polygon P , the space

Bk (@P) :=
�
v 2 (C0(@P))2 s.t. v |e 2 (Pk (e))2 8 edge e of @P

 
. (29)

Clearly, the dimension of Bk (@P) for a polygon with n edges would be

dimBk (@P) = 2nk .

Then we can define the VEM space for velocities:

Vk (P) :=
�
v 2 (H1(P))2 s.t. v |@P 2 Bk (@P), rot(�v) 2 Pk�3, div v 2 Pk�1

 
, (30)
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while for the pressure we simply take

Qk (P) = Pk�1(P).

The dimension of Vk (P) is then equal to 2nk (dimension of Bk (@P)) plus ⇡k�3, plus
⇡k�1 �1 (since, from Gauss theorem, the mean value of the divergence is determined already
by the boundary values). Then

dimVk (P) = 2nk +
(k � 2)(k � 1)

2
+

k(k + 1)
2

� 1 = 2nk + k
2 � k .

Accordingly, one can show (see [19]) that a set of degrees of freedom for Vk (P) can be taken
as

– the values of v at the n vertices (= 2n dofs),
– the values of v at k � 1 distinct points inside each edge (= 2n(k � 1) dofs),
– the values of

Ø
P

v · x
?

qk�3ds for every qk�3 2 Pk�3,
– the values of k(k + 1)/2 � 1 moments of div v.

The degrees of freedom for Qk , in each element, will be equal to ⇡k�1 internal moments.
It can be shown (see always [19]) that, using the above degrees of freedom, for each

v 2 Vk (P) one can compute, among other things, its divergence (which is a polynomial),
and also compute the operator ⇧"

k
: Vk (P) ! (Pk (P))2 defined by

⇢ Ø
P
"(v � ⇧"

k
v) : "(qk )dx = 0 8qk 2 (Pk )2,Ø

@P
(v � ⇧"

k
v)ds = 0

that, in turn, allows to define, on each element P , a discrete bilinear form:

a
P

h
(u,v) :=

π
P

"
�
⇧"
k
u
�

: "
�
⇧"
k
v
�
dx + S

P
�
u � ⇧"

k
u,v � ⇧"

k
v
�

8u,v 2 Vk (P),

where S
P is again one of the common stabilizing bilinear forms of VEM theory, as for

instance the analogue of the one in (8).
The discrete bilinear form ah will then be obtained by summing the contributions of all

the polygons P . On the other hand, the bilinear form b(v,q) is directly computable, for every
v 2 Vk (P) and q 2 Qk (P), using the degrees of freedom. Finally, for the right-hand side we
use ⇧0

k�2f instead of f, as we did in (9)).
Setting

Vh = {v 2 V : v |P 2 Vk (P) 8P 2 Th},

Qh =

⇢
q

�� q |P 2 Qk (P) 8P 2 Th, and
π
⌦

q = 0
�
,

we have now all the ingredients that define the discrete problem:
Find uh 2 Vh , ph 2 Qh such that

⇢
ah(uh,vh) + b(vh, ph) = (⇧0

k�2f,vh) 8vh 2 Vh,
b(uh,qh) = 0 8qh 2 Qh .

(31)

The following figures show the degrees of freedom for k = 2 and k = 3 on triangles and
quads. The squares correspond to vectorial degrees of freedom (so, they amount to 2 dofs
each).
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Fig. 15 Dofs for k = 2, on triangles, for velocities (left) and pressures (right)

Fig. 16 Dofs for k = 3, on triangles, for velocities (left) and pressures (right)

Fig. 17 Dofs for k = 2, on quads, for velocities (left) and pressures (right)

Fig. 18 Dofs for k = 3, on quads, for velocities (left) and pressures (right)

It is important, in our opinion, to point out once more that, apart from the number n of
edges (and consequently the dimension of Bk ), nothing changes when passing from triangles
to quads. And nothing would change passing to more general polygons.

It is not (at all!) easy, now, to compare VEM with FEM on triangles, due to the abundance
of di�erent Finite Element approaches that appeared in the literature since the 70s. For a
panorama of the di�erent choices we refer again to the recent overview [47] and to the
references therein. In order to show at least one comparison we decided to go for the
(possibly) most well known triangular element, that is the Crouzeix–Raviart element [30].

And indeed, in our opinion, the comparison with the Crouzeix–Raviart pair is particularly
clarifying. We recall that, in more detail, for the Crouzeix–Raviart element the space of
velocities is made, in each triangle, of vector-valued quadratic velocities augmented by two
cubic bubbles (one per component), and the space of pressures is made of piecewise linear
(discontinuous) polynomials. It is well known (see, e.g. [30] or [20]) that the inf-sup property
(25) is verified, while the divergence-free condition (26) does not hold, as the divergence of
the velocity field will come out to be, in each element, a polynomial of degree 2 orthogonal
to all linear polynomials but not necessarily equal to zero. Instead the VEM-pair of Fig. 15,
which exhibits the same number of d.o.f.s of the Crouzeix–Raviart pair, produces a discrete
solution which is exactly divergence-free. Indeed, the VEM velocity space can be thought
of as obtained by adding to (P2)2 two bubble-functions �(i) (i = 1,2) solutions of the local
Stokes problems:
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Find �(i) 2 (H1
0 (P))2 and p

(i) 2 L
2(P) such that⇢

���(i) + rp
(i) = 0,

div �(i) = (x � b)i
(32)

for i = 1,2 where b = (b1, b2) is the barycenter of P .
On the same order of ideas, taking (for super-simplicity) the quadrilateral domain Q ⌘

] � 1,1[⇥] � 1,1[, and again k = 2, we remark first that the space B2 as defined in (29) has
obviously dimension 16, and can be thought of as being the direct sum of

– {P2}2
|@Q (= the traces of (P2)2 on @Q. Note that this includes also the trace of x

2y2 which
actually coincides with the trace of x

2 + y2 � 1 on @Q),
– the space generated (for each component) by the traces of x

2y and of xy2,
whose dimensions are clearly 12 and 4, respectively. The whole space Q2(Q) can be seen as
generated by the spaces above, plus the two velocity fields (x2y2,0) and (0, x2y2) (for a total
number of 18 unknowns, as obvious). Now the space of traces of the VEM Velocity fields
coincides with that of traces of Q2(Q) and has dimension 16 as well. To obtain the VEM
spaces one can

– begin from the 12 vectors in (P2)2 (that belong to both spaces, and that we would never
give up!);

– then add the four vectors that have the same traces as (x2y,0), (0, x2y), (xy2,0), and
(0, xy2), zero divergence, and each component with constant Laplacian.

We have a dimension 16 so far. We can now
– add the two solutions of equations (32), this time on the domain Q.

The final dimension is now 18, in agreement with Fig. 17.

5.2 The Reduced VEM Spaces

An important variant of the VEM spaces for Stokes is given by the reduced VEM spaces
for incompressible fluids. From a purely mathematical point of view it is clear that equation
(22) is just a particular case of a more general “div u = g" with g given in L

2(⌦) with zero
mean value (or with a mean value compatible with the boundary values prescribed for u, if
these are di�erent from zero).

In practice, however, the case of incompressible fluids (where, in other words g ⌘ 0)
occurs quite often in a number of important applications, so that it might deserve an ad hoc

treatment.
When using VEM one can make profit of the property (28) of these spaces, and combine

it with the perfectly incompressible case. This, in other words, will amount to consider, in
each subdomain, instead of (30) the smaller choice

V
r

k
(P) :=

�
v 2 (H1(P))2 s.t. v |@P 2 Bk (@P), rot(�v) 2 Pk�3, div v 2 P0

 
(33)

(whose dimension would just be 2nk + (k � 2)(k � 1)/2), and take Q0(P) = P0(P). Starting
from the local spaces one can then define the global spaces V

r

h
⇢ V, and Q

0
h
= piecewise

constants, in the usual way. We can then consider the reduced problem: find u
r

h
2 V

r

h
and

p
0
h
2 Q

0
h

such that ⇢
ah(ur

h
,vr

h
) + b(vr

h
, p0

h
) = (⇧0

k�2f,vr
h
) 8vh 2 V

r

h
,

b(ur

h
,q0

h
) = 0 8q

0
h
2 Q

0
h
.

(34)
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It is shown in [19] that the velocity u
r

h
, solution of the reduced problem (34), coincides

exactly with the velocity uh , solution of the discretized problem (31), while the pressure p
0
h

is
just the L

2-projection of the pressure ph on piecewise constants. Clearly, if one is interested
only in the velocity field, the problem is solved. If one is also interested in the pressure part,
one can just use the equation (31) and compute ph knowing uh .

In Figs. 15–18, concerning the degrees of freedom in each element, this reduction would
amount to take out all the green dots in the velocity spaces, and all the pressure dots but one.

Considering again the simplest case k = 2, we can perform an analysis of the local
reduced space V

r

2 (P) defined in (33), whose dimension, on triangular polygons, is just 12.
This is equal to the number of P2 pairs in two dimensions, but the VEM space does not
coincide with it. Indeed, the divergence of vectors in (P2)2 is (in general) in P1 while the
divergences of Vr

2 (P) are all constants. Hence the property

(P2)2 ✓ V
r

k
(P)

is clearly lost, although we still contain all pairs of polynomials in (P1)2, and all polynomials
of P2 with constant divergence. Hence the patch test still holds in the form if the solution u

is a polynomial of degree k with constant divergence, then uh = u. Note that this includes
the incompressible case.

Note as well that (still on triangles) (P2)2 and V
r

2 (P) have the same dimension, but in
V
r

2 (P) there are two independent elements not belonging to (P2)2 (the two functions in (32)).
Viceversa, in (P2)2 there are two elements that do not belong to V

r

2 (P), as for instance,

q
1 :=

1
2
((x1 � b1)2,0) and q

2 :=
1
2
(0, (x2 � b2)2),

where again (b1, b2) are the coordinates of the barycenter of P .

Remark 9 Once the reduced problem has been solved (and u
r

h
⌘ uh has been computed),

the full value of the pressure ph can be computed, in each element P , using its local mean
value (equal to p

0
h
) and recovering the linear part (with zero mean value) by taking, in (31),

vh equal to �1 and �2, defined in (32).

The VEM approach followed so far for the Stokes problem in the two-dimensional case
has been extended to the three-dimensional case in [13,14,19], including a study of the
Stokes Complex and the extension to the Navier–Stokes problem.

Remark 10 It is interesting to point out that, at least for the lowest order case k = 2, the
reduced elements in [19], reported here, have the same degrees of freedom of the formulation
in [39] (see also [28]). A step-by-step comparison between the VEM approach presented here
and that in [39] is however more di�cult here than it was in previous situations. Actually, the
only subspace in common between the two approaches, for the velocities, is (P1)2. Hence, in
order to shift from one method to the other we must exchange two subspaces of dimension
six, that in general have no nontrivial elements in common. In particular, the VEM spaces
are all made (inside each element) of smooth functions, whereas the others are piecewise
polynomials on the refined grid but, in general, only C

0 within each element of the coarser
grid.
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6 Hellinger–Reissner Formulation of Linear Elasticity Problems

6.1 The Problem and its Di�culties

Starting, for simplicity, from the 2-dimensional case with homogeneous Dirichlet boundary
conditions, we recall that the mixed (Hellinger–Reissner) formulation of linear elasticity
problems in a domain ⌦ can be formulated as: Find (�,u) in ⌃ ⇥ U such that

div� + f = 0 in ⌦,
� = C("(u)) in ⌦, (35)
u = 0 on @⌦,

where the stress space ⌃ ⌘ H(div;⌦;S) is the space of 2 ⇥ 2 symmetric tensors with
divergence in (L2(⌦))2, the displacement space U is (H1

0 (⌦))2, and the constitutive law is
(still for simplicity) the classical C" := 2µ" + �tr("). With a common notation we also set
D := C�1. Defining the bilinear forms (local and global)

a
P (�,⌧) :=

π
P

D� : ⌧dx 8P and a(�,⌧) :=
’
P

a
P (�,⌧), (36)

b
P (⌧,v) :=

π
P

div ⌧ · vdx 8P and b(⌧,v) :=
’
P

b
P (⌧,v), (37)

the variational formulation of (35) can be written as: find � 2 ⌃ and u 2 U such that
⇢

a(�,⌧) + b(⌧,u) = 0 8⌧ 2 ⌃,
b(�,v) = �(f,v) 8v 2 U.

Choosing suitable finite dimensional subspaces ⌃h ⇢ ⌃ and Uh ⇢ U and possibly some
approximate bilinear forms ah , bh , and forcing term fh , the approximate problem would look
like: find �h 2 ⌃h and uh 2 Uh such that

⇢
ah(�h,⌧h) + bh(⌧h,uh) = 0 8⌧h 2 ⌃h,
bh(�h,vh) = �(fh,vh) 8vh 2 Uh .

(38)

The di�culties in the Finite Element dicretization of this problem come from the combined
targets of

i) getting a symmetric discrete stress tensor,
ii) getting a discrete stress tensor with continuous tractions at interelement boundaries,
iii) getting a stable pair (⌃h,Uh) (meaning that the inf-sup condition holds), and
iv) making the formulation hybridizable, introducing interelement multipliers to force

the continuity of tractions, and eliminating the stress field by static condensation (de
Veubeke style. See also [7]).

Furthermore, it would also be nice to have (at least when the material properties are piecewise
constant)

v) the self-equilibrium property (meaning that if f = 0 in one element, then div�h = 0
there), and

vi) the patch-test of some order k � 1 (that is: if u is, globally, a polynomial of degree  k,
then uh = u and �h = �).
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To our knowledge, in the Finite Element framework all the above properties are almost
impossible to satisfy at the same time (and we are not aware of a successful attempt) sticking
on polynomial spaces in each element. See e.g. [5,8,9,25,27,35,36,38,42–46], and the
references therein, for several important results in this direction. In a sense, the huge amount
of papers that appeared in the last ten years on the subject shows, at the same time, the
relevance and the di�culty of the task. On the other hand, in the VEM framework, allowing
a much wider set of functions in the discrete space, everything is possible (...well..., “almost").
However, even the super-powerful VEM framework starts becoming complicated, and here,
following essentially [11], we will limit our description to the 2-d case, referring to [31] for
the (successful!) treatment of the three-dimensional case.

6.2 The VEM Spaces

Given a polygon P with n edges, we first introduce the space of local infinitesimal rigid body
motions:

RM(P) = {r(x) = a + b(x � xP )? with a 2 R2 and b 2 R}

where xP is the baricenter of P . Introducing also the space

RM
?
k
(P) =

⇢
p 2 (Pk )2 :

π
P

pk · r = 0 8r 2 RM(P)
�
,

we note that, obviously, we can always decompose (Pk )2 as a direct sum

(Pk )2 = RM(P) � RM
?
k
.

For each integer k � 1 and for each polygon P we now introduce the local tensor space
of discretized stresses as

⌃k (P) := {⌧ 2 H(div;⌦;S) s.t. curlcurl(D⌧) = 0,
⌧ · n |e 2 (Pk (e))2 8e 2 @P, div ⌧ 2 (Pk )2

 
.

We recall that D := C�1, and that the curlcurl of a 2⇥2 symmetric tensor z is defined as

curlcurl(z) := (z11)yy � 2(z12)xy + (z22)xx

so that for every (smooth enough) vector v we have curlcurl("(v)) ⌘ 0. Hence the condition
curlcurl(D⌧) = 0 is equivalent to require that ⌧ = C("(v)) for some vector v. A natural
requirement for a stress field.

A tensor ⌧ 2 ⌃k (P) can be individuated by the following degrees of freedom:

for each edge e in @P :
π
e

⌧n · qkds 8qk 2 (Pk (e))2,

in P :
π
P

div ⌧ · qkdx 8qk 2 (RM)?
k
. (39)

Remark 11 In [10] one could find a cheaper variant of the lowest order space, where ⌧ · n is
required to have the normal component (i.e., ⌧nn) linear, and the tangential component (i.e.,
⌧nt ) constant, saving one degree of freedom per edge.



26 F. Brezzi, L.D. Marini

For the approximation of the vector space of displacements U we simply take

Uk (P) := (Pk )2. (40)

From the local spaces ⌃k (P) one can then easily construct the global spaces ⌃(⌦) by using
the local spaces in each element of a decomposition, obviously making the degrees of
freedom on edges single valued, so that the resulting space is a subspace of H(div;⌦;S).
Similarly, from the local spaces (40) one construct the global space Uh for the approximation
of displacements (no continuity requirements are needed here).

Using the degrees of freedom (39) we can now proceed, as we did in the previous
sections, to the construction of a discrete version of the bilinear form a

P (�,⌧) defined in
(36). For this, we note that for every polygon P , and for every ⌧ in ⌃k (P), integrating by
parts we can compute the projection ⇧a

k
⌧ of ⌧ onto the space (Pk )4sym, given by

a
P (⇧a

k
⌧ � ⌧,pk ) = 0 8pk 2 (Pk )4sym.

We can also compute div ⌧, that belongs to (Pk )2. Proceeding as in all previous cases we can
then define on each element P an approximated bilinear form

a
P

h
(�h,⌧h) := a

P
�
⇧a

k
�,⇧a

k
⌧h

�
+ S

P
� �

I � ⇧a

k

�
�h,

�
I � ⇧a

k

�
⌧h

�
8�h,⌧h 2 ⌃k (P),

where again the bilinear form S is a stabilizing term (to fix ideas, of the dofi-dofi type). Then
one gets the global bilinear form ah(·, ·) summing over the elements. On the other hand, no
projection is needed for the second equation of (38) since both the divergence of tensors in
⌃h and the elements of Uh are polynomials.

We point out that VEM spaces enjoy, at the same time, all these useful features:

A - They pass the patch test (of order k).
B - They are easily hybridizable (having no vertex degrees of freedom).
C - The stress field is symmetric (equilibrium of momentums).
D - If the load f 2 (Pk )2, then div�h + f = 0 (equilibrium of forces).
E - The definition, essentially, does not depend on the shape of the elements (triangles,

quads, polygons, polyhedra etc.)

Normal Stress (2 dofs) Displacements (2 dofs)Divergence moments vs RT−ort (3 dofs)

Fig. 19 Hellinger-Reissner Dofs for k = 1, VEM [11]

As we already did in the previous section (on Stokes problem), we will not enter a detailed
comparison between VEM and di�erent types of FEM. Among other things, this is also due
to the di�culty to pick-up one or two typical Finite Element approaches for the comparison.
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Normal Stress (2 dofs) Displacements (2 dofs)Stress Average (3 dofs) Stress values (3 dofs)

Fig. 20 Hellinger-Reissner Dofs for k = 1, FEM Arnold-Winther [5]

Actually, by now, we have a very wide variety of FEM to deal with the present problem.
To our knowledge, the paper [38] (using rational functions together with polynomials) is
the one that best approaches, on triangles, the basic features of VEM. One might consider
that rational functions are used there, instead of solutions of some PDE system (as we do
with VEM) as an alternative way to escape the polynomial trap. In our figures 19 and 20 we
decided however to compare the degrees of freedom of VEM with those of the most classical
(and possibly best known) [5], hence avoiding a description of the FEM spaces used in more
recent approaches. We do not pretend this to be exhaustive in any sense. It is not, BY FAR.
We refer the interested readers to the FEM and VEM papers already cited here.
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