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We consider the discretization of a boundary value problem for a general linear second-
order elliptic operator with smooth coefficients using the Virtual Element approach. As
in 34 the problem is supposed to have a unique solution, but the associated bilinear

form is not supposed to be coercive. Contrary to what was previously done for Virtual

Element Methods (as for instance in 5), we use here, in a systematic way, the L2-
projection operators as designed in 1. In particular, the present method does not reduce

to the original Virtual Element Method of 5 for simpler problems as the classical Laplace
operator (apart from the lowest order cases). Numerical experiments show the accuracy

and the robustness of the method, and they show as well that a simple-minded extension

of the method in 5 to the case of variable coefficients produces, in general, sub-optimal
results.
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1. Introduction

The aim of this paper is to design and analyze the use of Virtual Element Methods

(in short, VEM) for the approximate solution of general linear second order elliptic

problems in two dimensions. In particular we shall deal with diffusion-convection-

reaction problems with variable coefficients.

For the simpler case of Laplace operator in two dimensions the Virtual Element

Method in the primal form (see 5) could be seen essentially as a re-formulation

(in a simpler, more elegant and easier to analyze manner) of the Mimetic Finite

Difference method as presented in 14 for the lowest order case, and extended to

arbitrary order in 9.

Actually, in more recent times both Mimetic Finite Differences and Virtual

Element Methods have been growing very fast, allowing a much wider type of

discretizations (arbitrary degree, arbitrary continuity, nonconforming or discon-

tinuous variants) as well as different types of applications. See in particular, for

Mimetic Finite Differences 15, and mostly 10,27 (and the references therein), and
1,2,11,6,7,16,17,26,28,30for Virtual Elements.

We point out, on the other hand, that the use of polygonal and polyhedral

meshes for the approximate solution of Partial Differential Equations, but also for

several other branches of Scientific Computing, is surely not reduced to Mimetic

Finite Differences or Virtual Element Methods. Indeed, polygonal (and then poly-

hedral) decompositions have already a long story, and often are based on ap-

proaches that are substantially different from MFDs or VEMs. We recall for instance
3,4,12,13,19,21,24,25,29,31,32,33,35.

Most of these methods use trial and test functions of a rather complicate nature,

that often could be computed (and integrated) only in some approximate way. The

same is (even more) true for Virtual Element Methods where trial and test functions

are solutions of PDE problems inside each element. However, these local problems

are not solved, not even in an approximate way, and the general idea is (roughly

speaking) to try to compute exactly the values of the local (stiffness) bilinear form

when one of the two entries is of polynomial type, and then stabilize the rest, in a

rather brutal way. Keeping this in mind, it is clear that for Virtual Element Methods

the extension from the constant coefficients to the variable ones is less trivial than for

other methods, and in particular, simple minded approaches to variable coefficients

can lead to a loss of optimality, especially for higher order methods, as we show

with numerical evidence at the end of this paper.

In more recent times several other methods for polygonal decompositions have

been introduced in which the trial and test functions are pairs of polynomial (in-

stead of a single non-polynomial function). See 18,19,20,22,36. Though different, these

methods surely have many points in common with each other, and with Virtual

Element Methods. The main difference is that in the Virtual Element Methods we

have indeed, on each element, both boundary and internal degrees of freedom, but

they refer to the same function (as it is normal for traditional Finite Element Meth-
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ods), that however is not a polynomial, while in these other methods we have two

different functions that are both polynomials.

However we could consider that the internal degrees of freedom refer to a dif-

ferent (polynomial) function, that has the same moments as the VEM one (as it is

done for instance in Mimetic Finite Differences, where the degrees of freedom are

treated more as co-chains rather than values attached to a specific function). In

this respect, the relationships among all these methods definitely deserves a deeper

analysis.

The most recent Virtual Element approach (already hinted in 1 for dealing with

Laplace operator in three dimensions and later extended to mixed formulations in 7)

consists in a tricky way to make the L2-projection operator computable in an exact

way starting from the degrees of freedom, with the idea to use, as often as possible,

the L2-projection of test and trial functions in place of the functions themselves.

A question that often arises when presenting Virtual Element approximations

is: ”Since the approximate solution is not explicitly known inside the elements, how

can it be represented? And/or how can we compute its value at points of interest

that are internal to elements?” What we suggest is simply to use the L2−projection

of the VEM-solution onto piecewise polynomials of degree k. In Section 6 we provide

numerical results showing the general behavior of the error, and also the error in

some internal point following this path.

An outline of the paper is as follows. After stating the problem and its formal

adjoint in Section 2, we recall in Section 3 the variational formulation. Then, in

Section 4 we introduce the Virtual Element approximation. Section 5 is devoted to

prove optimal error estimates in H1 and in L2, given in Theorem 5.1 and Theorem

5.2, respectively. Finally, numerical results are presented in Section 6.

Throughout the paper we will use the standard notation (· , ·) or (· , ·)0 to in-

dicate the L2 scalar product. Whenever confusion may arise, we will underline the

domain explicitly; for instance (· , ·)0,E will denote the L2(E) scalar product on a

generic polygon E. For every geometrical object O and for every integer k ≥ −1 we

denote by Pk(O) the set of polynomials of degree ≤ k on O, with P−1(O) ≡ {0}, as

usual. Whenever no confusion may arise, we will simply use Pk, without declaring

explicitly the domain.

2. The problem and the adjoint problem

Let Ω ⊂ R2 be a bounded convex polygonal domain with boundary Γ, let κ and

γ be smooth functions Ω → R with κ(x) ≥ κ0 > 0 for all x ∈ Ω, and let b be

a smooth vector valued function Ω → R2. In the sequel κmax, γmax and bmax will

denote the (L∞−like) norm of the coefficients κ, γ,b, respectively.

Assume that the problem{
L p := div(−κ(x)∇p+ b(x)p) + γ(x) p = f(x) in Ω

p = 0 on Γ
(2.1)



October 7, 2015 11:24 WSPC/INSTRUCTION FILE advdiff-22-09-15

4 Beirão da Veiga, Brezzi, Marini, Russo

is solvable for any f ∈ H−1(Ω), and that the estimates

‖p‖1,Ω ≤ C‖f‖−1,Ω (2.2)

and

‖p‖2,Ω ≤ C‖f‖0,Ω (2.3)

hold with a constant C independent of f . We point out that these assumptions

imply, among other things, that existence and uniqueness hold, as well, for the

(formal) adjoint operator L∗ given by

L∗p := div(−κ(x)∇p)− b(x) · ∇p+ γ(x) p. (2.4)

Moreover, for every g ∈ L2(Ω) there exists a unique ϕ ∈ H2(Ω) ∩H1
0 (Ω) such that

L∗ϕ = g, and

‖ϕ‖2,Ω ≤ C∗‖g‖0,Ω (2.5)

for a constant C∗ independent of g. As we shall see, the 2-regularity (2.3) and (2.5)

is not strictly necessary in order to get the results of the present work, and an

s-regularity with s > 1 would be sufficient. Here however we are not interested in

minimizing the regularity assumptions.

We also point out that the choice of having a scalar diffusion coefficient was done

just for simplicity. Having a full diffusion tensor would not change the analysis in

a substantial way. Actually, in the numerical results presented in Section 6 a full

tensor is used.

3. Variational formulation

Set:

a(p, q) :=

∫
Ω

κ∇p · ∇q dx, b(p, q) := −
∫

Ω

p(b · ∇q) dx, c(p, q) :=

∫
Ω

γp q dx

(3.1)

and define

B(p, q) := a(p, q) + b(p, q) + c(p, q). (3.2)

The variational formulation of problem (2.1) is{
Find p ∈ H1

0 (Ω) such that

B(p, q) = (f, q) ∀q ∈ H1
0 (Ω).

(3.3)

Remark 3.1. It is immediate to check that our assumptions on the coefficients

imply that the bilinear form B(·, ·) verifies

B(p, q) ≤M‖p‖1‖q‖1, p, q ∈ H1(Ω) (3.4)

and hence

‖Lp‖−1 = sup
q∈H1

0

< Lp, q >

‖q‖1
= sup
q∈H1

0

B(p, q)

‖q‖1
≤M‖p‖1.
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It is also easy to check that this, together with (2.2), implies that

sup
q∈H1

0

B(p, q)

‖q‖1
≥ CB‖p‖1 ∀p ∈ H1

0 (Ω), (3.5)

for some constant CB > 0 independent of p. On the other hand it is also well known

that (3.4) and (3.5) imply existence and uniqueness of the solution of problem (3.3).

4. VEM approximation

In the present section we introduce the virtual element discretization of (3.3).

4.1. The Virtual Element space

Let Th be a decomposition of Ω into star-shaped polygons E, and let Eh be the set

of edges e of Th.

Remark 4.1. To be precise, we assume that (i) every element E is star-shaped

with respect to every point of a disk Dρ of radius ρEhE (where hE is the diameter

of E), and (ii) that every edge e of E has lenght |e| ≥ ρEhE . The first assumption

could be relaxed in order to allow unions of star-shaped elements and the second

one could be essentially avoided; since such technical generalizations are beyond the

scope of the present work, we prefer to keep the simpler conditions stated above.

When considering a sequence of decompositions {Th}h we will obviously assume

ρE ≥ ρ0 > 0 for some ρ0 independent of E and of the decomposition. As usual, h

will denote the maximum diameter of the elements of Th.

Following 5,1, for every integer k ≥ 1 and for every element E we start by

defining a preliminary local space:

Q̃kh(E) := {q ∈ H1(E) : q|e ∈ Pk(e) ∀e ∈ ∂E, ∆q ∈ Pk(E)}. (4.1)

On Q̃kh(E) the following set of linear operators are well defined. For all q ∈ Q̃kh(E):

(D1) the values q(Vi) at the vertices Vi of E,

and for k ≥ 2

(D2) the edge moments
∫
e
q pk−2 ds, pk−2 ∈ Pk−2(e), on each edge e of E,

(D3) the internal moments
∫
E
q pk−2 dx, pk−2 ∈ Pk−2(E).

We point out that for each element E and for all k the operators D1–D3 satisfy the

following property:

{q ∈ Pk(E)} and {Di(q) = 0, i = 1, 2, 3} imply {q = 0}. (4.2)

Property (4.2) implies that on each element E we can easily construct a projection

operator from Q̃kh to Pk that depends only on D1–D3 and is explicitly computable

starting from them. Let us see how. Let nV be the number of vertices of E, and let

nD := nV k + k(k − 1)/2 (4.3)
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be the “cardinality” of D1–D3 (with obvious meaning). Consider the mapping from

Q̃kh(E) to RnD defined by Dq := (D1–D3)(q), and choose a bilinear symmetric

positive form G on RnD ×RnD (for instance, the Euclidean scalar product on RnD ).

For every q ∈ Q̃kh(E) we define ΠGk q ∈ Pk as the unique solution of

G(Dq −DΠGk q,Dz) = 0 ∀ z ∈ Pk. (4.4)

It is obvious that ΠGk qk ≡ qk for every qk ∈ Pk, and also that ΠGk q depends only on

the values of D1q, D2q, and D3q. It can be rather easily proved that every projection

operator Q̃kh(E)→ RnD depending only on the values of D1–D3 can be obtained by

(4.4) for a suitable choice of the bilinear form G. It is also obvious that collecting

all the local projection operators we can construct every global projection operator

from Q̃kh to the space of piecewise Pk functions.

Here however (both for historical reasons and for convenience of computation)

we will focus our attention on a particular choice of projection operator. For this we

recall from 5,1 the definition of the operator Π∇k : for any q ∈ H1
0 (Ω), the function

Π∇k q on each element E is a polynomial in Pk(E), defined by

(∇(Π∇k q − q),∇pk)0,E = 0 and

∫
∂E

(Π∇k q − q)ds = 0 ∀pk ∈ Pk. (4.5)

This operator is well defined on Q̃kh(E) and, most important, for all q ∈ Q̃kh(E)

the polynomial Π∇k q can be computed using only the values of the operators (D)

calculated on q. This follows easily with an integration by parts, see for instance 5.

We are now ready to introduce our local Virtual space

Qkh(E) := {q ∈ Q̃kh(E) :

∫
E

q pk dx =

∫
E

(Π∇k q)pk dx ∀pk ∈ (Pk/Pk−2(E))}, (4.6)

where the space
(
Pk/Pk−2(E)

)
denotes the polynomials in Pk(E) that are L2(E)

orthogonal to Pk−2(E). The corresponding global space is:

Qkh := {q ∈ H1
0 (Ω) : q|E ∈ Qkh(E) ∀E ∈ Th}. (4.7)

Let now Π0
k denote the L2− projection onto Pk, defined locally, as usual, by

(q −Π0
kq, pk)0,E = 0 ∀pk ∈ Pk. (4.8)

For simplicity of notation, in the following we will denote by the same symbol also

the L2− projection of vector valued functions onto the polynomial space [Pk]2.

We note that it can be proved, see again 5,1 that the set of linear operators (D)

are a set of degrees of freedom for the virtual space Qkh(E).

Clearly the degrees of freedom (D) define an interpolation operator that asso-

ciates to each smooth enough function ϕ its interpolant ϕI ∈ Qkh(E) that shares

with ϕ the values of the degrees of freedom. Moreover, the virtual space Qkh(E)

satisfies the following four properties:

• Pk(E) ⊆ Qkh(E) (trivial to check);
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• for all q ∈ Qkh(E), the function Π∇k q can be explicitly computed from the

degrees of freedom (D) of q (see 5,1);

• for all q ∈ Qkh(E), the function Π0
kq can be explicitly computed from the

degrees of freedom (D) of q (see 1);

• for all q ∈ Qkh(E), the vector function Π0
k−1∇q can be explicitly computed

from the degrees of freedom (D) of q (see below).

While the second and third properties above can be found in the literature, and

thus are not detailed here, we need to spend some words on the last one. In order

to compute Π0
k−1∇q, for all E ∈ Th we must be able to calculate∫

E

∇q · pk−1 dx ∀pk−1 ∈ [Pk−1(E)]2.

An integration by parts, denoting by n the outward unit normal to the element

boundary ∂E, gives∫
E

∇q · pk−1 dx = −
∫
E

q div(pk−1) dx+

∫
∂E

q (pk−1 · n) ds.

The first term in the right hand side above clearly depends only on the moments of

q appearing in (D3). The second term can also be computed since q is a polynomial

of degree k on each edge and therefore q|∂E is uniquely determined by the values of

(D1) and (D2). Needless to say, all the above properties extend in an obvious way

to the global space (4.7). In particular, we point out that, for a smooth function

ϕ ∈ H1
0 (Ω), its global interpolant ϕI is in Qkh.

We end this section by showing some simple bounds on the operator Π∇k . Ap-

plying (4.5) for pk = Π∇k q we have

‖∇Π∇k q‖20,E = (∇q,∇Π∇k q)0,E ≤ ‖∇q‖0,E ‖∇Π∇k q‖0,E

giving immediately

‖∇Π∇k q‖0,E ≤ ‖∇q‖0,E . (4.9)

Moreover, always from the definition (4.5),

(∇(q −Π∇k q),∇(q −Π∇k q))0,E = (∇(q −Π∇k q),∇q)0,E ≤ |q −Π∇k q|1,E |∇q|0,E

that immediately gives

|q −Π∇k q|1,E ≤ |q|1,E . (4.10)

Finally, using again the definition (4.5) we have

‖∇(q−Π∇k q)‖20,E = (∇(q−Π∇k q),∇(q−Π0
kq))0,E ≤ ‖∇(q−Π∇k q)‖0,E‖∇(q−Π0

kq)‖0,E ,

giving

‖∇(q −Π∇k q)‖0,E ≤ ‖∇(q −Π0
kq)‖0,E . (4.11)
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4.2. The discrete problem

We now introduce the discrete bilinear forms that will be used in the method.

Since we will mostly work on a generic element E, we will denote by

aE(·, ·), bE(·, ·), cE(·, ·), and BE(·, ·) the restriction to E of the corresponding bi-

linear forms defined in (3.1)-(3.2). Let SE(p, q) be a symmetric bilinear form on

Qkh(E) × Qkh(E) that scales like aE(·, ·) on the kernel of Π∇k . More precisely, we

assume that ∃α∗, α∗ independent of h with 0 < α∗ ≤ α∗ such that

α∗a
E(qh, qh) ≤ SE(qh, qh) ≤ α∗aE(qh, qh) ∀qh ∈ Qkh(E) with Π∇k qh = 0. (4.12)

Examples on how to build the bilinear form above can be found in 5,8. Note that, due

to the symmetry of SE , this implies, for all ph, qh ∈ Qkh(E) with Π∇k ph = Π∇k qh = 0,

SE(ph, qh) ≤ (SE(ph, ph))1/2(SE(qh, qh))1/2 ≤ α∗(aE(ph, ph))1/2(aE(qh, qh))1/2.

(4.13)

We can now define, on each element E ∈ Th and for every p, q in Qkh(E), the local

forms and loading term:

aEh (p, q) :=

∫
E

κ[Π0
k−1∇p] · [Π0

k−1∇q] dx+ SE((I −Π∇k )p, (I −Π∇k )q)

bEh (p, q) := −
∫
E

[Π0
k−1p] [b ·Π0

k−1∇q] dx,

cEh (p, q) :=

∫
E

γ[Π0
k−1p] [Π0

k−1q] dx, (fh, q)E :=

∫
E

f Π0
k−1q dx,

BEh (p, q) := aEh (p, q) + bEh (p, q) + cEh (p, q).

(4.14)

We just recall that, since Π∇k is a projection, then

SE((I −Π∇k )pk, (I −Π∇k )q) = 0 ∀pk ∈ Pk, ∀q ∈ Qkh(E), (4.15)

and thus, since SE is symmetric, the SE term will vanish whenever one of the two

entries of aEh (·, ·) is a polynomial in Pk.

Then we set for all p, q ∈ Qkh

ah(p, q) :=
∑
E

aEh (p, q), bh(p, q) :=
∑
E

bEh (p, q),

ch(p, q) :=
∑
E

cEh (p, q), (fh, q) :=
∑
E

(fh, q)E ,

and

Bh(p, q) := ah(p, q) + bh(p, q) + ch(p, q) =
∑
E

BEh (p, q). (4.16)

The approximate problem is:{
Find ph ∈ Qkh such that

Bh(ph, q) = (fh, q) ∀q ∈ Qkh.
(4.17)
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Remark 4.2. The bilinear forms bEh and cEh in (4.14) are well defined for all p, q ∈
H1(E), as well as the global forms bh and ch, which are well defined on the whole

H1
0 (Ω). This does not hold for aEh , due to the presence of the stabilizing term SE

that is defined only on Qkh(E).

Remark 4.3. We recall that the choice indicated in 5 would have suggested to

define

aEh (p, q) :=

∫
E

κ[∇Π∇k p] · [∇Π∇k q] dx+ SE((I −Π∇k )p, (I −Π∇k )q). (4.18)

Actually, it can be easily seen that for k = 1 this coincides with our choice (4.14).

This is not the case for k ≥ 2. In particular, a deeper analysis shows heavy losses in

the order of convergence for k ≥ 3. In Section 6 we provide an example for k = 4.

On the other hand, it can be shown that if κ∇p happens to be a gradient the choice

(4.18) does work.

5. Error estimates

In the present section we derive error estimates for the proposed method.

5.1. Preliminary results

We now present some preliminary results useful in the sequel. We start by the follow-

ing approximation lemma, that mainly comes from the mesh regularity assumptions

in Remark 4.1 and standard approximation results on polygonal domains (see for

instance 5,30).

Here and in the sequel C will denote a generic positive constant independent of

h, with different meaning in different occurrencies, and generally depending on the

coefficients of the operator L. Whenever needed to better follow the steps of the

proofs, for a smooth scalar or vector-valued function ℵ, we shall use Cℵ to denote a

constant depending on ℵ and possibly on its derivatives up to the needed order.

Lemma 5.1. There exists a positive constant C = C(ρ0, k) such that, for all E in

Th and all smooth enough functions ϕ defined on E, it holds

‖ϕ−Π0
kϕ‖m,E ≤ Chs−mE |ϕ|s,E m, s ∈ N, m ≤ s ≤ k + 1,

‖ϕ−Π∇k ϕ‖m,E ≤ Chs−mE |ϕ|s,E , m, s ∈ N, m ≤ s ≤ k + 1, s ≥ 1,

‖ϕ− ϕI‖m,E ≤ Chs−mE |ϕ|s,E , m, s ∈ N, m ≤ s ≤ k + 1, s ≥ 2.

We also have the following continuity lemma.

Lemma 5.2. The bilinear form Bh(·, ·) is continuous in Qkh ×Qkh, that is,

Bh(p, q) ≤ Cκ,b,γ‖p‖1‖q‖1 p, q ∈ Qkh, (5.1)

with Cκ,b,γ a positive constant depending on κ,b, γ but independent of h.
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Proof. The continuity of bh and ch is obvious, and actually holds on the whole

H1
0 (Ω) space. We have

bh(p, q) ≤ bmax‖p‖0|q|1, ch(p, q) ≤ γmax‖p‖0‖q‖0, p, q ∈ H1
0 (Ω). (5.2)

The continuity of ah is proved upon observing that, thanks to (4.13) and (4.10),

SE((I −Π∇k )p, (I −Π∇k )q)) ≤ α∗κmax|p−Π∇k p|1,E |q −Π∇k q|1,E
≤ α∗κmax|p|1,E |q|1,E .

(5.3)

Thus:

ah(p, q) ≤ (1 + α∗)κmax|p|1|q|1 p, q ∈ Qkh, (5.4)

and the result follows.

In many occasions we will need to estimate the difference between continuous

and discrete bilinear forms. This is done once and for all in the following preliminary

Lemma.

Lemma 5.3. Let E ∈ Th, let µ be a smooth function on E, and let p, q denote

smooth scalar or vector-valued functions on E. For a generic ϕ ∈ L2(E) (or in

(L2(E))2) we define

EkE(ϕ) := ‖ϕ−Π0
kϕ‖0,E . (5.5)

Then we have the estimate:

(µp, q)0,E − (µΠ0
kp,Π

0
kq)0,E ≤ EkE(µp)EkE(q) + EkE(µq)EkE(p) +CµEkE(p)EkE(q), (5.6)

where Cµ is a constant depending on µ.

Proof. For simplifying the notation we will set p := Π0
kp, q := Π0

kq. By adding

and subtracting terms, and by the definition of projection we have

(µp, q)0,E−(µp, q)0,E = (µp, q − q)0,E + (p− p, µq)0,E

= (µp− µp, q − q)0,E + (p− p, µq − µq)0,E

= (µp− µp, q − q)0,E + (p− p, µq − µq + µq − µq)0,E

= (µp− µp, q − q)0,E + (p− p, µq − µq)0,E − (p− p, µ(q − q))0,E ,
(5.7)

and the result follows by Cauchy-Schwarz inequality with Cµ = ‖µ‖∞.

The following result follows immediately by a direct application of Lemma 5.3.

Lemma 5.4. For all E ∈ Th it holds

aEh (p, q)−aE(p, q) ≤ Ek−1
E (κ∇p)Ek−1

E (∇q) + Ek−1
E (κ∇q)Ek−1

E (∇p)
+ CκEk−1

E (∇p)Ek−1
E (∇q)

+ SE((I −Π∇k )p, (I −Π∇k )q)) ∀p, q ∈ Qkh(E),

(5.8)
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bEh (p, q)−bE(p, q) ≤ Ek−1
E (b · ∇q)Ek−1

E (p) + Ek−1
E (∇q)Ek−1

E (bp)

+ CbEk−1
E (∇q)Ek−1

E (p) ∀p, q ∈ H1(E),
(5.9)

cEh (p, q)−cE(p, q) ≤ Ek−1
E (γp)Ek−1

E (q) + Ek−1
E (γq)Ek−1

E (p)

+ CγEk−1
E (p)Ek−1

E (q) ∀p, q ∈ H1(E).
(5.10)

In the next Lemma we evaluate the consistency error.

Lemma 5.5 (consistency). For all p sufficiently regular and for all qh ∈ Qkh it

holds

BE(Π0
kp, qh)−BEh (Π0

kp, qh) ≤ Cκ,b,γhkE‖p‖k+1,E‖qh‖1,E ∀E ∈ Th. (5.11)

Proof. From the definition of BE and BEh we have

BE(Π0
kp, qh)−BEh (Π0

kp, qh) = aE(Π0
kp, qh)− aEh (Π0

kp, qh)

+ bE(Π0
kp, qh)− bEh (Π0

kp, qh) + cE(Π0
kp, qh)− cEh (Π0

kp, qh).
(5.12)

We first observe that when p ∈ Pk(E), then obviously we have Π0
k p ≡ p,

Π0
k−1∇p ≡ ∇p, and then by (4.15) the term containing SE vanishes. Therefore,

a direct application of (5.8) implies

aEh (Π0
kp, qh)− aE(Π0

kp, qh) ≤ Ek−1
E (κ∇Π0

kp) Ek−1
E (∇qh), (5.13)

for all qh ∈ Qkh(E). The first factor in the right-hand side of (5.13) can be easily

bounded by

Ek−1
E (κ∇Π0

kp) = ‖κ∇Π0
kp−Π0

k−1(κ∇Π0
kp)‖0,E ≤ ‖κ∇Π0

kp−Π0
k−1(κ∇p)‖0,E

≤ ‖κ∇Π0
kp− κ∇p‖0,E + ‖κ∇p−Π0

k−1(κ∇p)‖0,E
≤ C hkE(κmax|p|k+1,E + |κ∇p|k,E) ≤ CκhkE‖p‖k+1,E ,

(5.14)

and the second factor can by simply bounded by ‖qh‖1,E . Thus,

aEh (Π0
kp, qh)− aE(Π0

kp, qh) ≤ CκhkE‖p‖k+1,E‖qh‖1,E . (5.15)

With similar arguments we have, for instance,

Ek−1
E (bΠ0

kp) ≤ C(hk+1
E bmax|p|k+1,E + hkE |bp|k,E) ≤ Cbh

k
E‖p‖k+1,E ,

Ek−1
E (γΠ0

kp) ≤ C(hk+1
E γmax|p|k+1,E + hkE |γp|k,E) ≤ CγhkE‖p‖k+1,E .

(5.16)

Consequently,

bEh (Π0
kp, qh)− bE(Π0

kp, qh) ≤ Cbh
k
E‖p‖k+1,E‖qh‖1,E ,

cEh (Π0
kp, qh)− cE(Π0

kp, qh) ≤ CγhkE‖p‖k+1,E‖qh‖1,E .
(5.17)

The proof follows by inserting (5.15) and (5.17) in (5.12).

Remark 5.1. We point out that (5.11) holds for a generic qh ∈ Qkh, for which only

H1 regularity can be used. If for instance qh = qI , that is, qh is the interpolate of
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a more regular function, (5.11) can be improved. Indeed, looking e.g. at (5.13) we

would have

Ek−1
E (∇qI) = ‖∇qI −Π0

k−1∇qI‖0,E ≤ ‖∇qI −Π0
k−1∇q‖0,E

≤ ‖∇(qI − q)‖0,E + ‖∇q −Π0
k−1∇q‖0,E ≤ C h‖q‖2,E ,

(5.18)

and in (5.11) we would gain an extra power of h:

BE(Π0
kp, qI)−BEh (Π0

kp, qI) ≤ Cκ,b,γhk+1
E ‖p‖k+1,E‖q‖2,E . (5.19)

Before going to study the error estimates for our problem, we have to prove a

final technical Lemma.

Lemma 5.6. For every q∗ ∈ H1
0 (Ω) there exists a q∗h ∈ Qkh such that

ah(q∗h, qh) = a(q∗, qh) ∀ qh ∈ Qkh. (5.20)

Moreover, there exists a constant C, independent of h, such that

h‖q∗ − q∗h‖1,Ω + ‖q∗ − q∗h‖0,Ω ≤ C h ‖q∗‖1,Ω. (5.21)

Proof. We first remark that, by definition of projection, we have

‖∇q −Π0
k−1∇q‖0,E ≤ ‖∇q −∇Π∇k q‖0,E , (5.22)

since ∇Π∇k q is a (vector) polynomial of degree ≤ k − 1. Hence, for q ∈ Qkh and for

every integer k ≥ 1:

ah(q, q) ≥ C
∑
E

(
‖Π0

k−1∇q‖20,E + ‖(I −Π0
k−1)∇q‖20,E)

)
≥ C|q|21, (5.23)

and this immediately implies that (5.20) has a unique solution, and that, using

(5.4), we also have ‖q∗h‖1 ≤ C ‖q∗‖1. In order to show the second part of (5.21) we

shall use duality arguments. Let ψ ∈ H2(Ω) ∩H1
0 (Ω) be the solution of

a(q, ψ) = (q∗ − q∗h, q)0,Ω ∀q ∈ H1
0 (Ω), (5.24)

and let ψI ∈ Qkh be its interpolant, for which it holds

‖ψ − ψI‖1 ≤ Ch|ψ|2 ≤ C h ‖q∗ − q∗h‖0. (5.25)

We have easily that, for every k ≥ 0 (and obvious notation for Ek)

Ek(∇ψI) ≤ E0(∇ψI) ≤ E0(∇(ψI − ψ)) + E0(∇ψ) ≤ C h‖ψ‖2 ≤ C h‖q∗ − q∗h‖0,

and similarly

Ek(κ∇ψI) ≤ E0(κ∇ψI) ≤ Cκ h‖q∗ − q∗h‖0.

By recalling (4.13) and the definition of the projectors, then using standard approx-

imation estimates, we easily get

SE((I −Π∇k )q∗h, (I −Π∇k )ψI)) ≤ α∗κmax‖∇q∗h −∇Π∇k q
∗
h‖0,E‖∇ψI −∇Π∇k ψI‖0,E

≤ α∗κmax|q∗h|1,E‖∇ψI −∇Π∇k ψ‖0,E
≤ α∗κmax|q∗h|1,E(‖∇(ψI − ψ)‖0,E + ‖∇(ψ −Π∇k ψ)‖0,E)

≤ C hE |q∗|1,E |ψ|2,E .
(5.26)
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Summation on the elements and (5.25) give∑
E∈Th

SE((I −Π∇k )q∗h, (I −Π∇k )ψI)) ≤ C h |q∗|1‖q∗ − q∗h‖0. (5.27)

On the other hand, both Ek(∇q∗h) and Ek(κ∇q∗h) are just bounded by, say, Cκ‖q∗‖1.

Then, using (5.24), (5.20), and (5.8) (with (5.27) and (5.18)) we obtain

‖q∗ − q∗h‖20 = a(q∗ − q∗h, ψ) = a(q∗ − q∗h, ψ − ψI) + a(q∗ − q∗h, ψI)
= a(q∗ − q∗h, ψ − ψI) + ah(q∗h, ψI)− a(q∗h, ψI)

≤ Cκ ‖q∗ − q∗h‖1 ‖ψ − ψI‖1 + Cκ‖q∗‖1 h ‖q∗ − q∗h‖0,
(5.28)

and the result follows.

5.2. H1 Estimate

We have the following discrete stability lemma.

Lemma 5.7. The bilinear form Bh(·, ·) satisfies the following condition (discrete

counterpart of (3.5)): there exists an h0 > 0 and a constant CB such that, for all

h < h0:

sup
qh∈Qkh

Bh(ph, qh)

‖qh‖1
≥ CB‖ph‖1 ∀ ph ∈ Qkh. (5.29)

Proof. In order to prove (5.29) we follow Schatz 34. For ph ∈ Qkh, from (3.5) we

have

∃q∗ ∈ H1
0 (Ω) such that

B(ph, q
∗)

‖q∗‖1
≥ CB‖ph‖1. (5.30)

Thanks to Lemma 5.6, the problem

Find q∗h ∈ Qkh such that ah(q∗h, vh) = a(q∗, vh) ∀vh ∈ Qkh (5.31)

has a unique solution, that satisfies

‖q∗h‖1 ≤ C‖q∗‖1, and ‖q∗ − q∗h‖0,Ω ≤ C h‖q∗‖1. (5.32)

Then,

Bh(ph, q
∗
h) = ah(ph, q

∗
h) + bh(ph, q

∗
h) + ch(ph, q

∗
h)

= a(ph, q
∗) + bh(ph, q

∗
h)− b(ph, q∗) + ch(ph, q

∗
h)− c(ph, q∗)

+ b(ph, q
∗) + c(ph, q

∗)

= B(ph, q
∗) + bh(ph, q

∗
h)− b(ph, q∗) + ch(ph, q

∗
h)− c(ph, q∗)

= B(ph, q
∗) + b(ph, q

∗
h − q∗) + bh(ph, q

∗
h)− b(ph, q∗h)

+ ch(ph, q
∗
h − q∗) + ch(ph, q

∗)− c(ph, q∗).

(5.33)

From (5.32) and (5.2) we have

ch(ph, q
∗
h − q∗) ≤ γmaxh‖ph‖0‖q∗‖1, (5.34)
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while an integration by parts and again (5.32) yield

b(ph, q
∗
h − q∗) = −

∫
Ω

phb · ∇(q∗h − q∗) dx =

∫
Ω

div(bph) (q∗h − q∗) dx

≤ ‖div(bph)‖0 h‖q∗‖1 ≤ C†b‖ph‖1 h‖q
∗‖1.

(5.35)

Moreover from (5.9) with p = ph, q = q∗h

bh(ph, q
∗
h)− b(ph, q∗h) ≤ Ek−1(b · ∇q∗h) Ek−1(ph) + Ek−1(∇q∗h) Ek−1(bph)

+ CbEk−1(∇q∗h) Ek−1(ph)

= ‖b · ∇q∗h −Π0
k−1(b · ∇q∗h)‖0 ‖ph −Π0

k−1ph‖0
+ ‖∇q∗h −Π0

k−1∇q∗h‖0‖bph −Π0
k−1(bph)‖0

+ Cb‖∇q∗h −Π0
k−1∇q∗h‖0‖ph −Π0

k−1ph‖0
≤ ‖b · ∇q∗h‖0 C h |ph|1 + |q∗h|1 C h |bph|1 + Cb|q∗h|1 C h|ph|1
≤ C∗b h‖ph‖1‖q∗‖1.

(5.36)

Similarly, from (5.10) we deduce

ch(ph, q
∗)− c(ph, q∗) ≤ C∗γ h‖ph‖0‖q∗‖1 ≤ C∗γ h‖ph‖1‖q∗‖1. (5.37)

Choosing then h0 := CB
2(C∗b+C∗γ+C†b+γmax)

we obviously have for h ≤ h0,

(C∗b + C∗γ + C†b + γmax)h ≤ CB
2
. (5.38)

Hence, for h ≤ h0,

Bh(ph, q
∗
h) ≥ CB

2
‖ph‖1‖q∗h‖1, (5.39)

and the proof is concluded.

Remark 5.2. Clearly, if b = 0, and γ = 0, (5.38) holds for any h (and, indeed, we

are back at the situation of Lemma 5.6).

We are now ready to prove the following Theorem.

Theorem 5.1. For h sufficiently small, problem (4.17) has a unique solution ph ∈
Qkh, and the following error estimate holds:

‖p− ph‖1 ≤ Chk (‖p‖k+1 + |f |k), (5.40)

with C a constant depending on κ,β, and γ but independent of h.

Proof. The existence and uniqueness of the solution of problem (4.17), for h small,

is a consequence of Lemma 5.7. To prove the estimate (5.40), using (5.29) we have

that for h ≤ h0 there exists a q∗h ∈ Qkh verifying

B(ph − pI , q∗h)

‖q∗h‖1
≥ CB‖ph − pI‖1. (5.41)
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Recalling that Bh(ph, q
∗
h) = (fh, q

∗
h), and B(p, q∗h) = (f, q∗h), adding and subtracting

Π0
kp some simple algebra yields:

CB‖ph − pI‖1‖q∗h‖1 ≤ Bh(ph − pI , q∗h) = Bh(ph, q
∗
h)−Bh(pI , q

∗
h)

= (fh, q
∗
h) +Bh(Π0

kp− pI , q∗h)−Bh(Π0
kp, q

∗
h) +B(Π0

kp, q
∗
h)

+B(p−Π0
kp, q

∗
h)−B(p, q∗h)

= (fh − f, q∗h) +Bh(Π0
kp− pI , q∗h) +

(
B(Π0

kp, q
∗
h)−Bh(Π0

kp, q
∗
h)
)

+B(p−Π0
kp, q

∗
h).

(5.42)

The first term in the right hand side of (5.42) is bounded by the Cauchy-Schwarz

inequality and standard approximation estimates on the load f . The second and

fourth term are bounded similarly using the continuity of Bh and B combined with

approximation estimates for p. Finally, the third term is bounded using Lemma 5.5

on each element E. We get

CB‖ph − pI‖1‖q∗h‖1 ≤ C hk
(
Cκ,b,γ ‖p‖k+1 + |f |k

)
‖q∗h‖1,

and the proof is concluded.

Remark 5.3. It is immediate to check that, by the same proof, also the following

refined result holds:

‖p− ph‖1 ≤ C
( ∑
E∈Th

h2k
E (‖p‖2k+1,E + |f |2k,E)

)1/2

.

5.3. L2 estimate

We have the following result.

Theorem 5.2. For h sufficiently small, the following error estimate holds:

‖p− ph‖0 ≤ Chk+1 (‖p‖k+1 + |f |k), (5.43)

where C is a constant depending on κ,β, and γ but independent of h.

Proof. Once more, we shall use duality arguments. Let ψ ∈ H2(Ω)∩H1
0 (Ω) be the

solution of the adjoint problem (see (2.4))

L∗ψ = p− ph, (5.44)

and let ψI ∈ Qkh be its interpolant, for which it holds

‖ψ − ψI‖1 ≤ Ch|ψ|2 ≤ Ch‖p− ph‖0. (5.45)
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Then:

‖p− ph‖20 = B(p− ph, ψ) = B(p, ψ − ψI) +B(p, ψI)−B(ph, ψ)

= B(p, ψ − ψI) + (f, ψI) +Bh(ph, ψI)− (fh, ψI)−B(ph, ψ)

= B(p− ph, ψ − ψI) + (f − fh, ψI) +Bh(ph, ψI)−B(ph, ψI)

= B(p− ph, ψ − ψI) + (f − fh, ψI −Π0
k−1ψI)

+Bh(ph −Π0
kp, ψI)−B(ph −Π0

kp, ψI)

+Bh(Π0
kp, ψI)−B(Π0

kp, ψI).

(5.46)

Next:

B(p− ph, ψ − ψI) ≤ Chk+1‖p‖k+1‖p− ph‖0,
(f − fh, ψI −Π0

k−1ψI) ≤ Chk+1|f |k‖p− ph‖0.
(5.47)

From (5.19) with qI = ψI , and (5.45)

Bh(Π0
kp, ψI)−B(Π0

kp, ψI) ≤ Cκ,b,γhk+1‖p‖k+1‖p− ph‖0, (5.48)

and from (5.8)–(5.10) with p = ph −Π0
kp, q = ψI , adding and subtracting p,

Bh(ph −Π0
kp, ψI)−B(ph −Π0

kp, ψI) ≤ Cκ,b,γhk+1‖p‖k+1‖p− ph‖0. (5.49)

Hence,

‖p− ph‖0 ≤ Cκ,b,γhk+1(‖p‖k+1 + |f |k). (5.50)

Remark 5.4. As it can be easily seen from our proofs, the extension to the three-

dimensional case would not present major difficulties. We chose to skip it here in

order to avoid the use of a heavier notation and a certain amount of technicalities.

6. Numerical Experiments

We will consider problem (2.1) on the unit square with

κ(x, y) =

(
y2 + 1 −xy
−xy x2 + 1

)
, b = (x, y), γ = x2 + y3, (6.1)

and with right hand side and Dirichlet boundary conditions defined in such a way

that the exact solution is

pex(x, y) := x2y + sin(2πx) sin(2πy) + 2. (6.2)

We will show, in a loglog scale, the convergence curves of the error in L2 and H1

between pex and the solution ph given by the Virtual Element Method (4.17). As

the VEM solution ph is not explicitly known inside the elements, we compare pex

with the L2−projection of ph onto Pk, that is, with Π0
k ph. We will also show the

behaviour of |pex − Π0
k ph| at the maximum point of pex which is approximately at

(xmax, ymax) = (0.781, 0.766).
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Fig. 1. Lloyd-0 mesh Fig. 2. Lloyd-100 mesh

6.1. Meshes

For the convergence test we consider four sequences of meshes.

The first sequence of meshes (labelled Lloyd-0) is a random Voronoi polygo-

nal tessellation of the unit square in 25, 100, 400 and 1600 polygons. The second

sequence (labelled Lloyd-100) is obtained starting from the previous one and per-

forming 100 Lloyd iterations leading to a Centroidal Voronoi Tessellation (CVT)

(see e.g. 23). The 100-polygon mesh of each family is shown in Fig. 1 (Lloyd-0) and

in Fig. 2 (Lloyd-100) respectively.

The third sequence of meshes (labelled square) is simply a decomposition of the

domain in 25, 100, 400 and 1600 equal squares, while the fourth sequence (labelled

concave) is obtained from the previous one by subdividing each small square into

two non-convex (quite nasty) polygons. As before, the second meshes of the two

sequences are shown in Fig. 3 and in Fig. 4 respectively.

6.2. Case k = 1

We start to show the convergence results for k = 1. In Figs. 5 and 6 we report

the relative error in L2 and H1, respectively, for the four mesh sequences. In Fig.

7 we report the relative error at the maximum point (xmax, ymax). Finally, Fig. 8

shows the relative error in L2 obtained with the method (4.18) (that is, the simple-

minded extension of 5). As observed in Remark 4.3, Π0
k∇ ≡ ∇Π∇k for k = 1, hence

the graphs of Fig. 5 and of Fig. 8 are identical.

6.3. Case k = 4

We show the convergence results for k = 4; we proceed as done in the case k = 1.

In Figs. 9 and 10 we report the relative error in L2 and in H1, respectively, on
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Fig. 3. square mesh Fig. 4. concave mesh
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Fig. 5. k = 1, relative L2 error
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Fig. 6. k = 1, relative H1 error

the four mesh sequences. In Fig. 11 we report the relative error at the maximum

point (xmax, ymax). The last figure (Fig. 12) shows the relative error in L2 obtained

with the method (4.18). As announced, a heavy loss in the order of convergence is

produced.

We conclude that the Virtual Element Method behaves as expected and shows

a remarkable stability with respect to the shape of the mesh polygons.
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