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Abstract. We analyze the stabilizing effect of the introduction of suitable
bubble functions in DG formulations for linear second order elliptic problems,
working, for the sake of simplicity, on Laplace operator. In particular we
analyze the nonsymmetric formulation of Baumann-Oden on rather general
decompositions, and we show that the piecewise linear discontinuous approxi-
mation, without jump stabilization, can be used if suitable bubbles are added
to the local spaces.

1. Introduction

Most commonly used DG methods need the addition of suitable stabilizing terms
in order to provide good convergence properties. The typical stabilizing procedure
consists in the introduction of penalty terms that penalize the jumps across neigh-
boring elements. Sometimes, in hyperbolic or in convection dominated problems,
one can also use upwind techniques, consisting in replacing the average ((u++u−)/2)
on an internal edge with the upwind value (that is, u+ or u−, according with the
direction of the “wind”). This however, in most cases, can be seen again as a jump
stabilization ([17], [15], [11]).

Another possible way of stabilizing DG methods consists in the addition of suit-
able terms (this time, internal to each element) of the so-called Hughes-Franca type:
in general, the integral of the original equation (or one of the original equations),
written in strong form inside each element in terms of the finite element unknowns
(= trial functions), multiplied by a similar expression acting on the test functions.
The most famous stabilization of this type, for standard Galerkin methods, is surely
the SUPG stabilization of convection dominated equations [13]. A typical problem,
in these cases, is the choice of the proper stabilization coefficient to be put in front
of the stabilizing term.

In a recent paper (see [6]) we pointed out that, in DG methods, the jumps are
themselves to be regarded as “equations”, so that jump stabilizations (and hence
upwind) could be regarded as Hughes-Franca stabilizations as well. And, indeed,
the optimal choice of the coefficient in a jump-stabilization term is still a subject
that might need a further investigation.

In standard Galerkin methods (for instance in Stokes problem or in advection-
diffusion problems) one of the possible ways of stabilizing an unstable formulation
is to add one or more bubble function per element. We recall that a bubble function
is, by definition, a function whose support is contained in a single element. The
bubble stabilization, in its turn, can also be seen as a Hughes-Franca stabilization
after eliminating the bubbles by static condensation. This has the effect of shifting
the problem: from the choice of the optimal coefficient to the choice of the optimal
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shape of the bubble (see e.g. [5], [2]). This last problem can however be solved,
in some cases, with the use of Residual Free Bubbles (see [12], [16]), or Pseudo
Residual Free Bubbles (see [9], [10]).

When using a discontinuous method the addition of bubble functions does not
mean much, as all the basis functions already have support in a single element
(hence, in a sense, they are all, already, bubbles). We could therefore consider that
for DG methods adding bubbles is just the same as augmenting the finite element
space, in an arbitrary way. For instance, in two dimensions, shifting from linear
discontinuous elements to quadratic discontinuous elements could be seen as adding
three bubbles per element (corresponding to x2, y2, and xy). The same is obviously
true for any other increase of the local polynomial degree.

The problem whether the addition of bubbles could provide some additional
stability for DG methods has therefore a rather academic nature. However, it is
intellectually tackling to check whether and when a suitable (and possibly minimal)
increase in the finite element space can turn an unstable formulation into a stable
one. And, possibly, any discovery in this direction can provide some additional
understanding of the underlying nature of DG methods.

Here we consider as a model (toy) problem the Poisson problem in a polygonal
domain, and we address our attention to the so-called Baumann-Oden DG formu-
lation (see [3], [4], [18], [19], and many other papers). In particular we consider
the (unstable) choice of piecewise linear discontinuous elements. We already know
that, for triangular elements, the use of piecewise quadratic elements (always for
the Baumann-Oden formulation) is indeed stable ([19]). Hence we know already
that, in some sense, adding three bubbles per element can stabilize the problem for
triangular elements. In a previous paper, [8], we proved that, for triangular ele-
ments, the addition of a single quadratic bubble can stabilize the Baumann-Oden
formulation. A similar result for the Interior Penalty formulation has recently been
obtained by Burman-Stamm [14].

Here we will complete the result on the Baumann-Oden formulation, showing
that, for 2-dimensional problems, the addition of n − 2 suitable bubbles per ele-
ment can stabilize the Baumann-Oden formulation for a decomposition in polygonal
elements with n edges.

The practical impact of our investigation is surely questionable, although the
possibility of avoiding the jump stabilization for linear elements is surely appealing,
as it leads to a more “natural” choice of the interelement fluxes. Moreover we
believe that our analysis provide a better understanding of some basic aspects and
mechanisms related to DG methods, that might be of some help in designing new
future methods. And, as such, it might interest several curious scientists.

An outline of the paper is as follows. In the next section we recall some no-
tation on DG methods, and the Baumann-Oden formulation for Poisson problem.
Then we introduce, in an abstract form, the bubble stabilization: under suitable
assumptions on the local bubble spaces we prove the stability of the augmented
formulation, and optimal error estimates. For triangular decompositions, the prop-
erties showed and analyzed in [8] easily imply our abstract assumptions. Hence, in
the subsequent section we show how to construct local spaces that work for (non-
degenerate) quadrilaterals. Finally, in the last section, we present some numerical
experiments.
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2. The model problem and the Baumann-Oden method

Let Ω be a convex polygonal domain, with boundary ∂Ω. For every f , say, in
L2(Ω) we consider the model problem:

(1) −∆u = f in Ω, u = 0 on ∂Ω.

It is well known that problem (1) has a unique solution, that moreover belongs to
H2(Ω) ∩ H1

0 (Ω).
Let {Kh}h be a sequence of compatible decompositions of Ω into polygons K.

Here, “compatible” means that the intersection of the closure of two different poly-
gons is either empty, or a common edge, or a common vertex. For every polygon K
we will denote by nK the number of its edges and by hK its diameter. Moreover,
for every edge e we will denote by |e| its length. We shall also assume that

• There exists an integer n∗ ≥ 3 such that, for every h and for every K ∈ Kh

we have

(2) nK ≤ n∗.

• There exists a constant ρ1 > 0 such that for every h, for every K ∈ Kh,
and for every edge e of K, we have

(3) |e| ≥ ρ1 hK .

• There exists a constant ρ2 > 0 such that for every h, for every K ∈ Kh,
and for every edge e of K, the radius ρ of the biggest disk tangent to e and
contained in K satisfies

(4) ρ ≥ ρ2 hK .

We consider first the (infinite dimensional) space V (Kh) defined as

(5) V (Kh) = {v ∈ L2(Ω) such that v|K ∈ H2(K) ∀K ∈ Kh}.
Elements v ∈ V (Kh) will, in general, be discontinuous when passing from one

element to a neighboring one. As usual in DG methods we have therefore to in-
troduce boundary operators as averages and jumps. As we shall deal also with
vector-valued functions which are smooth in each polygon but discontinuous from
one polygon to another, we shall introduce these boundary operators for scalar
and for vector-valued functions. Let therefore (see Figure 1) K1 and K2 be two
neighboring polygons, and let n1 and n2 be their outward unit normal vectors,
respectively. Clearly, on the common edge e we have n1 +n2 = 0. Let moreover vi
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Figure 1. Two neighboring polygons and their normals.
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and τ
i, (for i = 1, 2) be the restrictions of v and τ to Ki, respectively. Following

[1] we set:

{v} =
v1 + v2

2
; [[ v ]] = v1n1 + v2n2 for all internal edges,

{τ} =
τ

1 + τ
2

2
; [[ τ ]] = τ

1 · n1 + τ
2 · n2 for all internal edges,

and we recall that, with this definition, the jump of a scalar is a vector directed
like the normal to the edge, and the jump of a vector is a scalar.

On the boundary edges we define [[ v ]] = vn; {τ} = τ , where n is the outward
unit normal to ∂Ω. We introduce now some further notation. For functions in
V (Kh) we first introduce the elementwise gradient ∇h, and then for u and v in
V (Kh) we set

(∇hu,∇hv) :=
∑

K∈Kh

∫

K

∇u · ∇vdx, < {∇hu}, [[ v ]] >:=
∑

e∈Eh

∫

e

{∇hu} · [[ v ]]ds,

where, here and in all the sequel, Eh denotes the set of all the edges of the decom-
position Kh. Setting, for u and v in V (Kh),

(6) a(u, v) := (∇hu,∇hv)− < {∇hu}, [[ v ]] > + < {∇hv}, [[ u ]] >,

the Baumann-Oden “continuous” formulation of (1) is now:

(7)

{
Find u ∈ V (Kh) such that:

a(u, v) = (f, v) ∀v ∈ V (Kh).

In V (Kh) we define the jump seminorm

(8) ||v||2j =
∑

e∈Eh

1

|e|

∫

e

|[[ v ]]|2ds,

and the norm

(9) ||v||2V (Kh) :=
∑

K∈Kh

(||∇v||20,K + h2
K |v|22,K) + ||v||2j .

We recall now the following useful result, which follows easily from a well known
result of Agmon (see, e.g., [1]): There exists a constant Ca, depending only on the
constants ρ1 and ρ2 in (3)-(4), such that

(10) ∀K, ∀ e ∈ ∂K, ∀ v ∈ H1(K) :

∫

e

v2ds ≤ Ca(h−1
K ||v||20,K + hK |v|21,K),

From (10) we then have easily that there exists some constant C1, depending only
on the constants ρ1 and ρ2 in (3)-(4), such that

(11)

∑

e∈Eh

∫

e

|e| |{τ} · ne|2ds ≤ C1

∑

K

(||τ ||20,K + h2
K |τ |21,K)

∑

e∈Eh

∫

e

|e|−1|[[ v ]]2ds ≤ C1

∑

K

(h−2
K ||v||20,K + |v|21,K).

Moreover we have the following inequality of Poincaré type: There exists a constant
CP , depending only on ρ1 and ρ2 in (3)-(4), such that

(12)

∫

K

v2dx ≤ CP h2
K

∫

K

|∇v|2dx ∀K and ∀v ∈ H1(K) with

∫

K

vdx = 0.
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We note that, in particular, from (11) we have easily

(13)

| < {τ},[[ v ]] > | =
∑

e∈Eh

∫

e

{τ} · [[ v ]]ds

≤ C1

[
∑

K

(||τ ||20,K + h2
K |τ |21,K)

]1/2 [
∑

e∈Eh

|e|−1

∫

e

|[[ v ]]|2ds

]1/2

,

for all τ that are in (H1(K))2 for every K, and for all v ∈ V (Kh). From (13) and
(9) we also easily deduce the following proposition.

Proposition 2.1. There exists a constant Ccont, depending only on ρ1 and ρ2 in
(3)-(4), such that

(14) a(u, v) ≤ Ccont||u||V (Kh) ||v||V (Kh) ∀u, v ∈ V (Kh).

3. Approximation and abstract error estimates

For every element K we choose now a finite dimensional polynomial space V (K).
On the choice of the spaces V (K) we make the following assumptions.

• For all h, and for all K ∈ Kh, the space V (K) contains all polynomials of
degree ≤ 1, that is

(15) V (K) ⊃ P1.

• There exists an integer N > 0 such that for all h and for all K ∈ Kh we
have

(16) V (K) ⊂ PN

where PN is the space of polynomials of degree ≤ N .
• There exists a constant γ1 > 0 such that: for all h, for all K ∈ Kh, and

for all g ∈ L2(∂K), constant on each edge of ∂K, there exists ℓ(g) ∈ V (K)
such that

(17) ||ℓ(g)||20,K ≤ γ1 h−1
K ||g||20,∂K ,

(18)

∫

e

∂ℓ(g)

∂nK
ds = g for all edge e ∈ ∂K ∀K ∈ Kh,

where nK is the outward unit normal to ∂K. We then define

(19) Σ(K) := ∇(V (K))

and we extend our spaces to the whole Ω setting

Vh :=
∏

K

V (K), Σh :=
∏

K

Σ(K).

The discrete problem is then:

(20)

{
Find uh ∈ Vh such that, :

(∇huh,∇hv)− < {∇huh}, [[ v ]] > + < {∇hv}, [[ uh ]] >= (f, v) ∀v ∈ Vh,

that, using (6), can also be written as

(21) a(uh, v) = (f, v) ∀v ∈ Vh.

In the finite element space Vh we introduce the usual DG norm

(22) |||v|||2 = |v|21,h + ||v||2j ,



6 PAOLA F. ANTONIETTI, FRANCO BREZZI, AND L. DONATELLA MARINI

where | · |1,h is the H1−broken seminorm. We note immediately that, using (16)
and our assumptions on the decomposition (2)-(4), with a simple use of the inverse
inequality, we have that on Vh the DG norm (22) is equivalent to the norm (9)
originally introduced in V (Kh). In particular we have

(23) ||vh||V (Kh) ≤ Cinv|||vh||| ≤ Cinv||vh||V (Kh) vh ∈ Vh,

where Cinv depends only on n∗, ρ1, ρ2, and N . In a similar way (13) could be
simplified to

(24) | < {τ}, [[ v ]] > | ≤ Cs||τ ||0,Ω||v||j ∀τ ∈ Σh ∀v ∈ Vh.

Hence we immediately have the following result.

Proposition 3.1. There exists a constant (that we still denote by Ccont), depending
only on n∗, ρ1, ρ2, and N such that

(25) a(uh, vh) ≤ Ccont|||uh||| |||vh||| ∀uh, vh ∈ Vh. �

Our main task will be now to prove stability of the bilinear form a(u, v) in the
DG norm (22). This however will not be done by showing ellipticity of the bilinear
form a, but rather by proving that there exists a mapping S : Vh → Vh such that

(26) sup
v

a(u, v)

|||v||| ≥ a(u, S(u))

|||S(u)||| ≥ κ |||u||| ∀u ∈ Vh

for a suitable constant κ depending only on the constants in (2)-(4) and (16)-(18).
The target (26) will be reached by constructing an operator S which is bounded

(27) |||S(u)||| ≤ κ2|||u|||,
and bounding

(28) a(u, S(u)) ≥ κ1|||u|||2,
so that (26) will follow with κ = κ1/κ2. The construction of the operator S will be
done in several steps.

To start with, for every element K and every τ ∈ Σ(K), we define its potential
p(τ ) by

∇p(τ ) = τ and

∫

K

p(τ ) = 0.

Note that p is one-to-one from Σ(K) to the subset of V (K) of functions having
zero mean value on K.

We then extend the above definitions globally, defining p : Σh → Vh in the
(obvious) element by element way, and we note that every v ∈ Vh can be split in a
unique way as

(29) v = v0 + v1 with v0 = piecewise constant and v1 = p(∇v).

We shall now prove the boundedness of the p operator.

Proposition 3.2. There exists a constant Cp, depending only on n∗, ρ1, ρ2, and
N , such that

(30) |||p(τ )||| ≤ Cp||τ ||0,Ω

for all τ ∈ Σh.
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Proof. We first note that, since p(τ ) has zero mean value in each K, using (12) we
have

∀K, ∀τ ∈ Σ(K) : ||p(τ )||20,K ≤ CP h2
K |p(τ )|21,h = CP h2

K ||τ ||20.
Hence, using (11) we deduce that

∀τ ∈ Σh : |||p(τ )|||2 = ||τ ||20 + ||p(τ )||2j
≤ ||τ ||20 + C1

∑

K

(h−2
K ||p(τ )||20,K + |p(τ )|21,K)

≤ (1 + C1CP + C1)||τ ||20,
and the result (30) follows immediately. �

Next, we construct a mapping L from the space of piecewise constant scalars
to the space Σh. For v0 piecewise constant we construct, element by element,
L(v0) ∈ Σh by setting

(31) τ = L(v0) ⇐⇒
∫

e

{τ} · ne ds = [[ v0 ]] · ne ∀ edge e ∈ Eh,

ne being one of the two normal directions to e. The existence of L(v0) is provided
by the existence of the operator ℓ in (17)-(18). The following two properties of
the map L will play an important role in our analysis. The first is immediate, but
important, and we state it as a proposition.

Proposition 3.3. Let L be the operator defined in (31). Then for every piecewise
constant v0 we have

(32)
∑

e∈Eh

∫

e

{L(v0)} · [[ v0 ]]ds = |||v0|||2.

Proof. Equality (32) follows immediately from the definitions (31) (of L) and (22)
(of the DG norm), taking into account that for a piecewise constant v0 we have
|v0|1,h = 0. �

The second property expresses the continuity (uniform in h) of the mapping
v0 → p(L(v0)).

Proposition 3.4. Let L be the operator defined in (31). Then there exists a con-
stant γ, depending only on n∗, ρ1, ρ2, N , and γ1, such that

(33) ||p(L(v0))||20,Ω ≤ γ2|||v0|||2

for every piecewise constant v0.

Proof. We first note that, from the property (17) of the local operator ℓ, we have
immediately that for all piecewise constants v0

(34) ||L(v0)||20,Ω ≤ Ci
2|||v0|||2 ≡ Ci

2||v0||2j ,
with a constant Ci depending only on γ1. Then the required (33) follows easily
using (30):

(35) ||p(L(v0))||20,Ω ≤ C2
p ||L(v0)||20,Ω ≤ C2

pC2
i |||v0|||2 =: γ2|||v0|||2.

�
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We can now start our proof of (27) and (28). The first step will be the following
proposition.

Proposition 3.5. There exists a constant κ0, depending only on n∗, ρ1, ρ2, N ,
and γ1, such that

(36) a(u, p(L(u0))) ≥ |||u0|||2 − κ0 |u|1,h |||u0|||

for all u ∈ Vh, where u0 is obtained from u through the splitting (29).

Proof. For u ∈ Vh, with u = u0 + u1 = u0 + p(∇hu) as in (29), we have

a(u, p(L(u0))) = (∇hu, L(u0))− < {∇hu}, [[ p(L(u0)) ]] > + < {L(u0))}, [[ u ]] >

= (∇hu, L(u0))− < {∇hu}, [[ p(L(u0)) ]] > + < {L(u0))}, [[ p(∇hu) ]] > + < {L(u0))}, [[ u0 ]] >

= (∇hu, L(u0))− < {∇hu}, [[ p(L(u0)) ]] > + < {L(u0))}, [[ p(∇hu) ]] > +|||u0|||2.

Using this, Cauchy-Schwarz inequality, (24), (33)-(34), and finally (30) we then
have

|||u0|||2

= a(u, p(L(u0))) − (∇hu, L(u0))+ < {∇hu}, [[ p(L(u0)) ]] > − < {L(u0))}, [[ p(∇hu) ]] >

≤ a(u, p(L(u0))) + |u|1,h ||L(u0)||0,Ω + Cs |u|1,h |||p(L(u0))||| + Cs ||L(u0)||0,Ω|||p(∇hu)|||
≤ a(u, p(L(u0))) + |u|1,h Ci |||u0||| + Cs |u|1,h γ |||u0||| + Cs Ci|||u0|||Cp|u|1,h

= a(u, p(L(u0))) + κ0 |u|1,h |||u0|||,

which is inequality (36). �

The operator S will then be constructed as

(37) S(u) := u + αp(L(u0))

for a suitable choice of α. It is clear that S, constructed as in (37), will be bounded.
Indeed, from (33) we have

(38) |||u + αp(L(u0))||| ≤ |||u||| + α|||p(L(u0))||| ≤ |||u||| + γα|||u0|||.

On the other hand, (29) and (30) imply

(39) |||u0||| = |||u − p(∇hu)||| ≤ |||u||| + Cp|u|1,h ≤ max{1, Cp}|||u|||.

Hence,

(40) |||u + αp(L(u0))||| ≤ κ2|||u|||,

that is precisely the boundedness property (27), with κ2 depending only on α (still
to be chosen) and on the usual parameters n∗, ρ1, ρ2, N , Cp, and γ1. Let us see
that the bounding property (28) is also verified, for α small enough. Indeed, we
remark first from the definition (6) of the bilinear form a that for all v ∈ Vh

(41) a(v, v) = |v|21,h

which is indeed the nicest feature of the Baumann-Oden formulation, compared
with other DG formulations. Then we choose α := 2/(1 + κ2

0), where κ0 is given in
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(36), and we have

(42)

a(u, u + αp(L(u0))) = |u|21,h + a(u, αp(L(u0)))

≥ |u|21,h + α( |||u0|||2 − κ0 |u|1,h |||u0|||)

=
α

2
(|u|21,h + |||u0|||2) + (1 − α

2
)|u|21,h +

α

2
|||u0|||2 − ακ0 |u|1,h |||u0|||

=
1

1 + κ2
0

(|u|21,h + |||u0|||2) +
1

1 + κ2
0

(κ0|u|1,h − |||u0|||)2

≥ 1

1 + κ2
0

(|u|21,h + |||u0|||2).

On the other hand, using (29) and then (30) we have

|||u|||2 ≤ 2(|||u0|||2 + |||p(∇u)|||2) ≤ 2(|||u0|||2 + C2
p |u|21,h) ≤ 2 max{1, C2

p}(|||u0|||2 + |u|21,h),

which inserted in (42) gives

(43) a(u, u + αp(L(u0))) ≥ κ1|||u|||2,

with κ1 depending only on κ0 and Cp, that is (28).
We summarize the result in the following theorem

Theorem 3.6. There exists a constant κ, depending only on n∗, ρ1, ρ2, N , and
γ1, such that: for every uh ∈ Vh, different from zero, there exists a vh (= S(uh))
in Vh, different from zero, such that

(44) a(uh, vh) ≥ κ|||uh||| |||vh|||.

Now it is classical to deduce the error estimate.

Theorem 3.7. In the above assumptions, for every f ∈ L2(Ω) the discrete problem
(20) has a unique solution uh. Moreover the distance between uh and the solution
u of (1) can be estimated as

(45) ||u − uh||V (Kh) ≤ C h |u|2,Ω.

where C is a constant depending only on n∗, ρ1, ρ2, N , and γ1.

Proof. The proof is now classical. We start by defining uI , in each K, as the L2(K)
projection of u onto the space of polynomials of degree ≤ 1. The function uI will
belong to Vh thanks to (15). With usual arguments we have immediately that, for
each K,

(46) |u − uI |r,K ≤ CI h2−r
K |u|2,K (r = 0, 1, 2),
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with a constant CI depending only on n∗, ρ1, ρ2, N , and γ1. Then we use (23),
then (44), then Galerkin orthogonality, then (14), then again (23) to obtain

(47)

||uh − uI ||V (Kh) ≤ Cinv |||uh − uI ||| ≤
Cinv

κ

a(uh − uI , S(uh − uI))

|||S(uh − uI)|||

=
Cinv

κ

a(u − uI , S(uh − uI))

|||S(uh − uI)|||

≤ Cinv

κ

Ccont||u − uI ||V (Kh)||S(uh − uI))||V (Kh)

|||S(uh − uI)|||

≤ Cinv

κ

Ccont||u − uI ||V (Kh)Cinv|||S(uh − uI))|||
|||S(uh − uI)|||

=
C2

invCcont

κ
||u − uI ||V (Kh)

and the result follows using (46). �

Remark 3.8. We point out that both (32) and (33) are global properties. We
proved them using (16)-(18), that are instead local (ad hoc) properties, in each
K. It is clear that proving global properties starting from our element by element
construction is easy, and this is the main motivation for our choice. On the other
hand we could have asked that the space Vh satisfy some convenient global properties
(but not necessarily (17), (18)). And it is quite possible (and also likely, in our
opinion) that (32) and (33) (and hence stability) could hold as well for local choices
of V (K) that do not satisfy (16)-(18). For instance, taking on a regular grid of
rectangles V (K) = Q1⊕x2 + y2 does not satisfy (17)-(18) but the numerical results
are still quite good, as we shall see in the last Section.

4. Applications

From the above theory it is clear that, once we are given a decomposition Kh

satisfying (2)-(4), the only problem that is left is to find, for every K, a suitable
space V (K) satisfying (15)-(16) (this is easy), and such that an operator ℓ with the
properties (17)-(18) exists. This obviously depends on the geometry of K.

As already discussed in [8], when K is a triangle (with the usual shape regularity
properties implied by (2)-(4)) one can choose

(48) V (K) := {v| v = a + bx + cy + d(x2 + y2)},
implying

Σ(K) := ∇(V (K)) = RT0(K),

where RT0(K) denotes the lowest order Raviart-Thomas space over the element K.
This, as analyzed in more details in [8], easily implies the existence of the lifting

operator ℓ satisfying (17)-(18). Indeed, the values of the normal component on
each edge are the most commonly used degrees of freedom for the lowest order
Raviart-Thomas element.

Hence, we turn our attention to quadrilaterals, whose use is much less straightfor-
ward than that of triangles. We denote by e1, e2, e3, e4 the edges of the quadrilateral
K, and by ti and ni the unit tangent and (outward) normal vector to the edge ei

(i = 1, 4) in the clockwise ordering of the edges. While ordering the edges, we also
choose e1 and e2 in such a way that

(49) ∇(t1 · x) · n3
|e3 and ∇(t2 · x) · n4

|e4 have the same sign.
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(See figure 2). Let m31(x, y) = 0 be the equation of the straight line connecting

Figure 2. The quadrilateral and the vectors ti.

the midpoints of e3 and e1, and let m42(x, y) = 0 be the equation of the straight
line connecting the midpoints of e4 and e2, respectively. We then set

(50) ϕ0(x) ≡ 1, ϕ1(x) ≡ t1 · x, ϕ2(x) ≡ t2 · x, ϕ3(x) ≡ m2
31, ϕ4(x) ≡ m2

42

and we take

(51) V (K) := span{ϕ0, ϕ1, ϕ2, ϕ3, ϕ4} ≡ span{1, t1 · x, t2 · x, m2
31, m

2
42}.

We have then the following proposition.

Proposition 4.1. Let V (K) be defined as in (51), and assume that K satisfies the
assumptions (3)-(4). Then there exists an operator ℓ satisfying (17)-(18). More-
over, the constant γ1 in (17) depends only on ρ1 and ρ2.

Proof. The existence of an operator ℓ satisfying (18) will be proved if we show that

(52)

4∑

i=1

αi

∫

∂K

∇ϕi · ni = 0 ⇐⇒ αi ≡ 0 ∀i.

Then, after (52) is proven, assumptions (3)-(4) and a usual scaling argument give
easily (17) with γ1 depending only on ρ1 and ρ2.

In order to prove (52) we form the 4 × 4 matrix M with coefficients

(53) Mij =

∫

ej

∇ϕi · nj , i, j = 1, 4,

and prove that det(M) 6= 0. We first notice that ∇ϕ3 is a vector valued polynomial
of degree 1, and that both components vanish identically on the line m31 = 0;
hence, by the midpoint quadrature formula we have

(54)

∫

e1

∇ϕ3 · n1 =

∫

e3

∇ϕ3 · n3 = 0.

A similar argument shows that

(55)

∫

e2

∇ϕ4 · n2 =

∫

e4

∇ϕ4 · n4 = 0.
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Moreover ∇ϕ3 · n2 is positive on e2 and ∇ϕ3 · n4 is positive on e4, and so are their
integrals on e2 and on e4 respectively. We denote them by

(56)

∫

e2

∇ϕ3 · n2 =: γ2 > 0,

∫

e4

∇ϕ3 · n4 =: γ4 > 0.

Similarly, always referring to Fig. 2:

(57)

∫

e1

∇ϕ4 · n1 = δ1 > 0,

∫

e3

∇ϕ4 · n3 = δ3 > 0.

Next, for ϕ1 and ϕ2 we obviously have

(58)

∫

e1

∇ϕ1 · n1 = 0,

∫

e2

∇ϕ2 · n2 = 0,

and, referring to Fig. 2,

(59)

∫

e2

∇ϕ1 · n2 = α2 > 0,

∫

e4

∇ϕ1 · n4 = −α4 < 0,

∫

e1

∇ϕ2 · n1 = −β1 < 0,

∫

e3

∇ϕ2 · n3 = β3 > 0.

Finally, by Gauss theorem

(60)

∫

e3

∇ϕ1 · n3 = −α2 + α4,

∫

e4

∇ϕ2 · n4 = β1 − β3,

and using (49)

(61) (−α2 + α4)(β1 − β3) > 0.

Collecting (54)–(61) we obtain the matrix

(62) M =





0 α2 α4 − α2 −α4

−β1 0 β3 β1 − β3

0 γ2 0 γ4

δ1 0 δ3 0





As both δ1 and γ2 are different from zero, the determinant det(M) is different from
zero if and only if the determinant of

(63) M∗ =





0 α2 α4 − α2 −α4

−β1 0 β3 β1 − β3

0 1 0 γ4/γ2

1 0 δ3/δ1 0





is different from zero. In its turn, det(M∗) is different from zero if, and only if, the
determinant of

(64) M∗∗ =





0 0 α4 − α2 −α4 − α2γ4/γ2

0 0 β3 + β1δ3/δ1 β1 − β3

0 1 0 γ4/γ2

1 0 δ3/δ1 0





is different from zero. Finally using(61) and the (positive) sign of α2, α4, β1, β3, γ2, γ4, δ1, δ3

we have

(65) det(M∗∗) = −(α4 − α2)(β1 − β3) − (α4 +
α2γ4

γ2
)(β3 +

β1δ3

δ1
) < 0

and (52) follows. �
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5. Numerical Results

We took Ω =]0, 1[2 and chose as exact solution of problem (1) the function

(66) u(x, y) = exy(x − x2)(y − y2).

The load f(≡ −∆u) was computed accordingly. We tested three different sequences
of decompositions into quadrilaterals, that we denote by squares, quadrilaterals
and asymptotically parallelograms. An example of each of the first two sequences
(squares and quadrilaterals) is shown in Figure 3, together with two examples of the
last sequence (asymptotically parallelograms), one coarser and one finer, to show
that in this sequence the elements become more and more regular as the mesh
becomes finer. For each mesh we tested seven different approximations: for the

Figure 3. Sample of grids used: squares and quadrilaterals (top),
asymptotically parallelograms (bottom).

first two, NIPG–Q1 and NIPG–P1, respectively, the method (21) is stabilized by
adding the usual jump penalty to the bilinear form a(·, ·), i.e.,

∑

e∈Eh

∫

e

h−1
e [[ u ]] · [[ v ]] ds.

For the other five approximations there is no jump penalty (hence we are doing
pure Baumann–Oden) and the difference among the methods is given by the choice
of the local spaces V (K), which are taken, respectively, as follows:

(67)

NIPG − Q1 V (K) := span{P1, xy}
NIPG − P1 V (K) := span{P1}
BO − Q2 V (K) := span{P1, xy, x2, y2, x2y, xy2, x2y2}
BO − P2 V (K) := span{P1, xy, x2, y2}
BO − P1 + B V (K) := span{P1, m

2
31, m

2
42}

BO − Q1 + B(P2) V (K) := span{P1, xy, b2}
BO − Q1 + B(P4) V (K) := span{P1, xy, b4}
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where P1 is the space of polynomials of degree ≤ 1, m31 and m42 have been de-
scribed in the previous section, b2 is a polynomial of degree 2 given by the sum of
the two products of the equations of the two pairs of opposite edges, and b4 is the
product of the equations of the four edges. An example of b2 and b4 on the reference

element K̂ =] − 1, 1[2 is shown in Figure 4. For each sequence of grids we report
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y x

Figure 4. Sample of b2 (left) and b4 (right) on the reference ele-

ment K̂ =] − 1, 1[2.

the dependence on h of the errors, for each of the seven different approximations
(67), in the DG-norm (22) and in the L2-norm. In all cases, h is the square root of

the total number of degrees of freedom (
√

ndof).

Note that, for the decompositions into squares, the image of the operator

(68) v :→
∫

ei

∂v

∂nei

(i = 1, 2, 3, 4)

from span{P1, xy} into R
4 has dimension 2, so that the operator can never be

surjective from V (K) into R
4 if V (K) is made as

(69) V (K) := span{P1, xy, b}
no matter how smart we are in choosing b. Indeed, adding one element might in-
crease the dimension by one, but never by two. Hence, for the decompositions into
squares, we are sure that (17)− (18) cannot hold. However, the results are as good
as the other well stabilized cases. This shows that our assumptions are stronger
than necessary. But, as we said, we wanted to keep them simple.

The slopes of the errors, reported in the Figures 5, 6 and 7 (one for each of the
three sequences of decompositions), show that all the methods are stable and that
the error in the DG-norm (22) converges to zero at the rate O(h2) as the mesh
is refined for quadratic/biquadratic approximations of the pure Baumann–Oden
method, and at the rate O(h) in all the other cases. We remark that, for the choice
V (K) = span{P1, m

2
31, m

2
42} (cf. Section 4) the observed convergence rate is in-

deed in agreement with Theorem 3.7. Our numerical experiments seem to indicate
that also the other choices of V (K), i.e., by enriching the standard discontinuous
piecewise bilinear finite element space with a suitable bubble function per element
(cf. (69)), provide optimal approximation properties in the energy norm. In all the
cases, we also observe a quadratic convergence rate in the L2-norm: this is indeed
suboptimal for the pure Baumann–Oden method with quadratic and biquadratic
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Figure 5. Computed errors in the DG-norm (left) and in the L2-
norm (right): squares.
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Figure 6. Computed errors in the DG-norm (left) and in the L2-
norm (right): quadrilaterals.
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Figure 7. Computed errors in the DG-norm (left) and in the L2-
norm (right): asymptotically parallelograms.
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approximations, and optimal in all the other considered cases. Note that we did not
investigate theoretically the quadratic convergence in L2, neither for the original
Baumann–Oden formulation nor for the stabilized version. Finally, our numerical
results suggest that, in terms of approximation properties, there is no qualitative
difference between the stabilization provided by the usual jump-penalty and that
provided by enriching elementwise the piecewise linear discontinuous finite element
space with suitable bubble functions, making this latter choice competitive for prac-
tical applications.

We end this section by investigating the asymptotic behavior of the approxi-
mation error based on employing the stabilized Baumann–Oden formulation, on a
sequence of successively finer structured and unstructured triangular meshes as the
ones reported in Figure 8. For this set of experiments, we choose the local space

Figure 8. Sample of structured and unstructured triangular meshes.

V (K) as in (48) and, as before, we compare the computed results with the anal-
ogous ones obtained with the NIPG method (linear elements) as well as with the
original (non stabilized) Baumann–Oden method (quadratic elements). In Figure 9
we plot (log–log scale) the computed errors in the DG-norm ||| · ||| versus the square
root of the total number of degrees of freedom. We clearly observe that, as stated
in Theorem 3.7 (cf. also [8]), for the stabilized Baumann–Oden formulation the
error in the DG-norm converges linearly to zero as the mesh is refined. We have
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Figure 9. Computed errors in the DG-norm on structured (left)
and unstructured (right) triangular grids.
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run the same set of experiments by computing the approximation errors in the L2-
norm: the computed convergence rates are completely analogous to those obtained
on quadrilateral meshes, and are not reported here for the sake of brevity.
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