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Abstract. We present a formulation for elliptic problems that includes all the
Discontinuous Galerkin approximations actually present in the literature.

1 Introduction

The results here presented are mostly contained in a paper with D.N. Arnold,
F. Brezzi, and B. Cockburn [1], which we refer to for a detailed derivation
and analysis of the formulation. Let us consider, for simplicity, the model

problem
—Au=f in (2 u=0 onl =010. (1)

The starting point to derive DG approximations for (1) is to introduce the
flux ¢ = Vu as an independent variable, so that problem (1) becomes

oc—Vu=0 in (2 —dive = f in (2 u=0 onl, (2

and then to write a suitable variational formulation for (2) using discontin-
uous elements for both unknowns o and u. To fix ideas, let 7}, be a decom-
position of (2 into triangles E. We set, for k£ > 1,

Vi = {v € L?(2) such that vjp € Px(E) VE € J},
= {T € [L2(2)]” such that 75 € [Pe(E)]* VE € yh}

Multiplying the first equation of (2) by 7 € X}, the second equation by
v € V},, and integrating by parts we obtain

/U-T:—/udivr+/ uT-n VreXy, VE € T,
E E OF

/U-Vv:/fv+/ vo-n Yv € Vp, VE € .
E E OE

In the following, starting from these two equations, we shall write the flux
formulation and present two families of numerical fluxes, that lead to two
families of formulations. Next, we shall set a unified variational formulation
including all the DG methods present in the literature till now. Finally, we
shall conclude with error estimates for various DG methods.

(3)
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2 Flux formulation

Summing (3) over E we obtain a first flux formulation:

find up, € V,, op € X}, such that:

o T =— up div T + / uT-n VT e X,
Jyorr= X v,
Z/o-h.vv:/fv+2/ vé-n Vv eV,

7 JE Q 5w JoE

where 4 = G(up), 6 = 6 (up, o) are the numerical fluxes on the edges, to be
defined in order to produce approximations to u|gg, and Vusg, respectively.
Denoting by &, the set of all edges, and by &}, the set of internal edges of J},
the numerical fluxes are said to be consistent if

(4)

i(v) = v, and o&(v,Vv) = Vug,, Yv regular.

Moreover, they are said to be conservative if they are single-valued on each
e € &,. This conservativity property is mostly desired for the flux &, while
is less important for 4. Our aim is to eliminate o, in (4) and to write a
variational formulation in the unknwon wj only. For this, let E*, E~ be
two elements sharing an edge e, and let n™, n~ be the outward unit normal
vector to ET, E~, respectively. We denote by {-} and [-] average and jump
on e, defined as

+ —

{y}:%; [v] =vTnt +v n~ Vee&;
+ —

f=T"" k=t ern Vees,

On the boundary edges we only need [v], {7}, and we simply take [v] =
vn; {T}="T.

Let now ¢ be an edge-wise smooth scalar, and let 7 be an edge-wise
smooth vector. We obviously accept that they have different values on the
two sides of the same edge. Then, using the above definitions of jump [-] and
average {-}, we have

> [ n=% -0+ 2 [ i ©)

where e ranges over all edges and e’ ranges over internal edges. Using the
classical Green formula

—/uhdivh‘r:/vhuh-‘r—g / URT - 1,
o) 2 o JOE
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in the first equation of (4), and then (6), we can rewrite problem (4) as

find up, € Vj,, o € Xy, such that V7 € Xy, Yo € V),

RS ACTRED W LR RS oy SRl
/Qah-vhv=/gfv+§/6[v1-{&}+;1,{a}[&1.

We make now the assumption (verified with our choice of V3, and X3) that

(8)

V(Vh) C Xy,

Then we can take 7 = Vv in the first equation, and substitute in the second
equation, thus obtaining

AR N [ (BT RL/GES Y RETAOE
IR ICHEED S RGIL!

It remains to express 4 and & in terms of wp. This is easy if we take 4 =
@(up) and & = &(up, Viyuy) (this is the choice that characterizes the so-
called primal methods). However, most flux methods take & = u(up) but
6 = 6(up, o). In this case we need some additional work, as we shall see
later on.

(10)

2.1 Fluxes depending on Vjup
A first choice of the fluxes is:

e i={up}one, a=0o0necCaf,

e & = {V,u,} on every edge.
Notice that this choice implies
[ —up] = —[un], {G—up} =0, [6]=0, {6} ={Vrur}.

Substituting in (10) and rearranging terms, we have

/ IR / il (V) =3 [0 (= [ 0. 2

where we recognize the nonstabilized version of IP method (see, e.g., [10], [2]).
We shall list now possible variants of the IP formulation, based on different
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choices of the fluxes. The first one corresponds to introducing a stabilizing

term, by taking
e 4={uptone, 4=0o0necCif
tur) (13)

o 6 ={Viuy} —cle| *[un] on every edge

so that
[ —up] = =[un], {@—up} =0, [6]=0, {6}={Viun}—cle| " [us]-

Substituting (13) in (10) gives

/thuh -V — zﬂ:/e[v] AVhup} — 262 /el[uh]l AV}
+2@:CIeI*1 /e|[uh]|-|[v]| :/ny, (14)

and we obtain the stabilized IP method ([10], [2]).
Generalizing the definition of average by setting, for any real 3,
{v}s = Bvt + (1= B, (15)
with a similar definition for the average of vectors we can define the fluxes as
o 4= {uplu_gone, t=0o0necC0f
{un}-s) (16)

o 6 ={Viun}s —cle| *[un] on every edge

so that
[@ —un] = ~[urn], {@—wun}={un}u 5 —{un},

[61=0, {6} ={Vaun}s—cle|"[usl.

Substituting (16) in (10) gives

/Q Vaun - Viv — 26:/6[11] AVpupls — %:/e[uh] {Vavla
+ 2;0|€|_1 /el[uh]l vl = /va’ (17)

and we obtain the method of Heinrich [11].
Choosing, on the boundary of each element F,

o 4= {up}+nglup]Jone, 4 =0o0necCdN (18)

e 6 ={Vjuy} on every edge

for which we have
[6 —un] = =[un] + 2[ur], {@—un}=0, [6]=0, {6} ={Vrur},
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leads, after substitution in (10), to the method of Baumann and Oden [6]:

/thuh-vhv—ze:/e[v]~{thh}+2e:/e[uh]~{th}:/9fv. (19)

Finally, taking, on the boundary of each element FE,

o 4= {up}+nglup]one, a=0o0necCdN

o 6 ={Viun} —cle| *[un] on every edge
for which we have
li—un] = —[un]+2[us), {a—up} =0[6] =0, {6} = {Vaun}—clel " [unl,

gives, always after substitution in (10),
/ Viup - Vpv — Z /|[’U] AVpup} + Z /|[uh]| -A{Vpv}
2 e e e e
+ 3 clel™ [Tl 1= [ fo
e e 2

that is, the so-called NIPG method [12], which is the stabilized version of
(19). Let us now turn to cases where 6 depends on op,.

(21)

2.2 Fluxes depending on oy,

When the flux & depends on o, the elimination of o, from the first equation
of (8) and its substitution into the second equation requires some additional
work. For this, to any scalar function v we associate the vectors R([v]), [({v})
defined by:

« R([]) € Zh : /QR(|[U]|) = —Z/M {r} VreZ,
© (22)
.« I({v}) € Ty : /Ql({v}) = —Z/I{U}H Vre 3.
Using (22) in the first equation of (10) gives
on = Viun — R([d — un]) — 1({d — un}),
and the second equation of (10) becomes

find up, € Vi : Bp(up,v) = (f,v) Yv eV,
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where:

Bh(uh,v) = /Q thh - th - /h(2 R(I[ﬁ - uh]l) . th

_/(21({11—%})-vhu—gjfe{&}-[v]—Z/eI[&]{v}
E/thuh-vhv+2/el[ﬂ —up] - {Vpv} )

+2Lwﬂmwm—;lwyM—Zme}

We will indicate now various choices for the fluxes in (23). Choosing

e u={up}one, 4=0oneCaf,

e & = {on} on every edge,
we observe that

[0 —up] = —[un], {@—un} =0, [6]=0, {6}={on}.

Consequently, op, = Vyup+R([up]), and R([up]) is a sort of strain correction
due to the discontinuity of the approximation. Therefore,

26:/6{&}-[1)] =262/e{vhUh}-[U] +263/e{R([Uh])}-[v]

:—/VWMRWD—/RWM%RWM
0 o)

Substituting in (23) gives the first Bassi-Rebay formulation [4]:

up € Vi /Q[thh + R([up])] - [Vrv + R([v])] = /va Yo € Vi, (25)

which can be equivalently written as

/thuh SV — Z;/e{vhuh} -[v]

(26)
—Z/[uh]-{vhv}+/QR(|[uh]).R(|[U]|) :/qu Yo € V.

Unfortunately, formulation (25) is not stable, as shown in [7], but it can be
stabilized by introducing the strain correction on each edge:

e v —sro([o]) € Zn : /Qre(|[v]|)~7'+/|[v]~{‘r}:0 Vre X, (27)
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(and notice that )", r.([v]) = R([v])). The second Bassi-Rebay formulation
(introduced in [5] and proved to be stable in [7]) is:

/Q Vaun + R({un])] - (Vv + R([o])]

(28)
- /Q Rl B+ 3 /Q re([un]) - o ([0]) = /Q fo Voe Vi

It can be easily seen that (28) corresponds to taking the fluxes in (23) as

o 4={up}one, 4=0o0necCan, (20)
o & ={Vpup} —cre(Jun]) on every edge,

so that
[0 —un) = ~[un], {@—un}=0, [6]=0, {6} ={Vaun}—c{r([ua])}.
Then we have from (23)

/thuh.vhu—zej/e[v].{vhuh}_;/e[uh].{vhv}
ve X [ b -rieh = [ so

and we see that the difference with IP is only in the choice of the stabilizing
term. As we have seen for the IP formulation, many variants are possible also
for the first Bassi-Rebay formulation. For instance, taking

o U= {uh}(l,g) on 6', 4 =0oneC 012, (31)
o 6 =1{on}s—cle| *[un] on every edge,
for which we have
[0 —up] = —[un], {&—un}={unta s —{un},
[61=0, {6} ={on}s —cle| " [ual,

where {v}3 is taken as in (15), we obtain the most widely used variant of the
LDG method of Cockburn-Shu [9]. For other variants we refer to [1].

3 Congergence properties

We give in this section a hint of error estimates that can be obtained. As
usual, we need boundedness, stability and consistency in a suitable norm.
Define the space:

V(h) = Vi, + H*(Q) NH(2) C H*(F),
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with the norm:

olll = [oli h + ZehElof , + D lire(oDls 0 v € V(R),

and note that Y- [|re([vD)I§ o = X2, he 'I[0][5,. v € V(). We also need
classical approximation properties:

llw = ugll] < Ch*[ulps1,0,
where u; denotes a suitable interpolant of u verifying:
lu —urls,p < CREFulpi1p s =0,1,2.
Then,
Colllur — unl||? < Bu(ur — un,ur —up) = Bp(ur — u,ur — up)
< Colllur = un||||ur = ulll < Ch*fulir,elllur — ual|l-

To obtain optimal L? estimates we need the ”adjoint consistency” property:
given a problem Au = f, that we approximate with

B (un,vn) = (f,vn)  Vvn € Va,
the consistency property amounts to require that
Bp(u,vn) = (f,on) Vop € V.

The adjoint consistency property requires that for every adjoint problem
A*1) = g one has

By, (¥, v) = Bp(vn, ) = (g,vn) Yop € Vi,
Taking g = u — uj, he have then

llu—un||3 = (u— up,u —ur) + (u — up, ur — up)
= (u — up,u — ur) + Bp(ur — up, )
= (u —up,u —ur) + Br(ur — up, ¥ — p)
<|lu = unllollu — urllo + Chlp|2,0llur — uall|-

In Table 1 we report the choice of fluxes for various DG methods. By a; and
a, we indicate the type of stabilization: through the jumps (as in (14)) or
through the 7, (resp.), as in (28). In Table 2 we collect the properties and the
order of convergence of the various methods in H' and L? (cons. stands for
consistency, a.c. for adjoint consistency, stab. for stability, type is the type
of stabilization, and cond. indicates the condition on the coefficient of the
stabilization term). Most of the methods listed in the Tables were recalled in
this paper. For the others we provide the reference.
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Table 1. Choice of the numerical fluxes

Method U c

IP [10] {un} {Vhur} —a;
BO [6] {un} +ng-[ur]  {Vrun}
NIPG [12] {uh} +ng - [uh] {thh} —Qj
H[11] {urta-p  AVhrur}s — oy
BZ[3] Uh| E —Q;

BR 1[4] {un} {on}
BR 2 {un} {Vrur} —ar
BMMPR1]7] {un} {or} —ar
LDG [9] {un}a-g) {on}s —a;
BMMPR2[8] un| —a,

Table 2. Properties of various DG methods

Method cons. a.c. stab. type cond. H! L2

IP [10] v v v a; e>c BF oRFT!
BO[6] (k>2) v x - — Rk A*

NIPG[12] v x v a;j ¢>0 hF &F

H [11] v Vv Vv o ce¢>c hF !
BZ [3] x x v  aj crhT*L opko pktl
BR 1 [4] v Vv ox - - [RF] [R*H)
BR 2 [8] v VY c>3 hF prtl
BMMPR1[7] v v v a  ¢>0 hF ptf!
LDG [9] v Vv v a;  ¢>0 RhF pFT!
BMMPR2 [8] x x v  ar c~h™ 2 pb pit?

We conclude with an explanation on the brackets used in the error esti-
mates of Table 2 for the Bassi-Rebay formulation. We have:

llo = anlloe < Ch¥ulisr,  1Pe-1(u—un)llo,e < CH*Huliyr,o, (35)

where 0 = —Vu, oy = —Vyup—R([up]), and Py is the projection operator
(element by element) on the space of polynomials of degree < k — 1.

For more detailed estimates on specific methods or classes of methods we
refer to [1] and the references therein.

4 Conclusions

The present framework allows an easy comparison of various DG methods
for diffusive problems (or for the diffusive part of advection-diffusion prob-
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lems), as it includes all existing methods. Primal formulations are easier to
deal with, and, in general, produce a smaller stencil. On the other hand, flux
formulations are more in the spirit of the methods for dealing with convec-
tive terms and/or purely hyperbolic problems. Much work, and much more
numerical experiments are still to be done in order to assess the relative mer-
its of the various methods. In particular, the potential of DG methods in
connection with Domain Decomposition Methods and h, p or hp adaptive
algorithms has still to be explored.
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