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Abstract We present an overview of some families of locking-free elements for
Reissner-Mindlin plates recently introduced and analyzed in [2] and [1]. They are
all based on the ideas of discontinuous Galerkin approach, and they vary in the
amount of interelement continuity required.

1 Introduction

The Reissner–Mindlin model for moderately thick clamped plates consists in loock-
ing for the rotation vector θ and the transverse displacement w which minimize over
H1

0(Ω)×H1
0 (Ω) the (scaled) plate energy

J(θ ,w) =
1
2

∫

Ω
Cε(θ) : ε(θ)dx+

1
2

λ t−2
∫

Ω
|∇w−θ |2 dx−

∫

Ω
gwdx, (1)

where the coefficients C and λ depend on the material properties of the plate, g
is the scaled load, and t is the plate thickness. If one minimizes the energy over
subspaces consisting of low order finite elements, then the resulting approximation
suffers from the problem of locking, which can be described as follows. As t tends to
0, the solution of (1) tends to (θ 0,w0), where θ 0 = ∇w0 which, in general, will not
be zero (actually, w0 will be the solution of the Kirchhoff model). If we discretize the
problem directly by seeking θ h ∈Θ h and wh ∈Wh minimizing J(θ ,w) over Θ h×Wh,
then as t vanishes, (θ h,wh) will converge to some (θ 0,h,w0,h) where, again, θ 0,h =
∇w0,h. For low order finite element spaces, this last condition is too restrictive.
In particular, if continuous piecewise linear functions are used to approximate both
variables, then θ 0,h ≡∇w0,h would be continuous and piecewise constant, with zero
boundary conditions. Only the choice θ 0,h = 0 can satisfy all these conditions. For
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t very small, the quantity θ h −∇wh, although not necessarily zero, must be very
small, and hence θ h will be very close to zero, instead of being close to θ which, in
turn, will be close to θ 0. Another way of looking at this problem is from the point
of view of approximation: for small t, one cannot find suitable interpolants θ I and
wI that are close to θ and w, respectively, if one requires θ I−∇wI to be of the order
of t2.

A number of approaches have been developed to avoid the locking problem. One
successful idea has been to introduce an additional finite element space Γ h and a re-
duction operator Ph : Θ h → Γ h, and then look for θ h ∈Θ h and wh ∈Wh minimizing
a modified energy functional

Jh(θ ,w) =
1
2

∫

Ω
Cε(θ) : ε(θ)dx+

1
2

λ t−2
∫

Ω
|∇w−Phθ |2 dx−

∫

Ω
gwdx. (2)

A crucial assumption is that ∇Wh is a subset of Γ h, and in particular of the image
of Ph. As t tends to 0, the limiting condition will now be the much less demanding

Phθ 0,h = ∇w0,h. (3)

Various locking-free finite elements have been obtained in this way (see, e.g., [3],
[5], [8], [11], [12], [9], [13], [10]).

In [2], the techniques of Discontinuous Galerkin (DG) methods were used to
develop two families of odd-degree locking-free elements. Since DG solutions are
not required to satisfy the standard interelement continuity conditions of conforming
finite element methods (that is, continuous elements in the case of the Reissner–
Mindlin plate problem), the method allows a greater flexibility.

Starting from the approach of [2], other elements were introduced ([9], [13], [10])
for the functional (2), while in [1] a collection of families of locking-free elements
which do not need the reduction operator Ph were developed. The common feature
in all the methods considered in [1] is to choose Wh to be piecewise polynomials
of degree ≤ k (with k ≥ 2), and Θ h = Γ h to be piecewise polynomials of degree
≤ k−1. The methods vary in the amount of interelement continuity required.

In the present paper we shall give an overview of some DG elements, and we
shall report the convergence results, referring for the proofs to the corresponding
papers.

2 Discontinuous Galerkin discretization

Introducing the shear stress γ = λ t−2(∇w−θ) as an auxiliary variable, and writing
the Euler equations for the energy functional (1) we may write the Reissner–Mindlin
equations as:
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−divCε(θ)− γ = 0 in Ω , (4)
−divγ = g in Ω , (5)

∇w−θ − t2γ = 0 in Ω , (6)
θ = 0, w = 0 on ∂Ω . (7)

Equation (6) should actually be ∇w−θ −λ−1t2γ = 0, where λ is the shear correc-
tion factor, but we set λ = 1 to simplify the presentation. By setting

a(θ ,η) = (Cε(θ),ε(η)) for θ , η ∈ H1(Ω)

the variational formulation of equations (4)–(7) is:
Given g ∈ L2(Ω), find θ ∈ H1

0(Ω), w ∈ H1
0 (Ω) and γ ∈ L2(Ω) such that

a(θ ,η)+(γ,∇v−η) = (g,v) ∀(η ,v) ∈ H1
0(Ω)×H1

0 (Ω), (8)
(∇w−θ ,τ)− t2(γ,τ) = 0 ∀τ ∈ L2(Ω). (9)

Before proceeding we need to introduce some notations. We shall use the usual
Sobolev spaces such as Hs(Ω), with the corresponding seminorm and norm denoted
by | · |s and ‖ · ‖s, respectively. By convention, we use boldface type for the vector-
valued analogues (Hs(Ω) = [Hs(Ω)]2), and calligraphic type for symmetric-tensor-
valued analogues (H s(Ω) = [Hs(Ω)]2sym); we use parentheses ( · , ·) to denote the
inner product in any of the spaces L2(Ω), L2(Ω), or L 2(Ω).
We recall the following result (see [3], [4] for a more general case). If Ω is a convex
polygonal domain, and C is smooth, then problem (8)–(9) has a unique solution that
verifies

‖θ‖2 +‖w‖2 +‖γ‖0 + t‖γ‖1 ≤C(‖g‖−1 + t‖g‖0), (10)

where C is a constant depending only on Ω and on the coefficients in C.
Let now Th be a family of shape-regular decompositions of Ω into triangles T

and let Eh denote the set of all the edges in Th. For piecewise polynomial spaces,
we use the notation

L s
k (Th) = {v ∈ Hs(Ω) : v|T ∈Pk(T ), T ∈Th }, (11)

where, as usual, Pk(T ) is the set of polynomials of degree at most k on T . Since
we will work with discontinuous finite elements not belonging to H1(Ω), we define
the space

H1(Th) := {v ∈ L2(Ω) : v|T ∈ H1(T ), T ∈Th }. (12)

Differential operators can be applied to this space only piecewise. We indicate this
by a subscript h on the operator. Hence, the space H1(Th) will be equipped with the
seminorm |v|1,h = ‖∇h v‖0 and the corresponding norm ‖v‖2

1,h = |v|21,h +‖v‖2
0.

Finally, before deriving a DG discretization of (8)–(9) we need to introduce typ-
ical tools as averages and jumps on the edges of Th. Let e be an internal edge of
Th, shared by two elements T + and T−, and let n+ and n− denote the unit normals
to e, pointing outward from T + and T−, respectively. If ϕ belongs to H1(Th) (or
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possibly the vector- or tensor-valued analogue), we define the average {ϕ} on e as
usual:

{ϕ}=
ϕ+ +ϕ−

2
.

For a scalar function ϕ ∈ H1(Th) we define its jump on e as

[|ϕ|] = ϕ+n+ +ϕ−n−,

which is a vector normal to e. The jump of a vector ϕ ∈ H1(Th) is the symmetric
matrix-valued function given on e by:

[|ϕ|] = ϕ+¯n+ +ϕ−¯n−,

where ϕ ¯ n = (ϕ ⊗ n + n⊗ϕ)/2 is the symmetric part of the tensor product of ϕ
and n.

On a boundary edge, the average {ϕ} is defined simply as the trace of ϕ , while
for a scalar-valued function we define [|ϕ|] to be ϕn (with n the outward unit normal),
and for a vector-valued function we define [|ϕ|] = ϕ¯n.

It is easy to check that, (using the symbol 〈 · , · 〉 to denote L2-inner product of
functions or vectors on Eh)

∑
T∈Th

∫

∂T
ϕ ·nT vds = 〈{ϕ}, [|v|]〉, ϕ ∈ H1(Ω), v ∈ H1(Th). (13)

Similarly,

∑
T∈Th

∫

∂T
S nT ·η ds = 〈{S }, [|η |]〉, S ∈H 1(Ω), η ∈ H1(Th). (14)

To derive a finite element method for the Reissner–Mindlin system based on dis-
continuous elements, we test (4) against a test function η ∈H2(Th) and (5) against a
test function v ∈H1(Th), integrate by parts, and add. Since η and v may be discon-
tinuous across element boundaries, we obtain terms at the interelement boundaries
that we manipulate using (13)-(14). We obtain:

(Cεh(θ),εh(η))−〈{Cεh(θ)}, [|η |]〉+(γ,∇h v−η)−〈{γ}, [|v|]〉= (g,v), (15)
(η ,v) ∈ H2(Th)×H1(Th),

(∇h w−θ ,τ)− t2(γ,τ) = 0, τ ∈ H1(Th). (16)

The second and fourth terms in (15) involve integrals over the edges and would not
be present in conforming methods. They arise from the integration by parts and are
necessary to maintain consistency.

We now proceed as is common for DG methods. (For a different point of view on
this type of derivation see [6]). First, we add terms to symmetrize this formulation so
that it is adjoint-consistent as well. Second, to stabilize the method, we add interior
penalty terms pΘ (θ ,η) and pW (w,v) in which the functions pΘ and pW will depend
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only on the jumps of their arguments. Following [2] we set

pΘ (θ ,η) = ∑
e∈Eh

κΘ

|e|
∫

e
[|θ |] : [|η |]ds, pW (w,v) = ∑

e∈Eh

κW

|e|
∫

e
[|w|] · [|v|]ds, (17)

so that pΘ (η ,η), (pW (v,v), respectively) can be viewed as a measure of the devi-
ation of η (v, respectively) from being continuous. The parameters κΘ and κW are
positive constants to be chosen; they must be sufficiently large to ensure stability.
Since [|θ |] = 0 and [|w|] = 0, equations (15)-(16) can then be written as

(Cεh(θ),εh(η))−〈{Cεh(θ)}, [|η |]〉−〈[|θ |],{C εh(η)})〉+(γ,∇h v−η)

−〈{γ}, [|v|]〉+ pΘ (θ ,η)+ pW (w,v) = (g,v), (η ,v) ∈ H2(Th)×H1(Th), (18)

(∇h w−θ ,τ)−〈[|w|],{τ}〉− t2(γ,τ) = 0, τ ∈ H1(Th). (19)

To obtain a DG discretization, we have to choose finite dimensional subspaces Θ h ⊂
H2(Th), Wh ⊂ H1(Th), and Γ h ⊂ H1(Th), and then write the discrete problem:

Find (θ h,wh) ∈Θ h×Wh and γh ∈ Γ h such that

(Cεh(θ h),εh(η))−〈{Cεh(θ h)}, [|η |]〉−〈[|θ h|],{Cεh(η)})〉
+(γh,∇h v−η)−〈{γh}, [|v|]〉 (20)

+pΘ (θ h,η)+ pW (wh,v) = (g,v), (η ,v) ∈Θ h×Wh,

(∇h wh−θ h,τ)−〈[|wh|],{τ}〉− t2(γh,τ) = 0, τ ∈ Γ h. (21)

For any choice of the finite element spaces Θ h, Wh, and Γ h, and any interior penalty
functions pΘ and pW depending only on the jumps of their arguments, this gives a
consistent finite element method since no reduction operator Ph is used. If instead Ph
is needed, there will be a consistency error to be estimated, and equations (20)-(21)
will be modified into:

(Cεh(θ h),εh(η))−〈{Cεh(θ h)}, [|η |]〉−〈[|θ h|],{Cεh(η)})〉
+(γh,∇h v−Phη)−〈{γh}, [|v|]〉 (22)

+pΘ (θ h,η)+ pW (wh,v) = (g,v), (η ,v) ∈Θ h×Wh,

(∇h wh−Phθ h,τ)−〈[|wh|],{τ}〉− t2(γh,τ) = 0, τ ∈ Γ h. (23)

In the next section we shall recall different choices of the finite element spaces.
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3 The finite elements

We recall in this section some DG-elements/families developed so far. We refer to
the original papers for detailed proofs, and we will just recall the resulting error
estimates obtained in the DG-norms defined as

|||η |||2Θ := ‖η‖2
1,h + ∑

e∈Eh

(
1
|e| ‖[|η |]‖

2
0,e + |e|‖{Cεh(η)}‖2

0,e

)
, η ∈ H2(Th),

|||v|||2W := |v|21,h + ∑
e∈Eh

1
|e| ‖[|v|]‖

2
0,e, v ∈ H1(Th), (24)

|||τ|||2Γ := ‖τ‖2
0 + ∑

e∈Eh

|e|‖{τ}‖2
0,e, τ ∈ H1(Th).

3.1 DG-Elements based on the use of the reduction operator Ph

Example 3.1.1 The following family of elements of odd degree k ≥ 1 was intro-
duced in [2]:

Θ h = L 0
k (Th), Wh = L 0

k (Th), Γ h = L 0
k−1(Th), (25)

where L 0
k (Th) denotes the space of discontinuous piecewise polynomials of degree

≤ k (see (11)). The penalty term pΘ (θ ,η) is taken as in (17), while pW (w,v) is
somewhat weaker:

pW (w,v) = ∑
e∈Eh

κW

|e|
∫

e
Qe[|w|] ·Qe[|v|]ds, (26)

and Qe is the projection onto polynomials of degree k−1. The error estimates in the
norms (24) are:

|||θ −θ h|||Θ + |||w−wh|||W + t|||γ− γh|||Γ (27)
≤C hk

(‖θ‖k+1,Ω +‖w‖k+1,Ω + t‖γ‖k,Ω +‖γ‖k−1,Ω
)
,

which are optimal in terms of order of convergence, and for the case k = 1 also in
terms of regularity (see (10)). The definition of Ph is quite complicated and will not
be detailed here. We note however that, for the lowest order case k = 1, the reduction
operator Ph is simply the L2 projection onto the piecewise constant space L 0

0 (Th).
The degrees of freedom are shown in Fig. 1.

Example 3.1.2 In the spirit of [2], a linear nonconforming element plus a
quadratic nonconforming bubble was first obtained and analyzed in [9]. Then Lo-
vadina in [13] showed that the bubble is actually not needed, and also proved op-
timal L2−estimates (see also [10]). Denoting by Pnc

1 the space of piecewise linear
polynomials continuous at the midpoint of each edge of Th, the choice of spaces is



Discontinuous Galerkin elements for Reissner-Mindlin plates 7

wθ γ

Fig. 1 Totally discontinuous elements: d.o.f. for the lowest order case

Θ h = Pnc
1 , Wh = Pnc

1 , Γ h = L 0
k−1(Th), (28)

and the degrees of freedom are shown in Fig. 2. For this element, optimal estimates

θ w γ

Fig. 2 D.o.f. for the nonconforming element

were proved in [13]

||θ −θ h||1,h + ||w−wh||1,h + ||γ− γh||Γ + t||γ− γh||0 ≤Ch ||g||0, (29)

and in [10] for the L2 error:

||θ −θ h||0 + ||w−wh||0 ≤Ch2||g||0. (30)

3.2 DG-Elements without reduction operator Ph

Two families of elements for the formulation (20)-(21) were developed in [1]. In all
the cases the transverse displacement w is approximated with piecewise polynomials
of degree at most k, with k ≥ 2, while the rotations θ and the shear stresses γ with
piecewise polynomials of degree ≤ k− 1, and the methods differ in the amount of
continuity required at the interelement boundaries. In all the cases the spaces satisfy

∇Wh ⊆Θ h = Γ h. (31)

Example 3.2.1 In the first family of elements w is approximated by continuous finite
elements, so that equations (20)-(21) simplify into:
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ah(θ h,η)+(γh,∇v−η) = (g,v), (η ,v) ∈Θ h×Wh, (32)

(∇wh−θ h,τ)− t2(γh,τ) = 0, τ ∈ Γ h. (33)

Inclusion (31) forbids the use of a space Θ h consisting of continuous functions.
However, since wh is continuous, it allows choices where the tangential component
is continuous (as well as totally discontinuous choices). We recall here the choice
that minimizes the number of degrees of freedom. For other possible choices see
[1]. We take

Wh = L 1
k , Θ h = Γ h = BDMR

k−1 k ≥ 2, (34)

where BDMR
k−1 denotes the rotated Brezzi-Douglas-Marini space of degree k− 1,

i.e., the space of all piecewise polynomial vector fields of degree at most k−1 with
tangential components continuous at the interelements [7]. With this choice, the
inclusion (31) is clearly satisfied. The following estimates were proved in the norms
(24):

|||θ −θ h|||Θ + t‖γ− γh‖0 ≤Chk−1(‖θ‖k + t‖γ‖k−1), (35)
‖∇(w−wh)‖0 ≤C(hk + thk−1)(‖θ‖k + t‖γ‖k−1), (36)

and in L2:
‖w−wh‖0 +‖θ −θ h‖0 ≤Chk(‖θ‖k + t‖γ‖k−1). (37)

Estimates (35)-(36) are optimal with respect to order of convergence (and also with
respect to regularity for the case k = 2, according to (10)) while (37) is optimal for
θ and suboptimal of one order for w.

Fig. 3 shows the degrees of freedom for the lowest order element of the family:

w θ γ

Fig. 3 Continuous w: lowest-order elements without reduction operator

Example 3.2.2 The second family consists of totally discontinuous elements. Thus,
the spaces are

Wh = L 0
k , Θ h = Γ h = L 0

k−1 k ≥ 2, (38)

and the inclusion (31) is obviously verified. For this family the following error esti-
mates were proved in the norms (24):

|||θ−θ h|||Θ +t‖γ−γh‖0 +[pW (w−wh,w−wh)]1/2 ≤Chk−1(‖θ‖k +‖γ‖k−1), (39)

|||w−wh|||W ≤Chk−1(‖θ‖k +‖γ‖k−1 +‖w‖k), (40)
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and in L2:
‖θ −θ h‖0 +‖w−wh‖0 ≤ C hk(‖θ‖k +‖γ‖k−1). (41)

The bad feature of these estimates is the lack of the factor t in the norm ‖γ‖k−1
on the right hand side. Since this norm behaves like t−(k−3/2) as t → 0, the extra
factor of t helps to control the size of this term, and for k = 2 guarantees that it
remains bounded. A better estimate in this respect can be obtained by assuming that
the Helmholtz decomposition for γ holds. In this case we have:

|||θ −θ h|||Θ + t‖γ− γh‖0 +[pW (w−wh,w−wh)]1/2

≤C hk−1(‖θ‖k + t‖γ‖k−1 +‖γ‖Hk−2(div)), (42)

|||w−wh|||W ≤C hk−1(‖θ‖k + t‖γ‖k−1 +‖γ‖Hk−2(div) +‖w‖k),

and in L2:

‖θ −θ h‖0 +‖w−wh‖0 ≤ C hk(‖θ‖k + t‖γ‖k−1 +‖γ‖Hk−2(div)). (43)

We point out that the regularity of γ is such that, for the lowest-order case k = 2, the
Helmholtz decomposition holds, and estimates (42)-(43) are optimal with respect
to regularity. Indeed, ‖γ‖Hk−2(div) ≡ ‖divγ‖0 ≡ ‖g‖0 which does not explode when
t → 0. In terms of order of convergence they are optimal for θ , and suboptimal of
one order for w. The lowest-order elements are depicted in Fig. 4.

w θ γ

Fig. 4 Totally discontinuous elements without reduction operator: lowest-order elements

4 Conclusions

We presented a quick overview of some locking-free finite elements for Reissner-
Mindlin plates, obtained through the use of Discontinuous Galerkin techniques.
Since DG solutions are not required to satisfy the interelement continuity conditions
of conforming finite elements, DG methods result more flexible and offer possibili-
ties, in terms of degree of the finite elements, which are forbidden with conforming
elements. For instance, the simple linear element of Example 3.1.1 would be un-
thinkable for conforming approximations. Similarly, the nonconforming linear ele-
ment of Example 3.1.2 would have been hard to derive without the DG techniques.
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The counterpart is that discontinuity implies an increasing of the number of un-
knowns, and efficient techniques to handle the final linear systems might be needed.
The low order elements of Subsection 3.1 are very appealing, but their behavior
might depends on the choice of the parameters in the penalty terms. By increasing
these parameters one increases continuity, and the elements get closer to conforming
elements, with the risk of locking. This dependence should be checked in practice,
and sound numerical tests should be performed to compare the new elements with
existing conforming elements, but this goes beyond the scope of this paper. We refer
to [10] for numerical results on various linear nonconforming elements.
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