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Abstract

We develop a family of locking-free elements for the Reissner–
Mindlin plate using Discontinuous Galerkin techniques, one for each
odd degree, and prove optimal error estimates. A second family uses
conforming elements for the rotations and nonconforming elements
for the transverse displacement, generalizing the element of Arnold
and Falk to higher degree.
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1 Introduction

Recently there has been a considerable interest in the development of Dis-
continuous Galerkin methods for elliptic problems (see, for instance, [4]
and the references therein). Although their practical interest is still under
investigation, it is clear that the DG approach often implies a different way
of dealing with the problem, that can sometimes lead to new conforming or
nonconforming finite elements that would have been more difficult to dis-
cover starting with a classical approach. Examples in this direction are, for
instance, the extension of the Crouzeix–Raviart element for Stokes problem
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or nearly incompressible elasticity problems [23], and the recent paper by
two of the present authors using DG methods to develop non-conforming
elements for the Reissner–Mindlin plate [16].

Here we present a family of finite element approximations for the Reiss-
ner Mindlin plates. These are mixed methods, in which the rotation vector,
transverse displacement, and transverse shear are all approximated. The
starting point of the family is a totally discontinuous approach, in which
both rotations θ and transversal displacements w are locally polynomials
of degree ≤ k, where k is an odd integer, while the transverse shears are ap-
proximated by totally discontinuous polynomials of degree k−1. However,
many variants are possible. For instance, we could (i) keep θ discontin-
uous but use a nonconforming w (having moments up to the order k − 1
continuous at the interelement boundaries), or (ii) take both θ and w non-
conforming (by adding a suitable set of bubble functions to θ), or (iii) use
a continuous θ and a nonconforming w, by adding a different set of bubble
functions to θ. This last option, for k = 1, will give back the Arnold–Falk
(AF) element [5], and therefore, for k > 1, can be seen as a higher order
version of AF. On the other hand, the other options can be seen, for k = 1,
as a discontinuous or nonconforming versions of AF. In particular here we
present the analysis of the two extreme cases, that is the fully discontin-
uous case and the case in which θ is continuous and w is nonconforming.
The analysis of the other cases could be performed along similar lines.

It would be interesting to compare these new elements with the more
classical MITCk families (see [12] or [15]) and the elements in [5], as well
as with the more recent methods such as [6], [7], [8], [21], [22], [25], [26],
and [27].

Even more interesting would be the extension of these DG techniques
to the treatment of shell problems. See for instance [24], [9], [17], [18],
[20], [22], [19] and the references therein for a discussion of the difficulties
in designing accurate and robust shell elements. We point out here that
our elements, at least in the totally discontinuous version, use the same
degrees of freedom for the rotations and the transverse displacement, which
is usually considered as a very favorable feature for the discretization of
shell problems in the Naghdi model.

The paper is organized as follows. After a section on notations and
preliminaries, in Section 3 we recall the Reissner–Mindlin model and derive
our family of methods in the fully discontinuous case. The corresponding
error estimates are proved in Section 4. Finally, in Section 5, we present
the case of continuous θ and nonconforming w, together with its analysis.
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2 Notations and preliminaries

Let Ω ⊂ �
2 denote the domain occupied by the middle surface of the

plate. We shall use the usual Sobolev spaces such as Hs(T ), with the cor-
responding semi-norm and norm denoted by | · |s,T and ‖·‖s,T , respectively.
When T = Ω we just write | · |s and ‖ · ‖s. By convention, we use bold-
face type for the vector-valued analogues: Hs(Ω) = [Hs(Ω)]2. Occasion-
ally we shall use calligraphic type for symmetric-tensor-valued analogues:
Hs(Ω) = [Hs(Ω)]2sym. We use parentheses ( · , · ) to denote the inner prod-
uct in any of the spaces L2(Ω), L2(Ω), or L2(Ω).

We shall assume that the domain Ω is a polygon and denote by Th a
decomposition of Ω into triangles T , by Eh the set of all the edges in Th,
and by E0

h the set of interior edges. We use the notation for piecewise
polynomial spaces from [14], so

Ls
k(Th) = { v ∈ Hs(Ω) : v|T ∈ Pk(T ), T ∈ Th }, (1)

with Pk(T ) the set of polynomials of degree at most k on T . (Note that in
this usage, calligraphic type does not refer to tensor-valued quantities.)

Our finite elements will be discontinuous and so not contained in the
space H1(Ω), but rather in a piecewise Sobolev space

H1(Th) := { v ∈ L2(Ω) : v|T ∈ H1(T ), T ∈ Th }.
Differential operators can be applied to this space piecewise. We indicate
this by a subscript h on the operator. Thus, for example, the piecewise
gradient operator ∇h mapsH1(Th) into L2(Ω) and the piecewise symmetric
gradient, or infinitesimal strain, operator εh maps H1(Th) into L2(Ω). The
space H1(Th) is equipped with the semi-norm |v|1,h = ‖∇h v‖0 and the
corresponding norm ‖v‖2

1,h = |v|21,h + ‖v‖2
0.

As is usual in the DG approach, we define the jump and average of a
function in H1(Th) as a function on the union of the edges of the triangula-
tion. Let e be an internal edge of Th, shared by two elements T+ and T−,
and let n+ and n− denote the unit normals to e, pointing outward from
T+ and T−, respectively. If ϕ belongs to H1(Th) (or possibly the vector-
or tensor-valued analogue), we define the average {ϕ} on e as usual:

{ϕ} =
ϕ+ + ϕ−

2
.

For a scalar function ϕ ∈ H1(Th) we define its jump on e as

[ϕ] = ϕ+n+ + ϕ−n−,

which is a vector normal to e. The jump of a vector ϕ ∈ H1(Th) is the
symmetric matrix-valued function given on e by:

[ϕ] = ϕ+ � n+ + ϕ− � n−,
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where ϕ�n = (ϕnT +nϕT )/2 is the symmetric part of the tensor product
of ϕ and n.

On a boundary edge, the average {ϕ} is defined simply as the trace of
ϕ, while for a scalar-valued function we define [ϕ] to be ϕn (with n the
outward unit normal), and for a vector-valued function we define [ϕ] =
ϕ � n.

It is easy to check that (see, e.g., [3])

∑
T∈Th

∫
∂T

ϕ · nT v ds =
∑
e∈Eh

∫
e

{ϕ} · [v] ds, ϕ ∈ H1(Ω), v ∈ H1(Th). (2)

Similarly,

∑
T∈Th

∫
∂T

SnT · η ds =
∑
e∈Eh

∫
e

{S} : [η] ds, S ∈ H1(Ω), η ∈ H1(Th).

It is not difficult to see that both the above relations hold in more
general situations. For instance, (2) also holds for ϕ ∈ H(div; Ω), where
H(div; Ω) is the space of vectors ϕ ∈ L2(Ω) with div ϕ ∈ L2(Ω).

In the sequel we shall often use the following result (see [1], [2]): let
T be a triangle, and let e be an edge of T . Then there exists a positive
constant C only depending on the minimum angle of T such that

‖ϕ‖2
0,e ≤ C

(
|e|−1‖ϕ‖2

0,T + |e||ϕ|21,T

)
, ϕ ∈ H1(T ). (3)

Clearly, (3) also holds for vector valued functions ϕ ∈ H1(Th).

3 The problem and a DG discretization

In this section we recall the Reissner–Mindlin plate model and derive a
discontinuous Galerkin discretization of it.

Given the load g in L2(Ω) and the tensor of bending moduli C, the
Reissner–Mindlin equations with clamped boundary determine the rotation
θ, transverse displacement w, and scaled shear stress γ by the equations

− div C ε(θ) − γ = 0 in Ω, (4)
− div γ = g in Ω, (5)

∇w − θ − λ−1t2γ = 0 in Ω, (6)
θ = 0, w = 0 on ∂Ω. (7)

Here ε denotes the usual symmetric gradient operator, λ the shear correc-
tion factor, and t the plate thickness. Henceforth we will incorporate λ in
the thickness (still denoting it by t).
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To obtain a weak mixed formulation of the system (4)–(7) we multiply
(4) by a test function η ∈ H1

0(Ω) and (5) by a test function v ∈ H1
0 (Ω),

integrate by parts, and add the equations. Next, we multiply (6) by a test
function τ ∈ L2(Ω) and integrate. We thus find that (θ, w) ∈ H1

0(Ω) ×
H1

0 (Ω) and γ ∈ L2(Ω) satisfy

(C ε(θ), ε(η)) + (γ,∇ v − η) = (g, v), (η, v) ∈ H1
0(Ω) ×H1

0 (Ω), (8)

(∇w − θ, τ ) − t2(γ, τ ) = 0, τ ∈ L2(Ω). (9)

A natural way to discretize the Reissner–Mindlin system is to restrict
the trial and test functions in this weak formulation to finite dimensional
subspaces. That is, we choose finite dimensions subspaces Θh ⊂ H1

0(Ω),
Wh ⊂ H1

0 (Ω), and Γh ⊂ L2(Ω) and define (θh, wh) ∈ Θh×Wh and γh ∈ Γh

by the equations

(C ε(θh), ε(η)) + (γh,∇ v − η) = (g, v), (η, v) ∈ Θh ×Wh,

(∇wh − θh, τ ) − t2(γh, τ ) = 0, τ ∈ Γh.

In order to overcome the well-known problem of locking—the loss of accu-
racy for small plate thickness—this formulation is often generalized by the
inclusion of a projection operator P h : H1(Th) → Γh to obtain the system

(C ε(θh), ε(η)) + (γh,P h(∇ v − η)) = (g, v), (η, v) ∈ Θh ×Wh,

(P h(∇wh − θh), τ ) − t2(γh, τ ) = 0, τ ∈ Γh.

(The method without P h can be viewed as the special case where P h is
taken to be the L2-projection onto Γh.) A number of the most successful
finite element methods for the Reissner–Mindlin system can be written in
this form with appropriate choices for the spaces Θh, Wh, and Γh and
the projection operator P h. However, simple choices of the finite element
spaces have been found to be unsuccessful even with the use of a projection
operator. For example, the choice of continuous piecewise linear functions
for Θh and Wh and piecewise constant functions for Γh seems natural, but
does not give a good method. In this paper we will show that very simple
discontinuous finite element spaces can be used.

To derive a finite element method for the Reissner–Mindlin system
based on discontinuous elements, we proceed as before testing (4) against
a test function η and (5) against a test function v, integrating by parts,
and adding, with the difference that now η and v may be discontinuous
across element boundaries, that is, they belong to H1(Th) and H1(Th),
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respectively. Thus we obtain

(C εh(θ), εh(η)) −
∑
e∈Eh

∫
e

{C εh(θ)} : [η] ds+ (γ,∇h v − η)

−
∑
e∈Eh

∫
e

{γ} · [v] ds = (g, v), (η, v) ∈ H1(Th) ×H1(Th), (10)

(∇h w − θ, τ ) − t2(γ, τ ) = 0, τ ∈ L2(Ω).
The two terms in the first equation involving integrals over the edges, which
did not appear in (8), arise from the integration by parts and are necessary
to maintain consistency. We now proceed as is common for DG methods.
First, we add terms to symmetrize this formulation so that it is adjoint-
consistent as well. Second, to stabilize the method, we add interior penalty
terms pΘ(θ,η) and pW (w, v) in which the functions pΘ and pW will depend
only on the jumps of their arguments. Since [θ] = 0 and [w] = 0, we find
that θ, w, and γ satisfy

(C εh(θ), εh(η)) −
∑
e∈Eh

∫
e

({C εh(θ)} : [η] ds+ [θ] : {C εh(η)}) ds

+ (γ,∇h v − η) −
∑
e∈Eh

∫
e

{γ} · [v] ds

+ pΘ(θ,η) + pW (w, v) = (g, v), (η, v) ∈ H2(Th) ×H2(Th),

(∇h w − θ, τ ) −
∑
e∈Eh

∫
e

[w] · {τ} ds− t2(γ, τ ) = 0, τ ∈ H1(Th).

(11)

To obtain a DG discretization, we choose finite dimensional subspaces
Θh ⊂ H2(Th), Wh ⊂ H2(Th), and Γh ⊂ H1(Th) and, in analogy with
the continuous Galerkin case, we incorporate a projection operator P h :
H1(Th) → Γh, so that the method takes the form: Find (θh, wh) ∈
Θh ×Wh and γh ∈ Γh such that

(C εh(θh), εh(η)) −
∑
e∈Eh

∫
e

({C εh(θh)} : [η] ds+ [θh] : {C εh(η)}) ds

+ (γh,P h(∇h v − η)) −
∑
e∈Eh

∫
e

{γh} · [v] ds

+ pΘ(θh,η) + pW (wh, v) = (g, v), (η, v) ∈ Θh ×Wh,

(12)

(P h(∇h wh − θh), τ ) −
∑
e∈Eh

∫
e

[wh] · {τ} ds− t2(γh, τ ) = 0, τ ∈ Γh. (13)
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For any choice of the finite element spaces Θh, Wh, and Γh, and any interior
penalty functions pΘ and pW depending only on the jumps of their argu-
ments, this gives a consistent finite element method when the projection
operator P h is simply the L2-projection onto Γh. Most other choices of
P h introduce a consistency error just as for continuous Galerkin methods.

The numerical method we will consider is of the form (12), (13). To
complete the specification of the method we need to specify three things:
the finite element spaces Θh, Wh, and Γh; the interior penalty forms pΘ

and pW ; and the projection operator P h. For the finite element spaces we
make a simple choice, namely for an integer k ≥ 1 we use fully discontinuous
piecewise polynomials of degree k to discretize θ and w, and of degree k−1
for γ. Using the notation introduced in (1),

Θh = L0
k(Th), Wh = L0

k(Th), Γh = L0
k−1(Th).

Note that this choice ensures that

∇h (Wh) ⊂ Γh, (14)

an important relation for this method as for many discretizations of the
Reissner–Mindlin system. This, of course, implies that, for any projection
operator P h : H1(Th) → Γh, P h ∇h v = ∇h v for all v ∈Wh.

We make a standard choice for the interior penalty term pΘ:

pΘ(θ,η) =
∑
e∈Eh

κΘ

|e|

∫
e

[θ] : [η] ds, (15)

so that pΘ(η,η) can be viewed as a measure of the deviation of η from
being continuous. The parameter κΘ is a positive constant to be chosen;
it must be sufficiently large to ensure stability. For pW we use a weaker
penalization:

pW (w, v) =
∑
e∈Eh

κW

|e|

∫
e

Qe[w] · Qe[v] ds,

where Qe is the L2-projection onto polynomials of degree k−1 on the edge
and κW is again a positive constant to be chosen. Thus we penalize the
deviation of w from the usual non-conforming degree k finite element space
rather than the deviation from continuity.

Finally, we need to specify the projection operator P h. In the lowest
order case, k = 1, we simply choose the L2-projection onto the piecewise
constant space L0

0(Th). For k > 1 the definition of P h is more complicated
and requires some notation and a lemma. For any odd integer k > 1 and
any triangle T , define

Γ∗(T ) = { τ + curl(bT v) | τ ∈ Pk−1(T ), div τ ∈ Pk−3(T ), v ∈ Pk−2(T ) }.
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Here bT is the cubic bubble given by λ1λ2λ3 where the λi are the barycentric
coordinate functions on T , and curl v := (−∂v/∂y, ∂v/∂x) (with formal
adjoint rot δ := ∂δ1/∂y−∂δ2/∂x). For k = 1 we interpret Γ∗(T ) = P0(T ).
Note that dimΓ∗(T ) = dim Pk−1(T ).

Lemma 3.1 Let k be a positive odd integer and T a triangle. If δ ∈
Pk−1(T ) satisfies

∫
T δ · ρ dx = 0 for all ρ ∈ Γ∗(T ), then δ = 0.

Proof. This is obvious for k = 1 so we assume k ≥ 3. By integration by
parts, we have

∫
T (rot δ)bT v dx = 0 for all v ∈ Pk−2(T ). In particular, we

can take v = rotδ and conclude that rotδ = 0. Therefore δ = ∇ψ for
some ψ ∈ Pk(T ) which we can normalize to have mean value 0 on ∂T . Now,
given an arbitrary q ∈ Pk−2(T ) and an arbitrary piecewise polynomial μ
of degree k − 1 on ∂T (that is, μ restricts to a polynomial of degree k − 1
on each edge of T ), we have that the equation

div τ = q in T , τ · n = μ on ∂T (16)

has a solution τ ∈ Pk−1(T ) if and only if
∫

T
q dx =

∫
∂T
μds. (This can be

checked by counting dimensions and noting that τ satisfies (16) for q = 0,
μ = 0 if and only if τ = curl(bT p) for some p ∈ Pk−3(T )). Taking q = 0
and μ an arbitrary piecewise polynomial of mean value 0 on ∂T , we can
solve (16) to find τ ∈ Γ∗(T ). Then integration by parts gives

0 =
∫

T

∇ψ · τ dx =
∫

∂T

ψμds.

This, together with our normalization
∫

∂T
ψ ds = 0 shows that ψ|∂T is

orthogonal to all piecewise polynomials of degree k− 1. Therefore on each
edge ψ must be a multiple of the Legendre polynomial of degree k and hence
it mush change sign exactly k times on each edge (unless it is identically
0). The global continuity of ψ, however, rules out an odd number (3k) of
sign changes, so we conclude that ψ = 0 on ∂T , i.e., ψ = bTφ for some
φ ∈ Pk−3(T ). Now take q = φ, μ = constant on ∂T in (16). The resulting τ
belongs to Γ∗(T ) and so is orthogonal to δ = ∇(bTφ), and now integration
by parts immediately implies that φ = 0. �

Let
Γ∗

h = { τ ∈ L2(Ω) | τ |T ∈ Γ∗(T ), T ∈ Th }. (17)

In view of the lemma, we may define P h : L2(Ω) → Γh by

(δ − P hδ, τ ) = 0, τ ∈ Γ∗
h. (18)
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4 Error analysis

Having completed the specification of our family of DG methods (one for
each positive odd integer k), in this section we state and prove the basic
error estimates for the methods. For this purpose we first define norms

|||η|||2Θ := ‖η‖2
1,h +

∑
e∈Eh

(
1
|e| ‖[η]‖2

0,e + |e| ‖{C εh(η)}‖2
0,e

)
, (19)

|||v|||2W := |v|21,h +
∑
e∈Eh

1
|e|‖[v]‖

2
0,e, (20)

|||τ |||2Γ := ‖τ‖2
0 +

∑
e∈Eh

|e|‖{τ}‖2
0,e, (21)

for η ∈ H2(Th), v ∈ H1(Th), and τ ∈ H1(Th).

Remark 4.1 If we replace [v] in (20) with its projection into some poly-
nomial space on the edge, we obtain an equivalent norm. That is,

|||v|||2W ≈ |v|21,h +
∑
e∈Eh

1
|e| ‖Qe([v])‖2

0,e

≈ |v|21,h +
∑
e∈Eh

1
|e| ‖Q

0
e([v])‖2

0,e, v ∈ H1(Th),

(22)

where Qe is, as above, the L2-projection onto polynomials of degree k−1 on
the edge e, and Q0

e the L2-projection onto constants on e, and the constants
of equivalence depend only on the minimum angle of the triangulation.
Obviously

|v|21,h +
∑
e∈Eh

1
|e| ‖Q

0
e([v])‖2

0,e ≤ |v|21,h +
∑
e∈Eh

1
|e| ‖Qe([v])‖2

0,e ≤ |||v|||2W ,

so, to establish (22), we need only show that

∑
e∈Eh

1
|e| ‖[v]‖

2
0,e ≤ C |v|21,h +

∑
e∈Eh

1
|e| ‖Q

0
e([v])‖2

0,e.

Now if v ∈ H1(T ) for some triangle T with edge e and Q0
ev denotes the

average of v on e (i.e., the L2-projection into constants of its trace on e),
we have

1
|e|‖v −Q0

ev‖2
0,e ≤ C(

1
|e|2 ‖v −Q0

ev‖2
0,T + ‖∇v‖2

0,T ) ≤ C‖∇v‖2
0,T ,
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where we have used (3) and a simple approximation result. It follows that,
for v ∈ H1(Th),

∑
e∈Eh

1
|e|‖[v] − Q0

e([v])‖2
0,e ≤ C|v|21,h,

and so ∑
e∈Eh

1
|e| ‖[v]‖

2
0,e =

∑
e∈Eh

1
|e|(‖[v] − Q0

e([v])‖2
0,e + ‖Q0

e([v])‖2
0,e)

≤ C |v|21,h +
∑
e∈Eh

1
|e| ‖Q

0
e([v])‖2

0,e,

as desired.

The following theorem is the principal result of the paper.

Theorem 4.2 Let θ, w, γ solve the Reissner–Mindlin system (8), (9). Let
k be a positive odd integer and suppose that the penalty parameter κΘ is
sufficiently large and the penalty parameter κW is positive. Then there
exists a unique solution θh, wh, γh to the discontinuous Galerkin method
(12)–(13). Moreover, there exists a constant C, independent of h and t,
such that

|||θ − θh|||Θ + |||w − wh|||W + t|||γ − γh|||Γ
≤ C hk (‖θ‖k+1 + ‖w‖k+1 + ‖γ‖k) . �

Remark 4.3 This estimate is clearly optimal with respect to the power
of h and with respect to the regularity of θ and w. With respect to the
regularity of γ one might hope to replace ‖γ‖k with t‖γ‖k + ‖γ‖k−1 +
‖ div γ‖k−1 on the right-hand side. However, such an estimate does not
follow from the current analysis. We will however be able to prove it, in
the last section, for the continuous-nonconforming case.

We now turn to the proof Theorem 4.2, beginning by introducing some
notation. Let

ah(θ,η) = (C εh(θ), εh(η))

−
∑
e∈Eh

∫
e

({C εh(θ)} : [η] + [θ] : {C εh(η)}) ds+ pΘ(θ,η),

j(τ , v) =
∑
e∈Eh

∫
e

{τ} · [v] ds. (23)
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Clearly we have

ah(θ,η) ≤ C|||θ|||Θ|||η|||Θ, θ,η ∈ H2(Th), (24)

j(τ , v) ≤ C|||τ |||Γ|||v|||W , v ∈ H1(Th), τ ∈ H1(Th). (25)

In this notation we may rewrite (11) as

ah(θ,η) + (γ,∇h v − η) − j(γ, v) + pW (w, v) = (g, v),

(η, v) ∈ H2(Th) ×H2(Th), (26)

(∇h w − θ, τ ) − j(τ , w) − t2(γ, τ ) = 0, τ ∈ H1(Th), (27)

and (12)–(13) as

ah(θh,η) + (γh,∇h v − P hη) − j(γh, v) + pW (wh, v) = (g, v),
(η, v) ∈ Θh ×Wh, (28)

(∇h wh − P hθh, τ ) − j(τ , wh) − t2(γh, τ ) = 0, τ ∈ Γh. (29)

Defining a lifting operator J : H1(Th) → Γh by the equation

(J(v), τ ) = j(τ , v), τ ∈ Γh, (30)

we can eliminate γh in (29):

γh = t−2(∇h wh − J(wh) − P hθh). (31)

Substituting in (28), we obtain an alternate formulation of the method:

ah(θh,η) + t−2(∇h wh − J(wh) − P hθh,∇h v − J(v) − P hη)
+ pW (wh, v) = (g, v), η ∈ Θh, v ∈Wh.

The following estimate for J will play an important role in the analysis.
(Here and throughout the sequel we continue to denote by C a generic
constant which may depend on the mesh through its shape regularity but
not otherwise and which is independent of t.)

Proposition 4.4

|||J(v)|||2Γ ≤ C
∑
e∈Eh

1
|e| ‖Qe[v]‖2

0,e, v ∈ Wh.
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Proof. First we note that, by a local inverse inequality,

|||τ |||Γ ≤ C‖τ‖0, τ ∈ Γh. (32)

Now

‖J(v)‖2
0 = (J(v),J(v)) = j(J(v), v) =

∑
e∈Eh

∫
e

{J(v)} · [v] ds

=
∑
e∈Eh

∫
e

{J(v)} · Qe[v] ds.

Therefore

‖J(v)‖2
0 ≤

(∑
e∈Eh

|e|‖{J(v)}‖2
0,e

)1/2(∑
e∈Eh

1
|e|‖Qe[v]‖2

0,e

)1/2

≤ |||J(v)|||Γ

(∑
e∈Eh

1
|e| ‖Qe[v]‖2

0,e

)1/2

,

and so the proposition follows using (32). �

The next two propositions are analogues of Poincaré’s inequality and
Korn’s inequality for piecewise smooth functions.

Proposition 4.5

‖v‖0 ≤ C |||v|||W , v ∈ H1(Th). (33)

Proof. The result is well-known. See for instance [2] or the more general
results of [10].

Proposition 4.6

‖η‖2
1,h ≤ C(

∑
T∈Th

‖ ε(η)‖2
0,T +

∑
e∈Eh

1
|e| ‖[η]‖2

0,e), η ∈ H1(Th). (34)

Proof. The result follows immediately using formula (1.12) of [11] to bound
the H1(Th) seminorm of η, and then using (1.3) of [10] to bound the L2

norm. Note that, unlike in [10] and [11], our jump term includes integrals
over edges in Γ, which allow us to avoid the integrals on Γ appearing
there. �

Using Proposition 4.6, (3), and an inverse inequality, it is straightfor-
ward to verify the following proposition.
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Proposition 4.7 There exist positive constants κ0 and α depending only
on the polynomial degree k and the shape regularity of the partition Th,
such that: if the constant κΘ ≥ κ0 (where κΘ is the penalty parameter
appearing in (15)), then

ah(η,η) ≥ α|||η|||2Θ, η ∈ Θh. (35)

To proceed with the analysis we define, for θ ∈ H1(Ω), w ∈ H1(Ω),
and γ ∈ L2(Ω), approximations θI ∈ Θh, wI ∈ Wh, and γI ∈ Γh. For θI

we simply take the L2-projection of θ onto Θh. Since Γ∗
h ⊂ Θh, an obvious

(but important) consequence is that

P hθ = P hθI , θ ∈ H1(Ω). (36)

Of course we have
|||θ − θI |||Θ ≤ C hk‖θ‖k+1. (37)

For wI we use a standard non-conforming Pk interpolant. Namely on
each triangle T we define wI |T ∈ Pk(T ) by∫

e

(w − wI)μds = 0, μ ∈ Pk−1(e) for each edge e of T , (38)∫
T

(w − wI)v dx = 0, v ∈ Pk−3(T ). (39)

Note that∫
T

∇(w − wI) · τ dx = −
∫

T

(w − wI) div τ dx+
∫

∂T

(w − wI)τ · n ds,

which vanishes if τ ∈ Pk−1(T ) with div τ ∈ Pk−3(T ) and certainly if
τ = curl(bT v) for some v. Thus

P h(∇w) = P h(∇h wI) = ∇h wI , w ∈ H1(Ω), (40)

with the last equality coming from (14). Standard approximation theory
gives

|||w − wI |||W ≤ C hk‖w‖k+1. (41)

We also note that (38) implies that Qe[w−wI ] = 0 on every edge e. Hence,

pW (w − wI , vh) = 0, vh ∈Wh. (42)

Finally we define γI = P hγ. Standard approximation arguments es-
tablish that

|||γ − γI |||Γ ≤ C hk‖γ‖k. (43)
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Most importantly, (36) and (40) together imply that if γ = t−2(∇w − θ),
then

γI = t−2(∇h wI − P hθI). (44)

Following ideas from Duran and Liebermann [21], our analysis will rely on
this last relation. Also important, but specific to the case of discontinuous
elements, is the relation

j(τ , wI) = 0, w ∈ H1(Ω), τ ∈ Γh,

or, equivalently,
J(wI) = 0, (45)

which follows directly from (38).
We will bound the error between the exact solution θ , w, γ, determined

by (26) and (27), and the Galerkin solution θh, wh, γh, determined by (28)
and (29), in terms of the errors in θI , wI , and γI which can in turn be
bounded as in (37), (41), and (43). Let

θδ = θh − θI , wδ = wh − wI , γδ = γh − γI . (46)

From (31), (44), and (45) we have

P hθδ = −t2γδ + ∇h wδ − J(wδ). (47)

Using (35), then adding and subtracting θ we obtain

α|||θδ|||2Θ ≤ ah(θδ,θδ) = ah(θh − θ,θδ) + ah(θ − θI ,θδ)
=: ah(θh − θ,θδ) + T1.

(48)

Then we take η = θδ, v = 0 in (26) and (28), and we add and subtract
P hθδ, to obtain

ah(θh − θ,θδ) = (γh,P hθδ) − (γ,θδ)
= (γh − γ,P hθδ) + (γ,P hθδ − θδ) =: (γh − γ,P hθδ) + T2. (49)

By (47),

(γh − γ,P hθδ) = −t2(γh − γ,γδ) + (γh − γ,∇h wδ − J(wδ))

= −t2‖γδ‖2
0 − t2(γI − γ,γδ) + (γh − γ,∇h wδ − J(wδ))

=: −t2‖γδ‖2
0 + T3 + (γh − γ,∇h wδ − J(wδ)).

The first term in the right-hand side is negative, and will go to the left
in the final estimate. To deal with the last term, we note that (28) with
η = 0, v = wδ, and (30) give

(γh,∇h wδ − J(wδ)) = (g, wδ) − pW (wh, wδ) = (g, wδ) + pW (w − wh, wδ),
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and (26) gives
(γ,∇h wδ) = (g, wδ) + j(γ, wδ),

so

(γh − γ,∇h wδ − J(wδ)) = pW (w − wh, wδ) + (γ,J(wδ)) − j(γ, wδ)
=: pW (w − wh, wδ) + T4.

Finally, adding and subtracting wI , and using (42) we deduce

pW (w − wh, wδ) = pW (w − wI , wδ) − pW (wδ, wδ) = −pW (wδ, wδ).

The last term in the right-hand side is negative, and goes to the left-hand
side. Collecting the above equations we have

α|||θδ|||2Θ + t2|||γδ|||2Γ + pW (wδ, wδ) ≤ T1 + T2 + T3 + T4, (50)

where

T1 = ah(θ − θI ,θδ) ≤ C|||θ − θI |||Θ |||θδ|||Θ, (51)
T2 = (γ,P hθδ − θδ), (52)

T3 = t2(γ − γI ,γδ) ≤ t2‖γ − γI‖0 ‖γδ‖0, (53)
T4 = (γ,J(wδ)) − j(γ, wδ). (54)

To estimate T4 we add and subtract γI using (30), and then we use
(25) and Proposition 4.4, obtaining

T4 = (γ,J(wδ)) − j(γ, wδ) = (γ − γI ,J(wδ)) − j(γ − γI , wδ)
≤ C |||γ − γI |||Γ |||wδ |||W .

This estimate is not, however, satisfactory, since we do not have a term like
|||wδ|||W in the left-hand side of (50). Hence, we have to bound ‖∇h wδ‖0

as well. For this, we apply (47), Proposition 4.4, and the L2-boundedness
of P h to obtain

‖∇h wδ‖0 = ‖t2γδ + J(wδ) + P hθδ‖0

≤ C(t2|||γδ|||Γ + |||θδ|||Θ + (pW (wδ , wδ))1/2),

and therefore, thanks to (22),

|||wδ |||W ≤ C(t2|||γδ|||Γ + |||θδ|||Θ + (pW (wδ, wδ))1/2). (55)

It remains to bound T2. From the definition of P h, we have

T2 = (γ − δ,P hθδ − θδ) ≤ ‖γ − δ‖0‖P hθδ − θδ‖0 ≤ Ch‖γ − δ‖0|||θδ|||Θ,
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where δ is an arbitrary element of Γ∗
h. We may choose, for example, δ to

be the L2-projection of γ onto L0
k−2(Th) and get ‖γ−δ‖0 ≤ Chk−1‖γ‖k−1.

Thus
T2 ≤ Chk‖γ‖k−1|||θδ|||Θ.

Combining the preceding estimates and invoking the arithmetic-geomet-
ric mean inequality we obtain

|||θδ|||2Θ + t2|||γδ|||Γ + pW (wδ, wδ)

≤ C
(
|||θ − θI |||2Θ + (1 + t2)|||γ − γI |||2Γ + |||w − wI |||2W + h2k‖γ‖2

k−1

)
.

In view of (55), this becomes

|||θδ|||2Θ + t2|||γδ|||Γ + |||wδ|||2W
≤ C

(
|||θ − θI |||2Θ + (1 + t2)|||γ − γI |||2Γ + |||w − wI |||2W + h2k‖γ‖2

k−1

)
.

Finally, combining with the triangle inequality and the interpolation error
bounds (37), (41), (43), and assuming as natural that t is bounded from
above, we complete the proof of the Theorem 4.2.

5 Continuous θ and nonconforming w

In this final section we consider a method in which θ is discretized by
means of continuous elements, and w by means of nonconforming ones.
Our method is still of the form (12)–(13), and again we must specify the
finite element spaces Θh, Wh, and Γh, the penalty functions pΘ and pW ,
and the projection operator P h. The penalty functions are not needed
for this method, and can be taken to vanish. We keep Γh = L0

k−1(Th) as
before, and we keep the definition (18) of P h where Γ∗

h is still given by
(17). For the choice of Wh we take the space of nonconforming piecewise
polynomials of degree at most k, that is

Wh = { vh ∈ L0
k |Qe[vh] = 0, e ∈ Eh } (56)

where Qe is as before the L2-projection on the space of polynomials of
degree k − 1 on e. Obviously we still have ∇h(Wh) ⊂ Γh.

The above definitions allow us to again take γI := P hγ ∈ Γh and to
again define wI ∈ Wh by (38)–(39). Then (40) still holds. In order to
have the fundamental property (44), on which the error analysis is based,
we need to define the space Θh so it admits an interpolation operator
θ �→ θI ∈ Θh satisfying (36) (which, together with (40), implies (44)).
The continuity we are requiring for θI precludes the choice θI = P hθ
made formerly, and leads to a more complicated construction of Θh. In
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particular, the somewhat natural choice Θ = L1
k does not work (even for

k = 1) as we would not have enough degrees of freedom to force (36) in
each element. Instead, we start from L1

k and add a sufficient number of
bubble functions to ensure (36).

Define Θ(T ) = Pk(T ) + bT Γ∗(T ), and remark that all the bubbles of
Pk(T ) can be written as bT Pk−3(T ). Since Pk−3(T ) ⊂ Γ∗(T ), all the
bubbles of Pk(T ) belong to bT Γ∗(T ). Hence a set of degrees of freedom
for θ ∈ Θ(T ) consists of the values of each component of θ at the vertices
of T , the moments of degree at most k− 2 of each component of θ on each
edge of T , and the integrals

∫
T θ · η dx for each η in a basis for Γ∗(T ).

Hence, we can set

Θh = { θ ∈ H1
0(Ω) |θ|T ∈ Θ(T ), T ∈ Th },

and use the above degrees of freedom to construct a projection operator
C(T ) → Θ(T ), and so an operator θ �→ θI from C(Ω) ∩ H1

0(Ω) → Θh. It
is then clear that for this operator (36) holds.

Because of the continuity of the elements of Θh and the near continuity
of the elements of Wh, all the terms involving edge integrals in (12)–(13)
vanish, and the method may be simply written

(C ε(θh), ε(η)) + (γh,∇h v − P hη)) = (g, v), (η, v) ∈ Θh ×Wh, (57)

(∇h wh − P hθh, τ ) − t2(γh, τ ) = 0, τ ∈ Γh. (58)

Remark 5.1 In the lowest order case, k = 1, Γh = Γ∗
h is just the space

of piecewise constants and P h the L2-projection into this space, Θh is the
usual space of conforming piecewise linears augmented by bubbles, and
Wh the usual space on nonconforming piecewise linears, so this method is
exactly that of Arnold and Falk [5].

Remark 5.2 The choice of Θh was made in order to obtain (36) easily,
rather than to simplify the implementation of the method. From the latter
point of view, the alternative choice based on Θ(T ) := Pk(T ) + bT Pk−1

(which coincides with our choice only for k = 1) seems natural, but we
shall not consider this possibility here.

Equation (58) may be written in strong form as

t2γh = ∇h wh − P hθh, (59)

which makes it easy to see that the method admits a unique solution.
Moreover, (59) and (44) together give

t2γδ = ∇h wδ − P hθδ (60)
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(with the notation given by (46)). We now turn to the error analysis,
assuming that k ≥ 3 (since the case k = 1 is handled in [5]).

The analysis proceeds along the same lines as in the previous section.
Following (48) and (49) we obtain

α|||θδ|||2Θ ≤ T1 + T2 + (γh − γ, Phθδ),

with T1 and T2 still given by (51) and (52). We can now use (60), add and
subtract γI , use (57) and (10) (both with η = 0), and the definition of j
given by (23) to obtain:

(γh − γ, Phθδ) = −t2(γh − γ,γδ) + (γh − γ,∇hwδ)

= −t2‖γδ‖2
0 − t2(γI − γ,γδ) + (γh − γ,∇h wδ)

=: −t2‖γδ‖2
0 + T3 + (γh − γ,∇hwδ)

= −t2‖γδ‖2
0 + T3 − j(γ, wδ),

where the first term in the right-hand side is negative, and will go to the
left in the final estimate, and T3 is given by (53). It remains to bound the
last term.

Let γM denote the BDM interpolant of γ of degree k − 1 (see, e.g.,
[13] or [14]). Thus γM ∈ L0

k−1(Th) satisfies: i) its normal component
is continuous across interelement boundaries, ii) div γM = Pk−2 div γ =
Pk−2g where Pk−2 denotes the L2-projection onto L0

k−2(Th), and iii) γ −
γM is orthogonal to L0

0.
Using the definition (23) of j( · , · ), then (56), then (2) and Green for-

mula in each T , then (60) and ii), then iii) and ii), then Cauchy-Schwarz,
the arithmetic-geometric mean inequality and finally standard interpola-
tion estimates, we get

j(γ, wδ) = j(γ − γM , wδ)
= (γ − γM ,∇h wδ) + (div γ − div γM , wδ)

= (γ − γM , t2γδ + P hθδ) + (g − Pk−2g, wδ)

= t2(γ − γM ,γδ) + (γ − γM , (I − P0)P hθδ)
+ (g − Pk−2g, (I − P0)wδ)

≤ 1
2ε
t2‖γ − γM‖2

0 +
ε

2
t2‖γδ‖2

0 + ‖γ − γM‖0 ‖(I − P0)P hθδ‖0

+ ‖g − Pk−2g‖0 ‖(I − P0)wδ‖0

≤ 1
2ε
t2h2k‖γ‖2

k +
ε

2
t2‖γδ‖2

0 + C hk−1‖γ‖k−1 h|||θδ|||

+ C hk−1‖g‖k−1 h|||wδ |||W .
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The remainder of the error analysis follows the lines of the previous section,
arriving finally to the error bound

|||θ − θh|||Θ + |||w − wh|||W + t|||γ − γh|||Γ
≤ C hk (‖θ‖k+1,Ω + ‖w‖k+1,Ω + t‖γ‖k + ‖γ‖k−1 + ‖g‖k−1) .
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