IMPLEMENTATION OF THE STABILIZED THREE-FIELD
FORMULATION
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Abstract. This paper deals with the computational aspects of the so-called three-field formula-
tion, introduced first in [6] and analysed in [8]. In particular, we introduce the possible use of virtual
bubbles (in the basic framework of [1]) and we show that their use can simplify the implementation
of the method. A variety of numerical experiments is also presented. They show that the use of
virtual bubbles instead of conventional ones does not affect the quality of the final accuracy. More
generally, they show clearly the general robustness of the three-field formulation, together with the
possibility of using powerful preconditioners when the interface grid is chosen to be uniform.

1. Introduction. Let us briefly recall, for the convenience of the reader, the
main idea of the three-field formulation. Assume that we have to solve a linear elliptic
problem whose variational formulation is given by:

find w €V such that a(w,v) = (f,v) Yv eV, (1.1)

on a domain 2. We assume that the problem is associated to a second-order dif-
ferential operator, so that the space V will be a subspace of H!(Q). By splitting
Q into subdomains Q* one introduces suitable subspaces V* of H'(Q*), and defines
M® = H'Y%0Q%), & = U,00% and & = {traces on ¥ of the functions of
V}. Setting V* :=TI,V?® and M* := II,M?, the three-field formulation of (1.1) then
reads

findu e V*, A e M*, and ¢ € ® such that
i) as(u®,v)— <A o> = (f,v)s YveV? Vs (1.2)
i) < p’us > = <pf > Vu' e M? Vs .
iii) Yo, < A%, o>, =0 Yo € ®

with obvious meaning for as, < .,. >s and (.,.)s (see also (2.2)- (2.3) in the next

section). This formulation was originally introduced in [6], [7], where it was proved
that, under reasonable assumptions, problem (1.2) has a unique solution related to
the solution of (1.1) by

i) wu® = wiqs for each s
.. ow
i) A® = for each s (1.3)
ana |62
iii) ¢ = wy,
with =2 = outward conormal derivative to 9Q2°. For other interesting variants

g |9Qs
of (1.2) see [14]. In order to approximate (1.2) one has to choose, for every s, finite
dimensional subspaces V,*, M; and ®;, of V* M?* and & respectively, to construct
V=1LV, and Mj :=1I,M}, and to consider the following discretized problem:

find up € V7, Ap € My,  and ¢, € &, such that

i) as(uj,v)— < Aj,v>s = (f,v)s Yv e Vy Vs (1.4)
i) < p®up > = < uf, P > Vu® € Mj Vs ’
i) Y, < A5, ¢ > =0 Vo € .
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If the three families of subspaces are suitably chosen, problem (1.4) will be well posed,
and its solution will converge to the exact solution of (1.2) with optimal order. In
general, the finite element spaces &, V¥ and M, will be based on three corresponding
decompositions, that cannot be chosen arbitrarily. In [8], we considered the case where
two independent choices are given, a priori, for ®, and V;’. It seems particularly
reasonable to assume the grid for ®; as given, since in many cases this will be the
space were multidomain preconditioners (for the Schur complement) will be applied:
to have a convenient grid might then allow the use of more powerful preconditioners
(see for instance [11], [13], [2], [4], [17], [12], [15], [16].) Similarly, it is also reasonable
to assume the grid for V;’ as given, as it is often the case for real applications, where
the nature of the original problem (1.1) dictates different grids in different parts of
the domain. Let us assume, for simplicity, that both ®; and V,’ are made of piecewise
linear continuous functions. The task is then to start from the two given grids, and
to reach, with minor modifications, a problem of the type (1.4) which is well posed
and optimally convergent. The main idea of [5], made precise and perfectioned in
[9] and then in [8], was to chose first a suitable grid for the multipliers M}, in each
subdomain, starting from the given grids 7 (for ¢ at the interfaces) and 7,F (for
u within each subdomain). Essentially, the choice considered was to take, in each
subdomain,

I\ = merge {(Z))ir+, (Fp)r=} Vs (1.5)

Once the grids .7)° were given, the spaces M} were chosen as piecewise constants on
Z}. In general, this choice cannot actually guarantee stability. However, the idea was
to increase artificially the original spaces V,’ with the addition of boundary bubbles
(essentially: functions having support in a single boundary triangle.) If, for every
s, Bj is the space of bubbles to be used in order to augment the space V}’, we replace
then V;’ by the augmented space

Vi = ViaeB, Vs (1.6)
Setting finally ‘N/h* = HSXN/,f, the stabilized discrete problem becomes

find uy, € ‘7,1*, An € My and v, € ®,  such that

i) as(uj,v)— < A,v >, = (f,v)s VUE‘N/,f Vs
i) < pfuf > = < pf,hp >, Yu® € My Vs
i) Y, <A, 0> =0 Vi € ®,.

(1.7)

All this will become clearer, and more precise, in the next sections, where a particular
case will be considered. For the time being, we just point out that, under reasonable
assumptions on the original given grids 7 and 77, we were able to indicate a suitable
choice of piecewise quadratic boundary bubbles, whose addition makes (1.7) stable
and optimally convergent. Moreover, (see also [9]), it is possible to eliminate a priori
both the bubbles and the multipliers in such a way that, in each subdomain, one is
left with a problem in the only (original) unknown wy,.

In the present paper, we reconsider the choice of the bubble functions, that we now
allow to be much more general. In particular, we show that the elimination process
can be simplified with a nonstandard choice of the bubble shape. We also indicate
explicitly a possible very effective preconditioner that can be used if the grid 7 is
uniform, and we test it on a model problem. More generally, we performed several
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series of tests, always on a simple model problem, in order to assess the robustness of
the method.

An outline of the paper is as follows. In section 2, we choose the model problem,
and we present, in this particular case, the spaces to be used, the type of bubbles
that we are going to use, and the corresponding elimination procedure in more detail.
Always on the model problem, we describe the preconditioner as well. In section 3 we
present the numerical results that we have obtained. The possible parameters that we
might have taken into account are several: the ratio between the two abutting grids
for u, the ratio among the grids for u and for v, the shape of the bubbles, and the
general behaviour when all the meshes are refined (say, halved) at the same time. We
tried to point out the most meaningful among those relationships. In particular, the
theoretical error bounds proved in [8] are fully verified, even with the present more
general bubble shape.

2. The problem, the spaces and the bubbles. In order to simplify the
presentation, we confine ourselves on a particularly simple toy-problem. It should be
clear, however, that all the contents of this section can be very easily extended to
much more complex situations.

We assume therefore that our bilinear form a(w, v) is associated with the Laplace
operator:

a(u,v) :/ Vu - Vodz dy. (2.1)
Q

Always to make life simple, assume that Q is the rectangle | — 1, 1[x]0, 1], split into
Q! =] —1,0[x]0, 1] and Q2 =]0, 1[x]0, 1[. Accordingly, we set

as(u,v) = / Vu - Vuvdzdy, (2.2)
Qs
for s = 1,2. Similarly we set

<u,v >s:/ uvdl (u,v)S:/ uvdzdy (2.3)
895 s

For the time being, we consider homogeneous Dirichlet boundary conditions on 92,
although the numerical experiments have been done with nonhomogeneous ones. It
is true that, in the finite element context, nonhomogeneous Dirichlet boundary con-
ditions are easier to implement than to explain. Accordingly, we then have

V = H; (Q), Vi={ve H(Q), v=0 on 09}, s=1,2. (2.4)

We assume that we are given a (uniform) decomposition 7 of the interface, and
two given decompositions 7, and 7.2 of Q' and Q? respectively. For simplicity, we
might also assume that they are both uniform (right triangles), as those used in the
numerical experiments, although this is not really necessary. What is important, in
order to have a meaningful case, is that the two decompositions do not agree on the
interface ¥ = {0} x]0, 1[. We consider then, as we announced in the introduction, the
spaces &, Vh1 and Vh2 as made of piecewise linear continuous functions on the given
decompositions. We then use the basic idea (1.5) to define the grids for the multiplier,
which are given here by

I = merge {(7)12, (Zy)}  s=1,2, (2.5)
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and we take M} and M7 made of piecewise constants on their respective grids. Then
M; =M} x M},

We are now ready for the introduction of the bubbles. We restrict our attention to
QL. The procedure on Q? will be identical. Let T be a triangle in 7,! having an edge
L on X, and let P be the vertex of T opposite to L. Let now Iy, ...Ix be the intervals
of T} contained in L. For every k = 1,.., K we consider the triangle T} having I as
one edge, and P as opposite vertex. Applying this procedure to every triangle having
an edge on X, we obtain as many subtriangles T}, as there are intervals in T;!. For
every subtriangle T}, we choose now one function by, with the following properties: we
assume that [ I, by, is different from zero, so that we can normalise it to one. We also
assume that by vanishes identically on the other two edges of T,. When convenient,
we shall identify by with its extension by zero on Q', that will clearly belong to V'!.
We now call B! the subspace of V! spanned by all the bubbles by, and we set, as in
(1.6)

Vi=v'g B. (2.6)

By applying the same procedure in~Q2 we will obtain a space V2 that, together with
V1 gives then rise to Vi = V1 x V2. With all the spaces made precise we can now
reconsider the stabilized problem (1.7), that we report here for the convenience of the
reader:

find uy, € ‘7,;*, An € My and vy € &, such that

D) as(ui,v)— <A, v > = (f,v)s VUEIN/hS s =
i) < pbuf >, = < p i > Ve M; 5=
i) Y, <A, 0> =0 Yy € ®,.

(2.7)

Looking at (2.7) it is clear that, for fixed v, the first two equations can be solved
independently and in parallel. We can therefore consider the mapping %, = (., %)
that associates to the pair (f,y) the solution (up, A\p) of the first two equations of
(2.7). With this notation, problem (2.7) can be written as:

2
find ¢, € ®), such that S <A ), >=0, Vo€ By (2.8)

s=1

It is clear that in (2.8) a crucial role is played by the linear operator Sy, from @} to
its dual space, defined by:

2

< Sh(djh),(ﬂ >i= Z < yA(Oﬂ/’h);‘P >s (29)

s=1

which is commonly called Schur complement, and whose spectral properties have a
paramount relevance in solving (2.8) by iterative methods. We shall come back to
this very important point when discussing the preconditioner.

For the time being, we concentrate first on the procedure of eliminating bubbles
and multipliers. As we shall see, the procedure can be implemented, separately and
in parallel, in each subdomain Q°. Hence, to describe it, we concentrate on a single
domain. We assume 1), to be given, and we see how to compute the corresponding uj,
and Aj. For the sake of simplicity, we might drop at this point the superscript s, as
the same identical procedure will be applied, in parallel, in each subdomain. With an

—
N DN
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abuse of notation, we are also going to call 2 (instead of 2%) the current subdomain,
and so on. No confusion should arise. With this simplified notation the local problem
becomes:

given vy, on 012, find uy € ‘7,1 and A\, € M} such that
) a(up,v)— < Ap,v > = (f,v) Yv € Vj, (2.10)
i) < p,up > = <> Yu€ My,

where M} is made of piecewise constants on 7, and ‘N/h is obtained as the sum
of piecewise linear functions on , (that we will denote by V7,) and the space of
boundary bubbles Bj. Accordingly, u, will be written as

up(x) :uL(m)—l-Zu'fB by (), (2.11)
k

where k ranges now on the set of all the bubbles.
From the second equation of (2.10), by taking u as the characteristic function of
an interval I, of .7, we obtain:

uk = ( : Ypdl — /1 uLdF> //Ik bydl. (2.12)

We remark that both wy, and ¢y, are linear in each I,. We also remind that the bubbles
were normalized in such a way that [ I, bpdl’ = 1 for all k. Therefore, indicating by
my, the midpoint of Ij,, we immediately obtain from (2.12) that

uly = (n(mi) — ug (mp))| I ). (2.13)

We can now use the first equation of (2.10), with v = by, in order to express \j, as a
function of the other variables:

A = a(ur,bk) + Ulfg a(be,br) — (f,bg)- (2.14)

Agsume now, for simplicity, that the right-hand side f is piecewise constant. This
is not really restrictive, as in most cases f is approximated anyhow by a piecewise
constant in the actual implementation. We remark now that, integrating by parts,
for every vy, € Vi, and for every k we have:
8vL a’UL
a(vg,br) = a(bg,vr) = —bpdl' = — 2.15
(L7 k) (k; L) L on k 8’11’ ( )
where clearly Ovr /On is the (constant) outward normal derivative of vy, in the triangle
(of 7,,) containing Tj. We also set:

= / bdz dy, Vi = a(bk, by), (2.16)
T

so that (2.14) becomes

ou "
e = =l = Sl (217)

With some manipulations, using (2.13) and (2.15), we obtain

G(Z u% b,vr) = / (Yr, — U,L)aa%dr. (2.18)
k

o0
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Taking now the first equation of (2.10) for v = vy, using (2.13) (2.17) and (2.15), we
obtain with easy computations that

ov ou
a(up,vp)— < ug, a—rf > — < g, 8—: >+ 30 Iy wr (mg v (my,) =

(F0m) = Sy Ferf el (me) = <, o > 4 3% 4P i m).
(2.19)
At this point we have to discuss the actual shape of the bubble functions. Neglecting
for a while the problem related to the coefficient y{ in (2.16) we remark that, having
fixed the integral of by on Ij to be one, the coeflicient 7{ has a lower bound which
depends on the shape of Tj. In particular we have the following result.

Theorem Let T be a triangle, and { one of its edges. Let v be an element of H*(T)
vanishing on the other two edges of T. Assume that [,vdl = 1. Then |v|y 7 > |w|1 T,
where w is the unique harmonic function on T such that Ow/On = constant on { and
w = 0 at the other two edges of T, scaled in such a way that fl wdl = 1.

Proof. The result comes out easily by minimising the quantity |U|%7T under the
constraint fevdI‘ = 1. Let w be the minimizer. Then, by the usual technique of
Lagrange multipliers, we have that

/ Vw - V{dzdy = c/CdI‘. (2.20)
T ¢

for all ¢ € H'(T) vanishing on 87"\ £, where c is a suitable constant to be determined.
The result follows immediately. "

We consider first a fixed triangle, say T, having vertices in (0,0), (1,1), and
(1,—1). Here a harmonic function @ having constant normal derivative on the edge

¢ of equation z = 1 and vanishing on the other two edges is easily found: actually we
have @ = x2 — y2. For this function we have

@]} 7 =8/3, /éusdr =4/3, /dea:dy =1/3. (2.21)

For any positive ¢ we can now scale the triangle 7' down to a new triangle 7, having
vertices in (0,0), (¢,t), and (¢,—t). If w; is the image of @ in T} (that means that
wy = (z/t)? — (y/t)?), we easily get

lwel; 7, = 8/3, / wydT = 4t/3, / wydrdy = t/3. (2.22)
£ T,
Assume, for simplicity, that the two angles of T} insisting on the edge I} are both
> /4, as it was the case in our tests. Hence, we can always insert a triangle like T}
inside T}, (see figure 2.1.) Notice that in this case we shall have ¢t = |I;|/2. In order
to normalize the boundary integral to one, we set then
3

bk = Ewt mn Tt, (223)

and by = 0 in the rest of T},. Recalling (2.22) and ¢ = |I;|/2, we have therefore

Ve = |bklf.p, =611k, bpdl =1, o :/ brdxdy = |I1,| /8. (2.24)
Iy, Ty
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Ty

Fic. 2.1.

We see therefore, in particular, that the lower bound for ¢ will always be < 6|I;|~2.
Substituting (2.24) in (2.19) yields:
8uL

on
(fyoL) = >k fes e PvL (my)— < tha, 6% >+ 6n(me)vr (my),

ov
a(ur,vy)— < ur, 8—nL > — <wg, >+ > 6up(my)vg(my) =

(2.25)

whose implementation is reasonably easy.

We can also consider other possible choices of the bubble shape. In particular we
could think of choosing a bubble function by such that its integral over T} vanishes.
This would make the second term in the right-hand side of (2.19) equal to zero. One
possibility is to consider a new bubble still given by (2.23) in T}, but which is now
different from zero somewhere else in T}. For instance, we can start by considering
a square S; with sidelength 2¢, and the function ¢; having value t at the center,
vanishing at the boundary 0S; and linear in each of the four subtriangles obtained by
a criss-cross splitting of S;. An elementary computation shows that

4¢3
|<Pt|%,st = 4t27 / prdzdy = 3 (2.26)
St

Now we choose by, in 5; as a multiple of ¢y, in such a way that

1,
brpdzxdy = —M. (2.27)
S, 8
3|1
This easily gives by, = — L);l;pt, and consequently, using (2.26)
b3 s, = 911 |?/256t". (2.28)

It is easy to check (see figure 2.2)) that we can always fit inside T} a little square
S; that does not intersect T}, provided that t < |I|/4v/2. Using the equality, and
substituting the corresponding value of ¢ in (2.28)) we get

|bk|‘isi = 36|12 (2.29)
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Fia. 2.2.

Finally, with this new choice of by, using (2.24) and (2.29), we have
Yo = 1beli 7, = |beli 7, + 10k]7 5, = 42|11k 2. (2.30)

In this case the scheme (2.19) becomes

a(ur,vr)— < ur, dvr > — < g, Our >+ A2ur(my)vr(my) =
81}1,8” on (2.31)
(f,vL)— < tn, > + 2o 429 (me)vr (me).

We come back now, briefly, to the Schur complement operator Sy, as described in
(2.9). It is easy to see that S}, is the discretization of a pseudo-differential operator S,
of order 1, on ¥. More precisely, in this case S is the operator acting in the following
way: given a function ¢ € Hé[{ ?(¥), we first construct the two harmonic functions u!
and u? (in Q! and Q2 respectively) having trace equal to ¢ on ¥ and zero elsewhere
on 0Q; (i =1,2). The operator S applied to ¢ is now given on X by

_ Out  ou?

(2.32)
In order to precondition (2.8) one has to find a cheaply computable operator that
could be regarded as an approximation of S~!. Several choices for that are found in
the literature. For instance one could solve local Neumann problems in order to get
an approximation of the local Steklov-Poincaré operators. Or one can define a sort
of H'/? inner product on ®,, and invert the associated linear operator. We refer to
the survey [10], and to the impressive set of proceedings of the various meetings on
Domain Decomposition Methods, whose last volume is [3]. It is clear, however, that
in doing that the task is made much easier if the grid on ¥ is uniform, as it was the
case in our experiments. For instance one could use fast solvers for the local Neumann
problems, or find easy expressions for the H'/? inner product. In particular, we used
an FFT algorithm for going from a function ¢, to his Fourier (sine) coefficients c¥.
Then both the above choices become easy. For instance, the second one (H'/? inner
product) corresponds to take, for each frequency n, the product of ¢ times n and
then transform back. The first one (local Neumann problems) actually came out to
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be a minor variant of the first. If L; and L+ are the widths of the two subdomains Q!
and Q?, respectively, the coefficient ¢ has to be multiplied by n(tanh(L;)+tanh(Ls))
instead of n.

Both choices, as we shall see in the next section, gave very good results, in partic-
ular when the grids in the two subdomains 2; were not too coarse compared with the
interface grid for ¢). This is very reasonable, as we used, somehow, something close
to S to precondition Sp, which is clearly good only for h small enough.

3. Numerical experiments. The above formulation was tested on the aca-
demic problem

—Au = f inQ, u = g ono0f, (3.1)

with Q@ = [-1,1] x [0,1], f = 0, g = 2® — y?, so that the exact solution of (3.1)
is u(x,y) = 22 — y2. Notice that, with this choice, the use of piecewise linear finite
elements on uniform grids for u should produce the exact solution at the nodes.
Therefore, the only source of errors is the presence of the interface with non-matching
grids. The domain ) was split into two subdomains with interface at z = 0, and in
each subdomain a uniform decomposition into triangles was taken (see fig. 3.1).

Fic. 3.1. Example of mesh.

For each coupling of non-matching grids for the u—variable, various meshes at
the interface were taken for the 1y—variable, in order to see if and how the presence of
very small intervals in .7\ can influence the performance of the method. Apparently,
this fact does not in practice alter the convergence of the scheme. In [8] a crucial
hypothesis for deriving error estimates for the ¢)—variable was that each interval I,
must contain at least two regular intervals of 7,°. The experiments carried out so far
showed that this is not necessary in practice.

In figs. 3.2-3.3 we report the behaviour of the error for u, A, ¥ respectively as
Ty varies, while the meshes for u are kept fixed: 7, =30 x 30, 7,2 = 16 x 16. From
these results we see that the best values are reached when the number of nodes of .7,
is in between those of 7;1‘2 and 7;2@ (i.e., in between 16 and 30 in our case). When
Ty is too coarse we have a natural loss of accuracy. On the other hand, taking an
unnecessary fine grid for 1) does not improve the accuracy (it would be unrealistic
to expect that), but does not spoil it, and the results are pretty stable. This is
particularly true for the most important unknowns, namely, v and .

We also wanted to test the dependence of the quality of the scheme with respect
to . For this, we chose different values of v¢ of the type vi = v|Ix| ™2 as in (2.24)
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0 10 20 30 40 50 60 70 80 90 100 [ 10 20 30 40 50 60 70 80 90 100
(a) (b)

Fia. 3.2. (a) Error on u (left); (b) Error on u (right).

x10”
0.012 T T T T T T T T T 7

0.01

0.008 -

0.006 -

0.004 -

0.002 -

Fia. 3.3. (a) Error on X (right); (b) Error on .

and (2.30), with v varying from 0.75 up to 360. Fig. 3.4 shows the error on u (on the
right) as a function of v, for the same grids for u as before, and 22 internal nodes for
1 at the interface. We can clearly see that big changes in v have very little impact
on the results.

Another kind of test was meant to check the error estimates proved in [8]. For
this, various coupling of meshes in the two subdomains were taken:
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Fia. 3.4. Dependence of u (right) on ~.

T =[10 x 10]; [20 x 20]; [30 x 30]; [40 x 40]; [50 x 50] (3.2)
T2 =[8 x 8]; [16 x 16]; [24 x 24]; [32 x 32]; [40 x 40] '

According to the suggestions from the previous results, the corresponding .7, was
Ty =19; 18 ; 27; 36; 45]. (3.3)

The test was also meant to assess the quality of the preconditioners proposed
in the previous section. We solved (2.8) with preconditioned conjugate gradient,
stopped when a reduction of 1072 on the initial residual was achieved. Both precon-
ditioners behaved similarly, and the number of iterations to achieve convergence was
[5; 7; 8; 8; 8] for 7 as in (3.3). Figs. 3.5-3.6 show the corresponding errors on a
log log scale. In each figure the line in the lower left corner represents the theoretical
order of convergence. As it can be seen, the slope of the experimental results matches
very well that predicted by the theory.

log (error)
log (error)

-105F

22 24 26 28 3 32 3.4 36 38 22 24 26 28 3 32 3.4 36 38
log (n) log (n)

(a) (b)

F1c. 3.5. (a) Order of convergence for u (left); (b) Order of convergence for u (right).
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-5.8} -85y

s

B 5
S 66 8
g g
-68
-10.5f
7k
72 _al
74
22 24 26 28 32 34 36 38 22 24 26 28 32 34 36 38

3 3
log (n) log (n)
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Fic. 3.6. (a) Order of convergence for \ (right); (b) Order of convergence for 1.
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