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Abstract. In this paper we present a short discussion on some finite element
formulations for linear elliptic problems. For the sake of symplicity we consider
the Poisson equation −∆p = f , taking the notation from Darcy’s law. Among
the zillions of such methods, we shall concentrate our attention on FEM leading
to a final system of linear algebraic equations M P = F where each unknown Pi

represents the constant value of the approximated pressure ph in a single element. It
is indeed well known that for some applications there is a certain demand for these
types of schemes.
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1 INTRODUCTION

We consider, for simplicity, the model toy-problem

−∆p = f in Ω, (1)

p = 0 on Γ ≡ ∂Ω, (2)

where Ω is a polygon in IRd, d = 2 or 3 being the number of dimensions, and f is a
given function, say, in L2(Ω).

The number of different Finite Element Methods used to deal with this prob-
lem, although finite, is practically uncountable. Nevertheless, there are much fewer
methods that allow to deal with a piecewise constant approximation of the pressure
p. Most of them are related to the so called mixed formulation (see e.g.4, 6) of (1)-(2)
where the velocity u = −∇p is introduced as an additional unknown. This is for
instance the case of the lowest order Raviart-Thomas element (RT )13 or the lowest
order Brezzi-Douglas-Marini element (BDM),5 that are both based on the mixed
variational formulation

∫

Ω
u · v dx =

∫

Ω
p div v dx ∀v, (3)

∫

Ω
q div u dx =

∫

Ω
f q dx ∀q, (4)

where the spaces for the variations of v and q have to be made precise. In particular,
q varies in L2(Ω) and v varies over the space H(div ; Ω) defined as

H(div ; Ω) := {v ∈ (L2(Ω)d such that div v ∈ L2(Ω)}. (5)

This last condition, for piecewise smooth vectors, implies the continuity of v · n at
interfaces. This makes the elimination of the velocity unknown u rather difficult.
In this sense, these methods, unless we do some further manipulation, do not give
rise to a final system of algebraic equations of the type

M P = F (6)

where P represents the values of the discretized pressure inside each element (which
is our request, and, here, “the name of the game”.)

In what follows we shall overview a few tricks for deriving a final system of the
type (6). We shall briefly start from methods that allow to eliminate u from classical
discretized versions of the mixed formulation (3)-(4), and then consider some other
less classical formulations that still allow the elimination of u. In doing that, in
an almost inevitable way, we will often get close to (or rediscover) some of the
Finite Volume formulations of the original problem (1)-(2). However, a review of
the (zillions of) different FV approximations of it is well beyond the scopes of this
paper, as well as beyond the competence of the authors.

Acknowledgments: This paper has been inspired by the continuous pestering that
T.J.R. Hughes operated during his last visit to Pavia, concerning Finite Element
formulations of Darcy’s laws using a piecewise constant pressure. If the paper was
not to be dedicated to him, we would have contacted him in order to write a joint
paper. That would have been fair from us, and we beg his pardon for not having
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done so. However, the estimate of the amount of gain or loss that Tom had by not
being asked to work on this paper is unclear to us, and is left to him and to the
reader. But in any case please, Tom, keep pestering us! Your pestering is a never
ending source of inspiration.

2 CLASSICAL MIXED FORMULATIONS

We start by recalling the two main choices for mixed discretizations of lowest de-
gree. Assume therefore that we are given a regular sequence {Th}h of decompositions
of Ω into triangles (in two dimensions) or tetrahedra (in three dimensions). Let K be
an element in Th. We define the local Raviart-Thomas and Brezzi-Douglas-Marini
spaces as follows:

RT (K) := {v| v = c + γx, with c ∈ IRd and γ ∈ IR}, (7)

and
BDM(K) := {v| v ∈ (P1)

d}, (8)

where P1 is as usual the space of polynomials of degree ≤ 1. Starting from the local
definitions (7) and (8) we can now define the global subspaces of H(div ; Ω)

VRT = {v| v ∈ H(div ; Ω), v|K ∈ RT (K) ∀K ∈ Th}, (9)

and
VBDM = {v| v ∈ H(div ; Ω), v|K ∈ BDM(K) ∀K ∈ Th}. (10)

As we already pointed out, the condition v ∈ H(div ; Ω) implies that the normal
component of v must be continuous at the interfaces (edges or faces, according to
whether d = 2 or 3) between one element and the other. For both choices the
space for approximating the pressure is the space Qh of piecewise constants. The
discretized problem for Raviart-Thomas mixed approximation is then

find uh ∈ VRT and ph ∈ Qh such that:
∫

Ω
uh · vh dx =

∫

Ω
ph div vh dx ∀vh ∈ VRT , (11)

∫

Ω
qh div uh dx =

∫

Ω
f qh dx ∀qh ∈ Qh, (12)

while its BDM counterpart reads

find uh ∈ VBDM and ph ∈ Qh such that:
∫

Ω
uh · vh dx =

∫

Ω
ph div vh dx ∀vh ∈ VBDM , (13)

∫

Ω
qh div uh dx =

∫

Ω
f qh dx ∀qh ∈ Qh. (14)

It will be convenient to take suitable notation in order to write mixed formulations
in a simpler way. For this we introduce, for each K ∈ Th, the bilinear forms

aK(u,v) :=
∫

K
u · v dx, (15)
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and, for q|K = constant,

bK(q,v) :=
∫

K
q div v dx ≡

∫

∂K
q v · nK ds, (16)

where nK is the outward unit normal to ∂K. We can also define the bilinear forms
on Ω. We set

a(u,v) :=
∑

K∈Th

aK(u,v) b(q,v) :=
∑

K∈Th

bK(q,v) (f, q) :=
∫

Ω
f q dx. (17)

Both formulations (11)-(12) and (13)-(14) can then be written as

find uh ∈ Vh and ph ∈ Qh such that:

a(uh,vh) = b(ph,vh) ∀vh ∈ Vh, (18)

b(qh,uh) = (f, qh) ∀qh ∈ Qh, (19)

and we choose one method or another by selecting Vh = VRT or Vh = VBDM . Prob-
lems of the form (18)-(19) give rise, with obvious notation, to linear algebraic systems
of the form

A U − Bt P = 0 (20)

B U = F (21)

In these cases the main problem, from the computational point of view, is the
elimination of the velocity unknowns U . If we succeed in doing that, we can obtain
the double gain of reducing the number of degrees of freedom, and to pass from an
indefinite system to one with a symmetric and positive definite matrix. Clearly one
could always write

B A−1 Bt P = F, (22)

but A−1 will not be computable (from the practical point of view) in an explicit
way. In the use of iterative methods such as Conjugate Gradient (CG) this could
be an only minor drawback: the matrix A is an approximation of the identity, and
a few “inner iterations” could be enough to solve a system of the form A V = G for
each CG step. However, this complicates the solver, and one is never sure that the
number of inner iterations is sufficient, so that most researchers avoid doing that.

A similar remark can be done for discontinuous mixed formulations (see e.g.12

or8) where the presence of interface consistency terms and/or stabilizing jump terms
renders an easy local elimination of the velocity field impossible.

We are therefore looking for methods that allow a more explicit elimination of
the velocity unknowns.

A classical way of doing this is the use of the so-called hybridization. The idea goes
back to Fraeijs de Veubeke,10 and consists in starting with a discontinuous version
of VRT (or VBDM ), and to force back the continuity of the normal component via a
suitable Lagrange multiplier, that we assume to be constant for RT and linear for
BDM on each edge (resp. face for d = 3). Being now, a priori, totally discontinuous,
the velocity space can then be eliminated at the element level, leading to a system
where the only unknowns left are the pressure ph and the Lagrange multipliers at
the interfaces (that turn out to be themselves approximations of the pressure). The
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original unknown ph can also be eliminated at the element level, leaving a final
system involving the Lagrange multipliers only. The resulting matrix is symmetric
and positive definite. The method, introduced in10 and then analyzed in2 , is quite
efficient, but does not have the required form (6), that would require P to represent
the values of ph in each element.

Another possibility to reach a symmetric and positive definite matrix is to use
some algebraic trick (rather, coming from Graph Theory and Operational Research)
in order to look directly for a uh written as the sum of a particular solution of
(12) plus all possible velocity fields in VRT having zero divergence. The use of
classical tree-cotree algorithms for doing that (for RT elements) was advocated in1 ,
and reduces the number of unknowns to the number of edges (resp. faces) minus
the number of elements (which is precisely the dimension of the free-divergence
subspace of VRT ). The resulting matrix is symmetric and positive definite.This is
also an interesting trick, but it does not fit the required form (6) either.

In the next sections we shall see some tricks that allow us to reach exactly the
form (6), plus some additional formulation that makes the elimination procedure
easier. In doing so we shall discuss the two-dimensional and the three-dimensional
cases separately. This is because the two-dimensional case is obviously easier, and
obviously provides already some insight into the three-dimensional one, but the
similarities will not be sufficient to treat them both at the same time in a simple
and effective way.

3 THE TWO-DIMENSIONAL CASE

Historically, the first successful attempt to eliminate the velocities was made by
Baranger-Maitre-Oudin in3 . Inspired by a previous result of Haugazeau-Lacoste11

concerning H(curl; Ω) spaces, they decided to look, for every element K, for a
suitable bilinear form aK,h(u,v) of the type

aK,h(u,v) =
3∑

i=1

ωi
K (u(Mi) · ni

K) (v(Mi) · ni
K). (23)

In (23) Mi represents the midpoint of the i-th edge, and ni
K is the outward unit

normal to that edge (i = 1, 2, 3). The weights ωi
K must be looked for in order to

have

aK,h(u,v) = aK(u,v) ∀u ,v constant on K. (24)

After some manipulations, one discovers that such a bilinear form, satisfying (24),
indeed exists, and that the weights ωi

K can be computed in the following way: let
CK be the circumcenter of K (that is, the center of the unique circle that passes
through the vertices of K), let H i

K denote the distance of CK from the i-th edge ei

(i = 1, 2, 3) , and let |ei| be the length of ei. The straight line containing ei clearly
splits the whole plane into two half-planes. If CK belongs to the same half-plane
containing K, then we set ωi

K = |ei|H i
K . Otherwise we set ωi

K = −|ei|H i
K . It is

easy to check that if for instance all the angles of K are acute, then CK falls inside
K, and the choice ωi

K = |ei|H i
K will be made for all i’s. In this case, all the weights

come out to be positive. If however the edge ei is opposite to an obtuse angle, then
ωi

K turns out to be −|ei|H i
K , and it will be negative. Up to a certain extent, this
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could be tolerated (see3 for further details). When ei is opposite to a right angle,
then H i

K is zero, and so is ωi
K .

Coming back to the whole space VRT , a classical construction of a basis for it is
the following. For each edge ek in Th we choose a unit vector nk normal to ek. We
do it for k = 1, ..., NE, where NE is the number of edges in Th. Then, for each k
we define the vector vk as the unique vector in VRT that satisfies

vk · nk = 1 on ek and vk · nr = 0 on er ∀r ̸= k. (25)

It is immediate to check that for any vector v of the form (7) and for any straight
line ℓ, the component of v in the direction normal to ℓ is constant on ℓ, so that the
definition (25) makes sense. It is also immediate to see that, with respect to this
basis, the matrix

Ar,k :=
∑

K∈Th

aK,h(v
k,vr) (26)

is diagonal. The idea is then the following one: change the original bilinear form
a(· , ·) into

ah(uh,vh) :=
∑

K∈Th

aK,h(uh,vh), (27)

then change the original RT mixed formulation (11)-(12) into

find uh ∈ VRT and ph ∈ Qh such that:

ah(uh,vh) = b(ph,vh) ∀vh ∈ VRT , (28)

b(qh,uh) = (f, qh) ∀qh ∈ Qh, (29)

and remark that this produces a system of the form (20)-(21) where now A is a
diagonal matrix. Then eliminate U = A−1BtP to reach the form (22), with A−1

explicitly known. It is proved in3 that the consistency error originated by the change
of the bilinear form a(· , ·) can be kept under control, and hence we still have optimal
a priori error estimates. Surprisingly enough, the resulting scheme coincides with a
classical Finite Volume scheme for diffusion operators (see e.g.9), where the flux on
each edge e, common to the triangles K1 and K2, is defined by dividing the jump
p1

h − p2
h by the distance C1C2 between the circumcenters of K1 and K2.

There is however another more suitable mixed formulation, different from the
BMO (28)-(29), that allows a simpler analysis. It is worth looking at it since, as
we shall see in the next section, the BMO interpretation does not hold in three
dimensions.

Assume, for simplicity, that all the angles of all the triangles are acute. This is
not strictly necessary (in the sense that the condition can be weakened) but makes
the exposition much simpler. In this case all the circumcenters will be internal to
their respective triangles. Split every triangle K in three subtriangles using the
circumcenters. Every internal edge ek will belong to two such subtriangles: take
the union of the two, and call it Lk. For the boundary edges we will have just one
subtriangle, that we still call Lk. The union of all the Lk (k = 1, ..., NE) obtained
in this way is still equal to Ω. Consider now the new vector space

VL := {v| v|Lk
= cnk with c ∈ IR ∀k = 1, ...NE}, (30)
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where, as before, nk is the chosen unit vector normal to ek. For vectors v ∈ VL and
scalars q ∈ Qh the bilinear form b(q,v) still makes sense, provided we use the second
form in the right-hand side of the definition of bK (16), giving

b(q,v) =
∑

K

∫

∂K
q v · nK ds. (31)

Please do not confuse nk (normal to the edge ek) and nK (outward unit normal to
∂K). In what follows it will be sometimes convenient to rearrange terms in the sum
appearing in (31), making the sum over the edges rather than over the triangles. In
order to do so, we first introduce the jumps of a piecewise constant function q ∈ Qh

on an edge ek in the following way. Let K1 and K2 be the two triangles having ek

as an edge, let q1 and q2 be the corresponding values of q, and let nK1 and nK2 be
the corresponding outward unit normals. If ek is a boundary edge, belonging to a
single triangle K, we set q1 = q|K , q2 = 0, nK1 = nK and nK2 = −nK . The jump of
q over ek is the vector

[|q|]k := q1 nK1 + q2 nK2. (32)

Note, for future purposes, that the jump [|q|]k of q is normal to ek and points toward
the triangle where the value of q is lower. It is now easy to see that, whenever
convenient, the bilinear form b given in (31) can be written (for v ∈ VL and q ∈ Qh)
as

b(q,v) =
NE∑

k=1

∫

ek

[|q|]k · v ds. (33)

Another way of writing the bilinear form b can be obtained associating to every
piecewise constant function q its “gradient” g(q) defined as

g(q)|Lk
= −[|q|]k/hk, (34)

with hk given by

hk = 2
meas(Lk)

meas(ek)
, (35)

(that is, for internal edges, hk is the distance of the two circumcenters). The minus
sign in (34) is natural, since the gradient is expected to point toward the triangle
where the value of q is bigger. From (34)-(35) we immediately see that g(q) is the
unique element in VL such that

2
∫

Lk

g(q) dx = −
∫

ek

[|q|]k ds ∀ k = 1, ..., NE. (36)

Consequently, (31) and (36) imply

b(qh,v) = −2
NE∑

k=1

∫

Lk

g(qh) · v dx ≡ −2a(g(qh),v) ∀v ∈ VL. (37)

We finally observe that for u and v in VL we have

2a(u,v) ≡ 2
∫
Ω u · v dx = 2

∑

k

∫

Lk

u · v dx =
∑

k

|ek| hk (u · nk)(v · nk)

=
∑

K

3∑

i=1

ωi
K(u(Mi) · ni

K)(v(Mi) · ni
K).

(38)
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We can now consider the mixed formulation

find uh ∈ VL and ph ∈ Qh such that:

2 a(uh,vh) = b(ph,vh) ∀vh ∈ VL, (39)

b(qh,uh) = (f, qh) ∀qh ∈ Qh, (40)

that, indeed, is just a different (and apparently a little more cumbersome) way
of writing the BMO formulation (28)-(29). The analysis, however, can come out
simpler. We give just a quick outline of it.

We consider two different approximations of the exact velocity u. The first one,
that we call uI , is defined as the unique element in VL that satisfies

∫

ek

(u− uI) · nk ds = 0 ∀ k = 1, ..., NE. (41)

Observe that, using (31) and the divergence theorem, (41) gives

b(qh,uI) = b(qh,u) = (f, qh) ∀qh ∈ Qh. (42)

Hence, from (42) and (40) we immediately get

b(qh,uh − uI) = 0 ∀ qh ∈ Qh. (43)

A useful property. The second approximation for u, that we call u∗
I will be obtained

by considering first pI ∈ Qh as the unique piecewise constant that verifies

pI(CK) = p(CK) for CK=circumcenter of K ∀K ∈ Th. (44)

We then set
u∗

I := −g(pI), (45)

where we used the operator q → g(q) as defined in (36) or (34). Property (37)
implies then:

2a(u∗
I ,v) = −2a(g(pI),v) = b(pI ,v) ∀v ∈ VL. (46)

The error estimate now goes easily. Setting w := uh − uI , and using (39, (46), and
then (43) we deduce that

2 a(uh − u∗
I ,w) = b(ph,w) − b(pI ,w) = 0 − 0 = 0. (47)

Adding and subtracting u∗
I and using the above property we get

||w||2 = a(w,w) = a(uh − u∗
I ,w) + a(u∗

I − uI ,w) = a(u∗
I − uI ,w), (48)

that easily implies ||w|| ≤ ||u∗
I − uI ||. The proof ends by remarking that the line

joining two circumcenters C1 and C2 of two triangles K1 and K2 having an edge ek

in common is perpendicular to ek. This implies, using the definition of pI (44) and
the definition of g (34), that u∗

I equals the value of the normal part of u ≡ −∇p on a
point of the segment joining C1 and C2. On the other hand, the normal component
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of uI equals the value of the normal component of u on a point of the edge ek, and
the difference of the two is easily bounded.

There is yet another way of reaching the linear system (6) that is less conventional.
We can consider indeed the BDM mixed formulation (13)-(14) and observe that we
can have a basis for VBDM in the following way. In general, a vector v ∈ VBDM

is determined by prescribing its (linear) normal component on each edge of Th.
Remember that only the normal component of v has to be continuous, while the
vector itself, in general, is not. In particular, its tangential component will be
doubly defined at each interface, and both components will be multiply defined at
each vertex of Th. Now for every edge ek (with k = 1, ...NE) we consider the two
endpoints (that will be two vertices in Th), that we call S1

k and S2
k . We can then

define a basis {vs
k} (with k = 1, ..., NE and s = 1, 2) as follows

vs
k(S

s
k) · nk = 1 and vs

k(S
s′

k′) · nk = 0 if k ̸= k′ or s ̸= s′. (49)

It is clear that the value of each vs
k at a given vertex S will be multiply defined.

But what we need is that vs
k can be reconstructed in a unique way in each triangle

and that its normal component is continuous at the interfaces . The continuity of
the vector itself is not to be expected, as the elements of VBDM are not, in general,
continuous. On the other hand we point out that the number of elements in our
basis equals twice the number of edges, which is indeed the dimension of VBDM . We
can now, for each K ∈ Th, define another approximate bilinear form ãK,h as follows

ãK,h(u,v) =
|K|
3

3∑

r=1

u(Vr) · v(Vr), (50)

where V1, V2, V3 are the three vertices of K. We then proceed as before, defining

ãh(u,v) :=
∑

K

ãK,h(u,v), (51)

and finally considering the problem

find uh ∈ VBDM and ph ∈ Qh such that:

ãh(uh,vh) = b(ph,vh) ∀vh ∈ VBDM , (52)

b(qh,uh) = (f, qh) ∀qh ∈ Qh. (53)

It is reasonably clear that when we write the above (52)-(53) as a linear system
(20)-(21), the corresponding matrix A will be block diagonal, each block being as-
sociated to a vertex S in Th. The dimension of each block will be equal to the
number of triangles having S in common (≡ number of edges having S in common).
Moreover, on each row there will be only three nonzero elements. Indeed, in the row
corresponding to the degree of freedom v(S) · nk = 1, the three nonzeroes will be
the diagonal element and the two off diagonal elements corresponding to the degrees
of freedom v(S) · nj = 1 for the two edges ej having S as an endpoint and sharing
a triangle with ek.

Hence, although not diagonal anymore (as it was for the BMO formulation), the
explicit inversion of A will be feasible, thus leading to a final system of the required
form (6).
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We remark that in this case the normal component of uh on each edge will result
in a suitably weighted combination of the values of ph in all the triangles having a
vertex in common with that edge. There must be a Finite Volume analogue of this
formula, but we have not been able to find it. The analysis of the method, that goes
along the same lines of3 , will appear in7 .

4 THE THREE DIMENSIONAL CASE

We consider now the three dimensional problem. The definition of the local spaces
RT (K) and BDM(K), as given in (7) and (8) remains unchanged, as well as the
definitions of the spaces VRT , VBDM , and the bilinear forms a and b. Indeed, the
whole Section 2 was dealing with the two-dimensional and the three-dimensional
case at the same time.

The first change with respect to the two-dimensional case is that we cannot extend
the BMO trick3 in an immediate way. Actually, we can still write a formula of the
type (23), that would diagonalize the approximated bilinear form ah (see (27)) in
the following way. Assume for simplicity that for every tetrahedron K the center CK

of its circumsphere (that is the unique sphere that passes through the four vertices
of K) lies inside K. As in the two-dimensional case this assumption can be relaxed,
but to the expenses of the simplicity of the presentation. We also point out that
this condition is stricter than assuming that the projection of each vertex on the
opposite face falls inside the face. In fact this condition is not even satisfied by the
usual reference tetrahedron having vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1).

Using the assumption CK ∈ K we can now split every tetrahedron K in four
subtetrahedra Kr joining, for each face fr of K, the center CK of the circumsphere
to the three vertices of fr. The projection of CK onto the face fr is the circumcenter
Cr of fr. We could then consider the formula

aK,h := 3
4∑

r=1

|Kr| (u(Cr) · nr) (v(Cr) · nr) (54)

where |Kr| is obviously the volume of Kr, and nr the unit normal to fr. However
it can be easily seen that such a formula will not give back aK(u,v) for constant
vectors u and v (as we had in (24) for the two-dimensional case). Hence the analysis
of BMO3 cannot be extended.

We can however extend in a rather easy way the alternative analysis that we
performed in the previous section, based on the spaces VL and the related mixed
formulation (39)-(40).

Keeping the assumption that every CK is internal to K, and splitting again each
tetrahedron in four tetrahedra Kr, we can now attach to each face fk a region Lk

as we did for triangles in the previous section. This allows us to define the space
VL, formally as in (30), and to proceed with the corresponding mixed formulation
(39)-(40).

The jump of a piecewise constant q can still be defined as in (32), and the alter-
native way of writing b given in (33) still holds.

It is not difficult to check that the analysis sketched in the previous section works
practically with no changes. It can also be seen that this gives back a classical Finite
Volume scheme for diffusion operators (see e.g.9).
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We shall show now that the numerical integration trick based on BDM spaces
that we introduced in the previous section can be rather easily extended (in more
than one way) to the three-dimensional case.

For this we remark that a vector v ∈ BDM(K) is determined in a unique way
by the value of its normal component vn of the faces of K (see5). As the normal
component is linear on each face, it will be enough to choose, in an arbitrary way,
three points on every face, and prescribe the value of vn at these points. If we look
now at the assembled space VBDM (as defined in (10)) we see that we need to fix
three points in every face fk of Th and prescribe the values of vnk there. We point
out that the normal component must be continuous. Hence, the three points must
be the same for both tetrahedrons having fk as a face, and the assigned values must
be the same.

The first (and, somehow, simpler) way of picking three points per face is to take
the three vertices, which is the exact counterpart of what we did in the previous
section when we took the two endpoints of the edge. Remember that v does not
need to be continuous. Hence we do not have to assign the values of v at each
vertex S of Th, but rather assign for each face having S as a vertex the value of
the normal component of v on that face (which will affect the values of v only in
the two tetrahedra having that face in common). This choice determines a natural
choice of a basis vs

k in VBDM , similar to what we did in (49), where now k ranges
from 1 to NF (total number of faces in Th), and s ranges from 1 to 3 (number of
vertices on the k-th face).

We can now use the integration formula, quite similar to (50):

ãK,h(u,v) =
|K|
4

4∑

r=1

u(Vr) · v(Vr), (55)

where V1, V2, V3, V4 are the four vertices of K, and then define (as in (51))

ãh(u,v) :=
∑

K

ãK,h(u,v). (56)

It should be reasonably clear that the resulting matrix A, associated with ãh (as
defined in (56)) will be block diagonal, each block corresponding to a vertex of Th

and having a dimension equal to the number of faces sharing that vertex. Each
block will be a rather sparse matrix, but its dimension could be easily of the order
of 20 − 25. This allows the direct inversion of A (hence reaching the desired form
(6),) but at a nonnegligible cost.

A way to reduce the dimension of the blocks would be to choose, for each face
fk, the midpoints of its three edges instead of the three vertices. This will produce,
in a natural way, a different basis, that we can denote by {wm

k } where k ranges
again from 1 to NF , and m ranges from 1 to 3 (number of midpoints of the edges
of fk). Clearly, the dimension is the same as before (= 3NF ). In order to make the
resulting matrix block diagonal with respect to this last basis, we would need, for
each tetrahedron K, a bilinear form

a∗
K,h(u,v) :=

6∑

i=1

αi
Kuni(Mi) · vni(Mi), (57)
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where Mi represents the midpoint of the edge ei and uni and vni represent the part
of u (resp. v) which is normal to the edge ei, that we can make precise as

vni := v − (v · ti)ti (58)

where ti is tangential direction to ei (the sign, in the context of (58), is immaterial).
The problem is now to find the weights αi

K in such a way that we have

a∗
K,h(u,v) = aK(u,v) ≡

∫

K
u · v dx (59)

whenever u and v are both constants. Luckily enough, the existence (and the actual
values) of the coefficients αi

K can be deduced from the true 3D analogue of the
formula (23) that we used in the two-dimensional case when performing the BMO
trick on Raviart-Thomas spaces. The formula, introduced by Haugazeau-Lacoste11

for H(curl; Ω) spaces, reads

aK,h(u,v) =
6∑

i=1

βi
K(u(Mi) · ti)(v(Mi) · ti). (60)

It is proved in11 that it is possible to find the coefficients βi
K in such a way that, as

in (24),
6∑

i=1

βi
K(u(Mi) · ti)(v(Mi) · ti) = aK(u,v) ≡

∫

K
u · v dx (61)

hold for constant u and v. Taking u = v = e1 = (1, 0, 0), then u = v = e2 =
(0, 1, 0), and finally u = v = e3 = (0, 0, 1) and summing, we easily get

3∑

j=1

6∑

i=1

βi
K(ej · ti)2 =

6∑

i=1

βi
K ||ti||2 =

6∑

i=1

βi
K . (62)

On the other hand, using (61) for each ej we have

3∑

j=1

6∑

i=1

βi
K(ej · ti)2 =

3∑

j=1

aK(ej , ej) = 3|K|, (63)

and comparing (62) and (63) we have

6∑

i=1

βi
K = 3|K|. (64)

We set now for i = 1, .., 6

αi
K :=

βi
K

2
. (65)

For every constant v we have, using (57), then (58), then the fact that ||v(Mi)|| does
not depend on i (v is constant!), (65) and (61), and then again (65) and (64) we
have

a∗
K,h(v,v) =

6∑

i=1

αi
K ||vni(Mi)||2 =

6∑

i=1

αi
K(||v(Mi)||2 − ||v(Mi) · ti||2)

= ||v||2
6∑

i=1

αi
K − |K|

2
||v||2 = ||v||2(3 |K|

2
− |K|

2
) = ||v||2|K|,

(66)
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implying that the required property (59) holds for u = v = constant. Looking now
at the bilinear form

D(u,v) := a∗
K,h(u,v) − aK(u,v), (67)

we see that it is symmetric and equal to zero for u = v = constant. Hence

D(u,v) =
1

2
(D(u + v,u + v) − D(u,u) − D(v,v)) = 0 (68)

for every constant u, v as desired.
It is clear that, with respect to the last basis {wm

k } the bilinear form

a∗
h(u,v) =

∑

K

a∗
K,h(u,v) (69)

will be again block-diagonal, each block corresponding now to a midpoint M of an
edge. The dimension of each block will be equal to the number of faces having in
common the edge e containing M . With an argument similar to that used at the end
of Section 3, it can be seen that each row has again only three nonzero coefficients.
In a general decomposition into tetrahedra, the typical number of elements having
an edge in common is quite lower than the typical number of elements having a
vertex in common, so that the new formulation allows an easier explicit inversion of
the matrix A (compared with what we had in the previous BDM three-dimensional
trick).

It can be easily seen that in the two cases (BDM three-dimensional tricks using
the vertices or the midpoints of the edges) we can interpret the equation U = A−1P
as a way of recovering the flux from the piecewise constant values of the pressure.
More precisely, the flux on each face fk is recovered:

• taking, for each vertex S of fk, a suitable average of the jumps of ph in the
tetrahedra having that vertex in common, in order to obtain “the value of unk

on fk at S”, and finally reconstructing a linear expression of unk on fk using
its values at the three vertices (for the former vertex-based trick)

• taking, for each midpoint M of an edge e of fk, a suitable average of the jumps
of ph in the tetrahedra having e as an edge, in order to obtain “the value of
unk on fk at M”, and finally13 reconstructing a linear expression of unk on fk

using its values at the three midpoints (for the latter midpoint-based trick).

In both cases the coefficients of the “suitable combination” come out of the solution
of the corresponding block equation.

It is very likely that Finite Volume schemes based on these formulae already exist
in the literature. However we were not able to find them, and we are reasonably
convinced that the Finite Volume motivation would be different from the present
one. The analysis of these methods will be presented in.7
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