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Abstract: In the present paper we introduce a Virtual Element Method (VEM) for the ap-
proximate solution of general linear second order elliptic problems in mixed form, allowing for
variable coefficients. We derive a theoretical convergence analysis of the method and develop a set
of numerical tests on a benchmark problem with known solution.

1 Introduction

The aim of this paper is to design and analyze some aspects of the use of Virtual Element Methods
(in short, VEM) for the approximate solution of general linear second order elliptic problems. In a
previous paper [13] the same authors analyzed diffusion-convection-reaction problems with variable
coefficients in the primal form. Here we shall deal with the mixed formulation.

Virtual Element Methods (introduced in [10]) belong to the family of methods that allow the
use of general polygonal and polyhedral decompositions, that are becoming more and more popular,
in particular in view of their use in particular problems connected to moving boundaries. Example
of applications where polytopal meshes could have (or are already yielding) a positive impact can
be found, for instance, in fluid-structure interaction [58, 88], crack propagation [21, 73, 81], phase
change [66, 35], contact problems [22], or topology optimization [56, 57, 85, 83], but they are
promising also in other applications, for instance in presence of coefficients that vary rapidly on
sub-domains with complicated geometries, as when dealing with various types of inclusions (see
e.g. [79, 72, 36]), or more generally in medical applications [76, 86, 72, 77], in image processing
[64, 59, 54], and many others. It must be pointed out that several among these methods, in view of
their great resistance to element distortions, come out to be handy not only for general polygonal
elements, but also on quadrilaterals or hexahedra as well [34]. The literature on these methods has
quite old origins (see e.g. [87]), and kept slowly increasing and widening its range of applications
ever since. See for instance [4, 5, 6, 7, 8, 23, 24, 43, 52, 53, 55, 60, 62, 65, 67, 74, 78, 80, 82, 84, 91].
In more recent times the variety of methods (already quite rich) has been growing very fast. In
particular we have presently a flourishing group of methods, quite similar to each other, based
(one way or another) on local polynomial reconstructions. Among others we mention Hybridizable
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Discontinuous Galerkin methods [38, 39, 40, 41, 71], Weak Galerkin methods [69, 70, 89, 90], the
latest evolution of Mimetic Finite Differences [16, 17, 19, 26, 62], several variants related to Finite
Volumes and Mixed Methods [50, 49, 48, 25, 42, 44, 45, 46], boundary element methods [75] and
various evolutions of the Virtual Element Methods themselves (mentioned below).

The similarities and the differences among all these methods are still under investigation, as well
as the (much more important) analysis of “which method is best suited for which class of problems”.
We are not going to attempt to clarify these issues in the present paper, and more modestly we
stick on Virtual Element Methods, and in particular on their use in mixed formulations.

We recall that Mixed Virtual Element Methods for div(K∇) with K constant were introduced,
for the two dimensional case, in [28] as an evolution of the Mimetic Finite Differences as originally
analyzed in [29, 31, 30, 32], and then extended in various directions, see for instance [9, 27, 15, 3].
For references to several much older papers on Mimetic Finite Differences and a much more detailed
panorama on related methods we refer to [61] and [18]. We also point out that the first attempt to
extend and analyze Mimetic Finite Differences to linear elliptic second order operators of the form
div(K∇) with a variable K was actually done earlier in [16] for the mixed formulation.

A more recent approach to the theory of Virtual Element Methods has been introduced in [1],
where the first attempt to a systematic use of the L2-projection operator was presented (originally
for the so called nodal VEM). This was later refined and extended to mixed formulations in [12]. See
also [14], for more details on the implementation of Virtual Elements and [33, 11, 20, 21, 63, 57, 2, 68]
for other interesting applications and developments.

Here we follow this direction, and the Virtual Element Methods that we propose and analyze for
dealing with variable coefficients are indeed based on L2-projection operators in a rather systematic
way. We recall that for Virtual Element Methods the shape and trial functions are not given in
an explicit form, but rather as solutions of PDE problems inside each element. As we do not
want to solve these problems inside the elements (not even in an approximate way), the passage
from constant to variable coefficients is less trivial than for other methods. In particular, simple
minded approaches to variable coefficients can lead to a loss of optimality, especially for higher
order methods, as it has been shown for instance in [13] for nodal VEM.

For the sake of simplicity we present here only the two-dimensional case, although, as pointed
out here below in Remark 4.3, the passage from two to three dimensions, in the present case, is
quite immediate.

We will use the following notation. The space of polynomials of degree ≤ k, for k nonnegative
integer, will be denoted by Pk, or Pk(O) whenever we want to stress the fact that we are working
on a particular domain O. As common, we will use P−1 ≡ {0} as well.

Throughout the paper, we will follow the standard notation for classical Sobolev spaces, as for
instance in [37]. In particular, for a domain O in one or several dimensions, ‖f‖k,p,O (k ≥ 0 integer
and 1 ≤ p ≤ +∞) will denote the norm of the function f in the Sobolev space W k,p(O) of functions
that belong to Lp(O) with all their derivatives up to the order k. We will also use the notation
Hk(O) to denote W k,2(O), and the norm of a function f in Hk(O) will be denoted by ‖f‖k,O (or
simply ‖f‖k whenever no confusion can occur). With a minor (and common) abuse of notation,
for a vector valued function (say, f : O → R2) we will still write ‖f‖k,p,O to denote the norm of
f in the Sobolev space (W k,p(O))2. The scalar product in L2(O) or in (L2(O))2 will be denoted
by (· , ·)0,O, or simply by (· , ·)0 (or even (· , ·)) when no confusion may arise. As usual, Hk

0 (O) (k
integer > 0) will denote the subset of Hk(O) made of functions vanishing at the boundary ∂O of
O together with all their derivatives up to the order k − 1.

Throughout the paper, C will denote a generic constant independent of the mesh size, not
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necessarily the same from one occurrence to the other. Sometimes, in some specific step where we
want to stress the dependence of a constant on some variable (say, ξ) we will indicate it by Cξ.
Needless to say, Cξ might also assume different values from one occurrence to another.

An outline of the paper is as follows. In Section 2, after stating the problem and its formal
adjoint, we recall (in Subsection 2.1) the mixed variational formulation. Then, in Section 3 we
introduce the Virtual Element approximation of the mixed formulation, and derive optimal error
estimates in Section 4. In Section 5 we derive a superconvergence result for the scalar variable, and
finally, in Section 6, we present some numerical results.

In the bibliography we included an unusual amount of references, as it would have been appro-
priate for a review paper. However we thought that a wide set of references could be convenient,
as well, for a paper submitted for a special issue (like the present one).

2 The problem and the adjoint problem

Let Ω ⊂ R2 be a bounded convex polygonal domain and let Γ represent the boundary of Ω. We
assume that κ and γ are smooth functions Ω→ R with κ(x) ≥ κ0 > 0 for all x ∈ Ω, and that b is a
smooth vector valued function Ω→ R2. For f ∈ H−1(Ω)(≡ (H1

0 (Ω))′), we consider the problem:{
Find p ∈ H1

0 (Ω) such that:

L p := div(−κ(x)∇p+ b(x)p) + γ(x) p = f(x) in Ω.
(1)

We make the following fundamental assumption, that among other things implies that problem (1)
is Well-Posed.
Assumption WP We assume that for all source terms f ∈ H−1(Ω) problem (1) has a unique
solution p, that moreover satisfies the a-priori estimate

‖p‖1,Ω ≤ C‖f‖−1,Ω, (2)

as well as the regularity estimate
‖p‖2,Ω ≤ C‖f‖0,Ω, (3)

both with a constant C independent of f .

We consider also the adjoint operator L∗ given by

L∗p := div(−κ(x)∇p)− b(x) · ∇p+ γ(x) p. (4)

The above assumptions on problem (1) imply, among other things, that existence and uniqueness
hold, as well, for (92). Moreover, for every g ∈ L2(Ω) there exists a unique ϕ ∈ H2(Ω) ∩ H1

0 (Ω)
such that L∗ϕ = g, and

‖ϕ‖2,Ω ≤ C∗‖g‖0,Ω (5)

for a constant C∗ independent of g. We note that having a full diffusion tensor would not change
the analysis in a substantial way; the choice of having a scalar diffusion coefficient κ was done just
for simplicity. Finally, as we shall see, the 2-regularity (3) and (5) is not necessary in order to derive
the results of the present work, and an s-regularity with s > 1 would be sufficient. Here however
we are not interested in minimizing the regularity assumptions.

3



2.1 The mixed variational formulation

In order to build the mixed variational formulation of problem (1), we define

ν := κ−1, β := κ−1b,

and re-write (1) as

u = ν−1(−∇p+ βp), divu+ γ p = f in Ω, p = 0 on Γ. (6)

Introducing the spaces
V := H(div; Ω), and Q := L2(Ω),

the variational formulation of problem (6) is:
Find (u, p) ∈ V ×Q such that

(νu,v)− (p,div v)− (β · v, p) = 0 ∀v ∈ V,
(divu, q) + (γp, q) = (f, q) ∀q ∈ Q.

(7)

For the subsequent analysis it will be convenient to write (7) also in a more compact way. For this,
we define first

V := V ×Q, U := (u, p), V := (v, q), F := (0, f),

and
A(U,V) := (νu,v)− (p,div v)− (β · v, p) + (divu, q) + (γp, q). (8)

Problem (7) can then be equivalently written as:{
Find U ∈ V such that

A(U,V) = (F,V) ∀V ∈ V.
(9)

Remark 2.1. It is almost immediate to see that our path (from (1)) to (9)) can be easily reversed:
if a pair U = (u, p) solves (9) then u and p satisfy (6) and hence p solves (1). In turn, this easily
gives that the existence and uniqueness of the solution of (1) implies the existence and uniqueness
of the solution of (9).

3 VEM approximation

In the present section we introduce the Virtual Element approximation of problem (7).

3.1 The Virtual Element spaces

Let Th be a decomposition of Ω into star-shaped polygons E, and let Eh be the set of edges e of
Th. We further assume that for every element E there exists a ρE > 0 such that E is star-shaped
with respect to every point of a disk DρE of radius ρEhE (where hE is the diameter of E) and
that the length he of every edge e of E satisfies he ≥ ρEhE . When considering a sequence of
decompositions {Th}h we will obviously assume ρE ≥ ρ0 > 0 for some ρ0 independent of E and of
the decomposition. As usual, h will denote the maximum diameter of the elements of Th.
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For every element E we introduce:

Gk(E) := ∇Pk+1(E), (10)

and
G⊥k (E) = the L2(E) orthogonal of Gk(E) in (Pk(E))2, (11)

so that
(Pk(E))2 = Gk(E)⊕ G⊥k (E). (12)

For k integer ≥ 0 we define

V kh (E) := {v ∈ H(div;E) ∩H(rot;E) : v · n|e ∈ Pk(e) ∀e ∈ ∂E,
div v ∈ Pk(E), and rotv ∈ Pk−1(E)}. (13)

Then we introduce the discrete spaces

V kh := {v ∈ H(div; Ω) such that v|E ∈ V kh (E) ∀ element E in Th}, (14)

and
Qkh := {q ∈ L2(Ω) such that: q|E ∈ Pk(E) ∀ element E in Th}. (15)

The degrees of freedom for Qkh are obvious (one has many equivalent good choices for them), while
the degrees of freedom for V kh are defined by (see [12])∫

e
v · n q k ds for all edge e, for all qk ∈ Pk(e), (16)∫

E
v · gk−1dx for all element E, for all gk−1 ∈ Gk−1(E), (17)∫
E
v · g⊥k dx for all element E, for all g⊥k ∈ G⊥k (E), (18)

where the notation (10)-(11) was used for Gk(E) and G⊥k (E), respectively.

Remark 3.1. We point out that conditions (16) could be replaced by the values of v ·n at suitable
points on each edge. Similarly, in (18) G⊥k (E) could be replaced by any subspace of (Pk(E))2

satisfying (12).

Remark 3.2. It is not difficult to check that the present choice of elements mimics, in some sense,
the Raviart-Thomas elements, although, even on triangles, they coincide with the RT elements only
for k = 0. As pointed out in [28] and in [12] there are many other choices that could be made.

Remark 3.3. Regarding the mesh assumptions at the beginning of this section, we note that it
wouldn’t be a problem to generalize the shape regularity condition by allowing suitable unions of
star-shaped elements. Analogously, also the minimal edge length condition could be probably avoided
with some additional technical work in the interpolation estimates.

3.2 Interpolants, projections and approximation errors

From now on, we shall denote by Π0
k : Q→ Qkh and by Π0

k : V → V kh the L2− projection operators,
defined locally by ∫

E

(q −Π0
kq)pk dx = 0 ∀pk ∈ Pk(E), ∀E ∈ Th,∫

E

(v −Π0
kv)qk dx = 0 ∀qk ∈ (Pk(E))2, ∀E ∈ Th.

(19)
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In [12] it was shown that the degrees of freedom (16)-(18) allow the explicit computation of the
projection Π0

kv from the knowledge of the degrees of freedom (16)-(18) of v. For the convenience
of the reader we briefly recall the construction. We first observe that using the degrees of freedom
(17) we can easily compute the value of v ·n on ∂E. From this and (17) one can compute the value
of div v ∈ Pk, using∫

E

div v qkdx = −
∫
E

v · ∇qkdx+

∫
∂E

v · n qkds ∀qk ∈ Pk (20)

(remember that ∇qk ∈ Gk−1). Once you know explicitly v · n on ∂E and div v inside E, then you
can easily compute the integral∫

E

v · ∇qk+1dx = −
∫
E

div v qk+1dx+

∫
E

v · n qk+1ds, (21)

meaning that you can compute
∫
E
v · gkdx for every gk ∈ Gk. This and the degrees of freedom (18)

allow you to compute
∫
E
v · qkdx for every (vector valued) polynomial qk of degree ≤ k.

On the other hand, in every element E, the computation of the L2(E)-projection of an element
q ∈ Qkh is trivial (and coincides with its restriction to the element E).

With classical arguments one can easily show that

‖q −Π0
kq‖0 ≤ Chs|q|s, ‖v −Π0

kv‖0 ≤ Chs|v|s, 0 ≤ s ≤ k + 1, (22)

for every q and v, respectively, that make the norms in the right-hand sides finite.
We point out that a linear “Fortin” operator ΠF

h from W := (H1(Ω))2 → V kh can be defined
through the degrees of freedom (16)-(18), by setting, brutally∫

e
(v −ΠF

h v) · n q k ds = 0 for all edge e, for all qk ∈ Pk(e), (23)∫
E

(v −ΠF
h v) · gk−1dx = 0 for all element E, for all gk−1 ∈ Gk−1(E), (24)∫

E
(v −ΠF

h v) · g⊥k dx = 0 for all element E, for all g⊥k ∈ G⊥k (E), (25)

and (using, essentially, (20)) it is easy to verify that the commuting diagram property holds:

W
div−−−−→ Q −−−−→ 0

ΠF
h

y yΠ0
k

V kh −−−−→
div

Qkh −−−−→ 0

(26)

so that
div ΠF

h v = Π0
k div v. (27)

Moreover, the following estimates hold, provided u has enough regularity:

‖u−ΠF
hu‖0 ≤ Chk+1‖u‖k+1, ‖ div(u−ΠF

hu)‖0 ≤ Chk+1‖ divu‖k+1. (28)

With a minor abuse of notation, for an element W ≡ (w, r) with w ∈ (H1
0 (Ω))2 and r scalar or

vector function in L2(Ω), we will also denote

w := Π0
kw, r := Π0

kr, and W := (w, r),

wI := ΠF
hw, rI := Π0

kr, and WI := (wI , rI).
(29)
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We remind that, obviously,

‖w‖0 ≤ ‖w‖0, ‖r‖0 ≤ ‖r‖0, ‖rI‖0 ≤ ‖r‖0, (30)

while
‖wI‖0 ≤ ‖w‖0 + ‖w −wI‖0 ≤ C (‖w‖0 + h|w|1). (31)

For locally smooth w, as we can see from (22) and (28), the two errors ‖w − wI‖0,E and
‖w −w‖0,E will behave in the same way (in terms of powers of h and required regularity). Hence
it makes sense to introduce a sort of common value that bounds both of them. We define

Ek(w) := ‖w −wI‖0 + ‖w −w‖0, (32)

and we put it on charge to measure the approximation error for w when using Virtual Element
spaces of degree k. Needless to say, the same holds for a scalar function r approximated in Qkh (or,
when necessary, for a vector valued function r approximated in (Qkh)2) since, in these cases the two
approximations r and rI coincide (as one can see in (29)). In order to use the same notation all
over, however, we follow (32), and set

Ek(r) := ‖r − rI‖0 + ‖r − r‖0, and Ek(W) := ‖W −WI‖0 + ‖W −W‖0. (33)

We also point out that, by the properties of the projection, we immediately have

‖WI −WI‖0 ≤ ‖WI −W‖0 ≤ ‖WI −W‖0 + ‖W −W‖0 = Ek(W), (34)

implying also
Ek(WI) ≤ Ek(W). (35)

Along the same lines, it is intuitively obvious (and it can be easily proved) that if you have a
certain estimate (in terms of powers of h and required regularity) for w (or for r) you will have
quite similar estimates for, say, ϕw whenever ϕ is a given smooth function. The constant in front of
the estimate will depend on ϕ, but the power of h and the regularity required to w will be exactly
the same. For instance it is immediate to check (just expanding the derivatives of the products,
and using Cauchy-Schwarz) that one has

‖ϕw − ϕw‖0 ≤ C hk+1 |ϕw|k+1 ≤ C hk+1 ‖ϕ‖k+1,∞‖w‖k+1 ≡ Cϕ hk+1 ‖w‖k+1. (36)

The same occurs for a pair W = (w, r) when one of the two entries (or both) are multipled by
a smooth function ϕ or a smooth vector valued function ϕ, as in

Ek(wϕ) = ‖wϕ−wϕ‖0 + ‖wϕ− (wϕ)I‖0 and Ek(rϕ) = ‖rϕ− rϕ‖0 + ‖rϕ− (rϕ)I‖0 (37)

for a smooth function ϕ, as well as in

Ek(rϕ) = ‖rϕ− rϕ‖0 + ‖rϕ− (rϕ)I‖0 (38)

for a smooth vector valued function ϕ.
All this suggests a further “abuse of notation”: for W = (w, r) we will use the notation Ek(ℵW)

(either for ℵ scalar or ℵ vector) whenever one of the two (w and r), or both, are multiplied by ℵ.
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It could be worth pointing out a few particular cases: no matter whether ℵ is a scalar or a
vector, we have

Ek(ℵW) ≤ Cℵ h
(
‖r‖1 + ‖w‖1

)
, (39)

as well as
Ek(ℵWI) ≤ Ek(ℵ(WI −W)) + Ek(ℵW) ≤ ‖ℵ‖∞Ek(W) + Ek(ℵW). (40)

Needless to say, the obvious analog of the bounds (39)-(40) apply also to the separate terms
Ek(w), Ek(r) and so on. Finally, we observe that estimates (22) and (28) imply

Ek(U) ≤ Chk+1(‖u‖k+1 + ‖p‖k+1), Ek(ℵU) ≤ Cℵh
k+1(‖u‖k+1 + ‖p‖k+1), (41)

where Cℵ is a constant depending on ℵ and its derivatives up to the order k + 1. As a final remark
we note that, whenever convenient, we can easily bound Ek(ℵW) by

Ek(ℵW) ≤ Cℵ‖W‖0. (42)

3.3 The discrete bilinear forms

As is well known from the theory of mixed formulations, the two main ingredients to be used to
prove stability and error estimates are the ellipticity of the leading diagonal term (here, (νu,v)),
and the inf-sup condition. Here the inf-sup condition will be easily provided by the commuting
diagram (26). Hence, our main worry will be the treatment of the term

a(u,v) := (νu,v). (43)

On each element E ∈ Th we define:

aEh (v,w) := (νv,w)0,E + SE(v − v,w −w), (44)

where SE(v,w) is any symmetric and positive definite bilinear form that scales like aE(v,w) (see
[10]). More precisely, our assumption on S will be: There exist two positive constants α∗ and α∗

(depending on ν but independent of h) such that

α∗a
E(v,v) ≤ SE(v,v) ≤ α∗aE(v,v) ∀v ∈ V kh . (45)

For practical purposes it will be convenient to choose the Euclidean scalar product associated to
the degrees of freedom in V kh multiplied, for instance, by |E|ν(xB), where xB = (xB , yB) = is the
barycenter of E. We notice that, obviously, pk = pk for all pk ∈ Pk. Therefore

aEh (pk,w) =

∫
E

νpk ·w, dx ∀w ∈ V kh , ∀pk ∈ Pk. (46)

We can now define
ah(v,w) :=

∑
E

aEh (v,w). (47)

Lemma 3.4. The bilinear form ah(·, ·) is continuous and elliptic in (L2(Ω))2, that is:

∃M > 0 such that |ah(v,w)| ≤M‖v‖0‖w‖0 ∀v,w ∈ V kh ,
∃α > 0 such that ah(v,v) ≥ α‖v‖20 ∀v ∈ V kh ,

(48)

with M and α depending on ν but independent of h.
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Proof. The symmetry of SE and (45) imply easily the continuity of SE :

SE(v,w) ≤ (SE(v,v))1/2(SE(w,w))1/2 ≤ Cν‖v‖0,E‖w‖0,E , (49)

with Cν = α∗νmax. In particular,

SE(v − v,w −w) ≤ Cν‖v − v‖0,E‖w −w‖0,E ≤ CνEk(v)Ek(w). (50)

Then, the continuity of ah(·, ·) is an obvious consequence of the continuity of a(·, ·) and of the L2−
projection properties:

|ah(v,w)| ≤ νmax‖v‖0‖w‖0 + Cν‖v − v‖0‖w −w‖0 ≤M‖v‖0‖w‖0.

Similarly,

ah(v,v) ≥ νmin

(
‖v‖2 + α∗‖v − v‖20

)
≥ α

(
‖v‖20 + ‖v − v‖20

)
= α‖v‖20.

The discrete problem is now:
Find (uh, ph) ∈ V kh ×Qkh such that

ah(uh,vh)− (ph,div vh)− (β · vh, ph) = 0 ∀vh ∈ V kh
(divuh, qh) + (γph, qh) = (f, qh) ∀qh ∈ Qh.

(51)

Like we did for the continuous formulation, in order to write (51) in a more compact form, we set

Vh := V kh ×Qkh, Uh := (uh, ph), Vh := (v, qh), Fh := (0, f),

and
Ah(Uh,Vh) := ah(uh,vh)− (ph,div vh)− (β · vh, ph) + (divuh, qh) + (γph, qh). (52)

Then problem (51) can be written as{
Find Uh ∈ Vh such that

Ah(Uh,Vh) = (Fh,Vh) ∀Vh ∈ Vh.
(53)

4 Error Estimates

Our final target is to prove the following theorem.

Theorem 4.1. Under the above assumptions and with the above notation, for h sufficiently small
problem (51) has a unique solution (uh, ph) ∈ V kh ×Qkh, and the following error estimates hold:

‖p− ph‖0 ≤ Chk+1
(
‖u‖k+1 + ‖p‖k+1

)
,

‖u− uh‖0 ≤ Chk+1
(
‖u‖k+1 + ‖p‖k+1

)
,

‖ div(u− uh)‖0 ≤ Chk+1
(
|f |k+1 + ‖p‖k+1

)
,

(54)

with C a constant depending on ν,β, and γ but independent of h.

Before proving the theorem, we will introduce some useful lemmata, that deal with properties
of the bilinear forms A and Ah.
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4.1 Preliminary estimates

A typical source of difficulties, when proving optimal error estimates, is the fact that the bilinear
form A(U,V) cannot be bounded in terms of the L2 norms of U and V, due to the presence
of the two terms (divu, q) and (p,div v) involving the divergence. We will therefore spend some
additional time in order to point out some particular cases in which these terms could be avoided.
In particular, we note that for v ∈ H(div;E) and q ∈ L2(E) we will have∫

E

div v q dx = 0 (55)

whenever

• q ∈ Pk, and div v is orthogonal to Pk,

• div v ∈ Pk, and q is orthogonal to Pk.

Hence, in particular, using (13), (15), and (27) we have:∫
E

div(w −ΠF
hw) qhdx = 0 ∀qh ∈ Qkh, ∀w ∈ (H1(E))2, (56)

and ∫
E

div vh (r −Π0
kr)dx = 0 ∀vh ∈ V kh (E), ∀r ∈ L2(E), (57)

so that for every W ∈ V and for every Vh ∈ Vh we have

|A(Vh,W −WI)|+ |A(W −WI ,Vh)| ≤ Cν,β,γ ‖Vh‖0 ‖W −WI‖0. (58)

4.2 The consistency error

Further attention should also be given to the difference (Ah − A)(W,V). We will perform the
analysis on a single element, without indicating every time that the norms are considered in L2(E).
Using (8) and (52) we have easily

(Ah −A)(W,V) = (νw,v)− (νw,v) (=: T1(W,V))

+ S(w −w,v − v) (=: T2(W,V))

+ (v − v,βr) (=: T3(W,V)),

(59)

where as before V = (v, q) and W = (w, r) are in Vh. We point out that all the terms T1, T2 and
T3 do not involve derivatives, so that we will not have continuity problems. For the term T1, using
repeatedly the properties of the L2− projection we have:

T1(W,V) = (νw,v)− (νw,v) = (νw,v − v)− (w −w, νv)

= (νw − νw,v − v)− (w −w, νv − νv)

= (νw − νw,v − v)− (w −w, νv − νv + νv − νv)

= (νw − νw,v − v)− (w −w, νv − νv)− (w −w, ν(v − v))

≤
(
Cν‖w −w‖0 + ‖νw − νw‖0

)
‖v‖0

≤
(
CνEk(W) + Ek(νW)

)
‖V‖0.

(60)
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Needless to say, in view of the symmetry of the term, we also have

T1(W,V) = T1(V,W) ≤
(
CνEk(V) + Ek(νV)

)
‖W‖0. (61)

The terms T2 and T3 in (59) are easily bounded. Directly from (50) we have

T2(W,V) ≤ CνEk(W) Ek(V), (62)

and for T3

T3(W,V) = (v − v,βr − βr) ≤ Ek(V) Ek(βW). (63)

The above analysis can now be summarized in the following two estimates, that will both be used
in our final proof.

• Using (61), (63) with (42), and (62) we have

(Ah −A)(W,V) ≤ Cν,β

(
(Ek(V) + Ek(νV)

)
‖W‖0. (64)

• Using instead (60), (63) and (62) we have

(Ah −A)(W,V) ≤ Cν

(
Ek(W) + Ek(νW) + Ek(βW)

)
‖V‖0. (65)

4.3 The dual problem

Our proof will use a duality argument. Therefore we spend some time analyzing the dual problem.

Lemma 4.2. Let ` ∈ L2(Ω), g ∈ H(div; Ω), and set G := (g, `). Let Z := (ζ, z) ∈ V be the solution
of

A(W,Z) = (G,W) ∀W = (w, r) ∈ V. (66)

Then Z is the solution of

ζ = κ(∇z + g) and − div ζ − β · ζ + γ z = ` in Ω, z = 0 on Γ (67)

that is, (see (92)),
L∗z = `+ b · g + div(κg), (68)

so that, in particular
||z||2 + ||ζ||1 ≤ C∗(||`||0 + ||κg||H(div)). (69)

Proof. Recalling (8), and substituting W for U and Z for V we get

A(W,Z) = (νw, ζ)− (r, div ζ)− (β · ζ, r) + (divw, z) + (γr, z). (70)

Separating the equations in w and in r in (66) it is not difficult to see that (ζ, z) solves{
(νw, ζ) + (divw, z) = (g,w) ∀w ∈ H(div,Ω)

− (r, div ζ)− (β · ζ, r) + (γr, z) = (`, r) ∀r ∈ L2(Ω)
(71)
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giving, respectively,
ζ = κ∇z + κg plus z ∈ H1

0 (Ω),

and
−div ζ − β · ζ + γz = `.

Putting them together we have

− div(κ∇z)− div(κg)− b · ∇z − b · g + γz = `,

and (68) follows.

4.4 Proof of Theorem 4.1

We are now ready for the proof of Theorem 4.1.
Proof. To prove Theorem 4.1 we shall follow the arguments of Douglas-Roberts [47]. We first

assume that (51) has a solution, at least for h sufficiently small. That it does, it will be clear from
the convergence analysis. Let therefore Uh = (uh, ph) be a solution of (51). Let us form the error
equation:

A(U,Vh)−Ah(Uh,Vh) = 0 ∀Vh ≡ (vh, qh) ∈ Vh. (72)

We use duality arguments. Let Ψ = (χ, ψ) be the solution of the adjoint problem

A(V,Ψ) =
(
ν(UI −Uh),V

)
=
(

(ν(uI − uh), pI − ph),V
)
∀V ∈ V. (73)

According to Lemma 4.2, ψ ∈ H1
0 (Ω) ∩H2(Ω) is the solution of the adjoint problem

L∗ψ ≡ div(−κ∇ψ)− b · ∇ψ + γ ψ = pI − ph + β · (uI − uh) + div(uI − uh), (74)

and by the elliptic regularity (69) with G ≡ (g, `) := (ν(uI − uh), pI − ph) we get

‖ψ‖2 + ‖χ‖1 ≤ C∗ (‖pI − ph‖0 + ‖uI − uh‖H(div)). (75)

Our first step will then be the estimate of ‖ div(uI −uh)‖0. Looking at the discrete and continuous
equations we have

divuh = Π0
k(f − γph) and divu = f − γp, (76)

and from (27) divuI = Π0
k divu = Π0

k(f − γp). Hence,

div(uI − uh) = Π0
k(γ(ph − p)), (77)

so that, clearly,
‖ div(uI − uh)‖0 ≤ Cγ‖p− ph‖0. (78)

Therefore, (75) reduces to

‖ψ‖2 + ‖χ‖1 ≤ C (‖pI − ph‖0 + ‖uI − uh‖0 + ‖p− pI‖0)

≤ C
(
‖UI −Uh‖0 + Ek(U)

)
,

(79)

12



and using (for instance) (39) with ℵ = 1 the estimate (79) implies that

Ek(Ψ) ≤ C h
(
‖ψ‖1 + ‖χ‖1

)
≤ C h

(
‖UI −Uh‖0 + Ek(U)

)
, (80)

as well as
‖ΨI‖0 ≤ ‖Ψ−ΨI‖0 + ‖Ψ‖0 ≤ C

(
‖UI −Uh‖0 + Ek(U)

)
. (81)

Moreover, taking V = UI −Uh in (73), it is immediate to see that

νmin‖UI −Uh‖2 ≤
∫

Ω

(ν|uI − uh|2 + |pI − ph|2)dx = A(UI −Uh,Ψ). (82)

Hence,
νmin‖UI −Uh‖2 ≤ A(UI −Uh,Ψ) (±ΨI)

= A(UI −Uh,Ψ−ΨI) +A(UI −Uh,ΨI) (±U)

= I +A(UI −U,ΨI) +A(U−Uh,ΨI) (just linearity)

= I + II +A(U,ΨI)−A(Uh,ΨI) (use (72))

= I + II + (Ah −A)(Uh,ΨI).

(83)

The first two terms are easily bounded using (58), (80)-(81), and (41):

I ≡ A(UI −Uh,Ψ−ΨI) ≤ C ‖UI −Uh‖0 h
(
‖UI −Uh‖0 + Ek(U)

)
≤ C

(
h‖UI −Uh‖20 + hk+2‖UI −Uh‖0

)
,

(84)

II ≡ A(UI −U,ΨI) ≤ C Ek(U)
(
‖UI −Uh‖0 + Ek(U)

)
≤ C

(
‖UI −Uh‖0hk+1 + h2k+2

)
,

(85)

and we are left with the third term. For it, we are going to use the arguments of Subsection 4.2.
We start by observing that

(Ah −A)(Uh,ΨI) = (Ah −A)(Uh −UI ,ΨI) + (Ah −A)(UI ,ΨI). (86)

The first term in (86) can be easily bounded, using (64), (35), (40), (80), and (41):

(Ah −A)(Uh −UI ,ΨI) ≤ Cν,β
(
Ek(ΨI) + Ek(νΨI)

)
‖Uh −UI‖0

≤ C h
(
‖Uh −UI‖0 + Ek(U)

)
‖Uh −UI‖0

≤ C
(
h ‖Uh −UI‖20 + hk+2‖Uh −UI‖0

)
,

(87)

while, using (65), (35), (40), and (81), the second term in (86) can be bounded by

(Ah −A)(UI ,ΨI) ≤ Cν

(
Ek(UI) + Ek(νUI) + Ek(βUI)

)
‖ΨI‖0

≤ C
(
Ek(U) + Ek(νU)) + Ek(βU)

)(
‖Uh −UI‖0 + Ek(U)

)
≤ C

(
hk+1‖Uh −UI‖0 + h2k+2

)
.

(88)
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Inserting (84), (85), and (87)-(88) into (83) we have then

νmin‖Uh −UI‖2 ≤ C
(
h‖Uh −UI‖2 + ‖Uh −UI‖hk+1 + h2k+2

)
. (89)

For h small enough (say: Ch ≤ (1/2)νmin in (89)) we can hide the first term in the r.h.s. of (89)
in the left-hand side, and have

‖Uh −UI‖20 ≤ C
(
hk+1‖Uh −UI‖0 + h2k+2

)
, (90)

and the first two estimates in (54) follow completing the square. The estimate on the divergence
follows directly from (76), and standard error estimates.

Finally, since (51) is finite dimensional, in order to prove the existence of the solution we only
have to prove uniqueness, that is, we have to prove that for f = 0 problem (51) has only the solution
ph = 0,uh = 0. Since we assumed that the continuous problem (1) has a unique solution, it follows
that for f = 0 we have p = 0,u = 0. The above analysis showed that, for h small enough, any
solution (uh, ph) of (51) must satisfy (54) which, in our case, imply uh = 0, ph = 0, and the proof
is concluded.

Remark 4.3. Looking at the construction of the method, and to the analysis of its convergence
properties, it is not difficult to see that the passage from the two-dimensional case to the three-
dimensional one can be done, using [12], without any difficulty. However, the notation for dealing
with both cases at the same time would be more cumbersome, and a presentation with two separate
treatments would be very boring and essentially useless.

5 Superconvergence results

Theorem 5.1. Let ph be the solution of (51), and let pI ∈ Qkh be the interpolant of p. Then, for
h sufficiently small,

‖pI − ph‖0 ≤ C hk+2
(
‖u‖k+1 + ‖p‖k+1 + |f |k+1

)
, (91)

where C is a constant depending on ν, β, and γ but independent of h.

Proof. We proceed again via duality argument. Let ψ ∈ H1
0 (Ω) ∩H2(Ω) be the solution of the

adjoint problem

div(−κ(x)∇ψ)−b(x) · ∇ψ+γ(x)ψ = pI − ph, χ = κ∇ψ, (92)

whose mixed formulation is: Find (χ, ψ) in H(div,Ω)× L2(Ω) such that{
(νχ,v) + (ψ,div v) = 0 ∀v ∈ H(div,Ω)

− (divχ, q)−(β · χ, q)+(γψ, q) = (pI − ph, q) ∀q ∈ L2(Ω).
(93)

The error equations (72), using (29) and (27), become{
a(u,vh)− ah(uh,vh)− (pI − ph,div vh)−(β · vh, p) + (β · vh, ph) = 0 ∀vh ∈ V kh ,
(div(u− uh), qh)+(γ(p− ph), qh) = 0 ∀qh ∈ Qh.

(94)
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Taking now q = pI − ph in (93) gives

‖pI − ph‖20 = −(divχ, pI − ph)−(β · χ, pI − ph)+(γψ, pI − ph). (95)

For the first term, using again (29) and (27), we have

(divχ, pI − ph) = (divχI , pI − ph) (use(94) with vh = χI)

= a(u,χI)− ah(uh,χI)−(β · χI , p) + (β · χI , ph) (±uh)

= a(u− uh,χI) + a(uh,χI)− ah(uh,χI)−(β · χI , p) + (β · χI , ph) (±χ)

= a(u− uh,χ) + a(u− uh,χI − χ) + a(uh,χI)− ah(uh,χI)

−(β · χI , p) + (β · χI , ph).

(96)

In turn, the first term in (96) becomes

a(u− uh,χ) = (u− uh,∇ψ) = −(div(u− uh), ψ) (±ψI)
= −(div(u− uh), ψ − ψI)− (div(u− uh), ψI) (use (94))

= −(div(u− uh), ψ − ψI)+(γψI , p− ph).

(97)

Replacing (97) in (96), and using the result for the first term of (95), we have then

‖pI − ph‖20 = −
[
− (div(u− uh), ψ − ψI)+(γψI , p− ph) + a(u− uh,χI − χ)

+ a(uh,χI)− ah(uh,χI)−(β · χI , p) + (β · χI , ph)
]

−(β · χ, pI − ph)+(γψ, pI − ph).

(98)

The first two terms are easily bounded:

|a(u− uh,χI − χ)| ≤ Ch‖u− uh‖0‖pI − ph‖0,
|(div(u− uh), ψ − ψI)| ≤ Ch2‖div(u− uh)‖0‖pI − ph‖0,

(99)

while using (61) and (62) we get

|a(uh,χI)− ah(uh,χI)| ≤ Cνhk+1‖u‖k+1,Ωh ‖pI − ph‖0. (100)

For the terms involving reaction, adding and subtracting (γψI , pI − ph) and using the properties of
the projection we obtain

(γψ, pI − ph)−(γψI , p− ph) = (γ(ψ − ψI), pI − ph) + (γψI , pI − ph)− (γψI , p− ph)

= (γ(ψ − ψI), pI − ph) + (γψI , pI − p)
= (γ(ψ − ψI), pI − ph) + (γψI − γψI , pI − p)

≤ Cγh2
(
‖pI − ph‖20 + ‖p− pI‖‖pI − ph‖0

)
.

(101)

For h small enough the first term in the right-hand side of (101) can be hidden in the left-hand
side of (98) and the other one is more than enough.
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Finally, the terms involving advection can be treated as:

− (β · χ, pI − ph) + (β · χI , p)− (β · χI , ph) (±χI)
= −(β · (χ− χI), pI − ph)− (β · χI , pI − ph) + (β · χI , p)− (β · χI , ph)

= −(β · (χ− χI), pI − ph) + (β · χI , p− pI) + (χI − χI ,βph)

= −(β · (χ− χI), pI − ph) + (β · χI − β · χI , p− pI) + (χI − χI ,βph − βph)

≤ Cβh‖pI − ph‖0
(
‖p− pI‖0 + ‖p− ph‖0 + hk+1‖p‖k+1

)
.

(102)

Inserting (99)–(102) in (98) and using (54) and standard interpolation estimates we obtain (91)

6 Numerical Experiments

In this Section we will present some numerical experiments to validate the convergence results
proven in the previous sections. We will test our method on the same problem and with the same
meshes of [13], where we studied the Virtual Element Method for problem (1) in the primal form.

Before presenting the numerical results we make a comment on the stabilization bilinear form
in (44). For each element E ∈ Th we denote by χi, for i = 1, 2, .., NE , the operator V kh (E) → R
that to each vh ∈ V kh (E) associates the i-th local degree of freedom (16)-(17)-(18), ordered as
follows: first the boundary d.o.f. (16), for i = 1, 2, ..., N∂

E , and then the internal ones (17)-(18), for
i = N∂

E + 1, ..., NE . We assume that all the degrees of freedom are scaled in such a way that the
associated dual basis {φi}NE

i=1 scales uniformly in the mesh size

||φi||L∞(E) ' 1 ∀i = 1, 2, ..., NE . (103)

With this notation, the most natural VEM stabilization SE(·, ·) in (44) is given by (see [10])

SE(v −Π0
kv,w −Π0

kw) := |E|
NE∑
i=1

χi
(
v −Π0

kv
)
χi
(
w −Π0

kw
)

(104)

for all v,w ∈ V kh (E). We now observe that, by definition of the L2 projection operator Π0
k, and

since both spaces Gk−1(E), G⊥k (E) appearing in (17)-(18) are included in (Pk(E))2, it is immediate
to check that

χi
(
v −Π0

kv
)

= 0 ∀v ∈ V kh (E), i = N∂
E + 1, ..., NE .

Therefore the contribution of the internal degrees of freedom in (104) vanishes, and we can equiv-
alently use the shorter version

SE(v −Π0
kv,w −Π0

kw) := |E|
N∂

E∑
i=1

χi
(
v −Π0

kv
)
χi
(
w −Π0

kw
)
.

In other words, the internal degrees of freedom do not need to be included in the stabilization
procedure.
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Figure 1: Lloyd-0 mesh Figure 2: Lloyd-100 mesh

6.1 Exact Solution

We will consider problem (1) on the unit square with

κ(x, y) =

(
y2 + 1 −xy
−xy x2 + 1

)
, b = (x, y), γ = x2 + y3, (105)

and with right hand side and Dirichlet boundary conditions defined in such a way that the exact
solution is

p(x, y) = x2y + sin(2πx) sin(2πy) + 2. (106)

The corresponding flux is given by
u = −κ∇p+ b p. (107)

We will show, in a loglog scale, the convergence curves of the error in L2 between (p,u) and the
solution (ph,uh) given by the mixed Virtual Element Method (51). As the VEM flux uh is not
explicitly known inside the elements, we compare u with the L2−projection of uh onto (Pk)2, that
is, with Π0

kuh.

6.2 Meshes

For the convergence test we consider four sequences of meshes.
The first sequence of meshes (labelled Lloyd-0) is a random Voronoi polygonal tessellation of

the unit square in 25, 100, 400 and 1600 polygons. The second sequence (labelled Lloyd-100) is
obtained starting from the previous one and performing 100 Lloyd iterations leading to a Centroidal
Voronoi Tessellation (CVT) (see e.g. [51]). The 100-polygon mesh of each family is shown in Fig. 1
(Lloyd-0) and in Fig. 2 (Lloyd-100) respectively.
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Figure 3: square mesh Figure 4: concave mesh

The third sequence of meshes (labelled square) is simply a decomposition of the domain in 25,
100, 400 and 1600 equal squares, while the fourth sequence (labelled concave) is obtained from
the previous one by subdividing each small square into two non-convex (quite nasty) polygons. As
before, the second meshes of the two sequences are shown in Fig. 3 and in Fig. 4 respectively.

6.3 Convergence curves

In Figs. 5 and 6 we report the relative error in L2 for ph and uh respectively, for the four mesh
sequences in the case k = 1. In Figs. 7 and 8 we show the same convergence results for k = 4.

A closer inspection of the convergence curves for the L2 error between p and ph shown in Figs. 5
and 7 reveals that the slope is slightly larger than expected for the coarsest meshes. This behavior
can be explained in following way. The L2 error ‖p− ph‖0 can be written as

‖p− ph‖20 = ‖p− pI‖20 + ‖pI − ph‖20 (108)

where we recall that on each element pI = Π0
kp. As shown in Section 5, there is a superconvergence

of ph to pI :
‖pI − ph‖0 ≤ Chk+2. (109)

Hence, as long as ‖pI − ph‖0 is the dominant term in the error, we observe a slope of k + 2; when
h becomes smaller, the term ‖p− pI‖0 takes over and the slope becomes k+ 1 as expected. This is
clearly shown in Figs. 9 and 10 where p− pI and pI − ph are plotted in the case of the lloyd-100

meshes with k = 1 and k = 4, respectively. For the sake of clarity, on each curve we have reported
its slope.

We conclude that the Virtual Element Method behaves as expected and shows a remarkable
stability with respect to the shape of the mesh polygons.
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Figure 5: k = 1, relative L2 error for ph
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Figure 6: k = 1, relative L2 error for uh
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Figure 7: k = 4, relative L2 error for ph
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Figure 8: k = 4, relative L2 error for uh
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Figure 9: k = 1, superconvergence
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Figure 10: k = 4, superconvergence
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[68] D. Mora, G. Rivera, and R. Rodŕıguez, A virtual element method for the Steklov eigenvalue
problem, CI2MA Pre-Publicación 2014-27, in press on Math. Mod. Meth. Appl. Math., 2014.

[69] L. Mu, J. Wang, G. Wei, X. Ye, and S. Zhao, Weak Galerkin methods for second order elliptic
interface problems, J. Comput. Phys. 250 (2013), 106–125.

[70] L. Mu, J. Wang, and X. Ye, A weak Galerkin finite element method with polynomial reduction,
arXiv:1304.6481, 2013.

[71] N. C. Nguyen, J. Peraire, and B. Cockburn, An implicit high-order hybridizable discontinuous
galerkin method for linear convection-diffusion equations, J. Comput. Phys. 228 (2009), no. 9,
3232–3254.

[72] J. Oswald, R. Gracie, R. Khare, and T. Belytschko, An extended finite element method for
dislocations in complex geometries: Thin films and nanotubes, Comp. Methods Appl. Mech.
Engrg 198 (2009), 1872–1886.

[73] T. Rabczuk, S. Bordas, and G. Zi, On three-dimensional modelling of crack growth using
partition of unity methods, Computers & Structures 88 (2010), no. 2324, 1391 – 1411, Special
Issue: Association of Computational Mechanics United Kingdom.

24



[74] A. Rand, A. Gillette, and C. Bajaj, Interpolation error estimates for mean value coordinates
over convex polygons, Advances in Computational Mathematics 39 (2013), no. 2, 327–347.

[75] S Rjasanow and S. Weisser, Fem with trefftz trial functions on polyhedral elements, J. of Comp.
and Appl. Math. 263 (2014), 202–217.

[76] B.G. Smith, B.L. Jr. Vaughan, and D.L. Chopp, The extended finite element method for bound-
ary layer problems in biofilm growth, Comm. App. Math. and Comp. Sci. 2 (2007), 35–56.

[77] M. Spiegel et al., Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear
stress for cerebral hemodynamic simulation, Comp. Meth. in Biomech. and Biomed. Engrng.
14 (2011), 9–22.

[78] N. Sukumar, Construction of polygonal interpolants: a maximum entropy approach, Internat.
J. Numer. Methods Engrg. 61 (2004), no. 12, 2159–2181.
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