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The three-field decomposition method is particularly suited for decompositions with non
matching grids. It corresponds to introduce an additional grid (usually uniform, or “easy”) at
the interface. The unknown is then represented independently in each subdomainandon the
interface. The matching between its value in each subdomain and on the interface is provided
by suitable Lagrange multipliers. Here we discuss the main features of the method for a linear
three-dimensional elasticity problem, in the simplest case of two subdomains. An easy nu-
merical test to check whether theinf-supconditions (necessary for the stability) are satisfied
is also presented.
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1 Introduction

Sometimes, there are coincidences, in research, so striking that the only explanation seems
to be:times were ripe. Indeed, in April 1992 two papers were presented almost simultaneously
at two different Meetings (one [18] in Nice, France, from 8 to10, and one [1] in Dallas, Texas,
from 13 to 15) containing exactly the same idea. The two groups of authors did not know each
other, and they belonged to two different communities (Mathematicians and Engineers). It is
totally impossible that the information could have travelled from one group to another, and
the only possible explanation is thatthey had the same idea at the same time. Actually both
groups traced back the origin of their idea to previous worksin the engineering literature:
[36], and [4], respectively. Still, as both references werealready relatively “old and cold” at
the time, their simultaneous revival is a remarkable coincidence.

In order to see the idea, let us first see the problem: in several applications, one has to
solve problems that couple several domains arriving each with its own decomposition, done
by an independent team within the factory. As an example, thewing and the fuselage of an
airplane are typically studied first by different groups, and the relative grids are constructed
independently one from another. If you are in charge of solving a problem involving the whole
plane, you have to do something about these twonon matching grids. Similarly, in several
applications, one needs a local refinement in a specific subdomain, and would like to do it
independently of the decomposition of the remaining part ofthe domain. Here again, if one
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4 F. Brezzi and L.D. Marini: 3-field formulation

wants to avoid a local remeshing near the transition interface, possibly having to use rather
distorted elements, the problem ofnon matching gridspops out again. There are obviously
other applications where you cannot avoid non matching grids: for instance when studying
sliding pieces [14], or contact problems [25], or several other types of problems (see e.g. [3],
[34], [32], [39], [33] and the references therein). In a verycrude and schematic way, the
situation is depicted in Fig. 1.

ΣΩ1 Ω2

Fig. 1 Example of non matching grids

2Ω1

Σ ΣΣ

Ω

Fig. 2 The three grids onΣ

Using a linear elasticity problem as a model problem, assumethatu1 andu2 represent the
displacement fields in the two subdomainsΩ1 andΩ2, respectively, and that, for the sake of
simplicity, we are setting the displacements to zero all over the boundary of the whole domain
Ω, union ofΩ1 andΩ2. The total potential energy can be presented as the sum of theworksFk

of the external forces in each subdomainΩk, plus the contributionsEk to the internal energy
of each subdomainΩk :

Etot = F1 + F2 + E1 + E2, (1.1)

whereF1 andE1 depend onu1 whileF2 andE2 depend onu2. We would like to minimizeEtot

over all displacement fields that satisfy the kinematic boundary conditions on the boundary of
Ω plus suitable continuity requirements on the interfaceΣ betweenΩ1 andΩ2.

The first possibility is to force the continuity by means of a suitable set of Lagrange multi-
pliers. This amounts to add toEtot an interface contribution

L = L(u,λ) :=

∫

Σ

λ · (u1 − u2) dS (1.2)

and to require the stationarity of the functional

F1 + F2 + E1 + E2 + L. (1.3)

At the equilibrium,λ will represent the normal component of the stress field onΣ. This
is possibly the most common way of dealing with the problem, and the celebratedmortar
method(see e.g. [8], [31], [33], [39]) is actually based on it.

The idea that we are talking about here is however different.It amounts to introduce a new
mesh on the interfaceΣ (different, in general, from both the decompositions induced onΣ by
the two given decompositions ofΩ1 andΩ2). There we introduce a new representation,ψ, of
the displacement field, and we introducetwoLagrange multipliers (one for each subdomain);

L1 = L1(u
1,λ1,ψ) :=

∫

Σ

λ1 · (u1 − ψ) dS (1.4)
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and

L2 = L2(u
2,λ2,ψ) :=

∫

Σ

λ2 · (u2 − ψ) dS. (1.5)

Then we consider the stationarity of the functional

F1 + F2 + E1 + E2 + L1 + L2. (1.6)

At the equilibrium,λk will represent the (outward) normal component onΣ of the stress field
in the subdomainΩk.

As we shall see with more details in the following sections, the stationarity of the func-
tional (1.6) implies the equilibrium equations in each subdomain (obtained when taking the
derivatives with respect tou1 andu2, respectively), but it also implies the continuity equations

u1 = ψ, u2 = ψ, (1.7)

obtained when taking the derivatives with respect toλ1 andλ2, respectively, and the equilib-
rium on the interface

λ1 + λ2 = 0, (1.8)

obtained when taking the derivative with respect toψ.
It is clear that, for the discretized problem, both the equilibrium equations in the subdo-

mains and the interface conditions (1.7)-(1.8) will be imposed onlyin a weak sense.
The main features of the three-field formulation will be presented in the next section. In

Section 3 we shall discuss its discretization (essentiallyusing conforming finite elements for
each field, possibly with different degrees from one field to another). The interest in using the
three field formulation in the context of Domain Decomposition Methods, with the possible
use of parallel computers, will be outlined in Section 4. In Section 5 we present sufficient con-
ditions that ensure stability and optimal error bounds in analmost immediate way. As these
conditions might be difficult to check in practice, in particular for non mathematicians, in Sec-
tion 6 we present alternative conditions, that make the convergence proof more difficult but
allow a very easy numerical test that can give reliable indications on their validity in each par-
ticular case. The test itself is presented in Section 7. Someconclusions are drawn in Section 8.
Finally, in Appendices A and B we report the detailed proofs of the two theorems containing
the error estimates. More precisely, Appendix A contains the proof of error estimates using
theinf-supconditions of Section 5, based on more difficult norms, whileAppendix B contains
the more complicated proof of error estimates using theinf-supconditions of Section 6, based
on easier norms (the ones that can be easily checked with the test of Section 7).

2 The three-field formulation

Let us consider, for the sake of simplicity, a polyhedral domain Ω ⊂ IR3, that will be the
region occupied by our elastic body. For simplicity we shallonly consider the case of a de-
composition intotwo (polyhedral) subdomainsΩ1 andΩ2. Most of the theory (and basically
all the practice) will hold unchanged in the case of an arbitrary finite number of subdomains.
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6 F. Brezzi and L.D. Marini: 3-field formulation

We shall try to point out, with suitable remarks, the issues that could require a special attention
when dealing with more subdomains. We then assume that

Ω = Ω1 ∪ Ω2, (2.1)

and we do not make an issue on whetherΩ or theΩk ’s are assumed to be open or closed.
Let us see now thedatathat we are taking for ourlinear elasticity model problem.
We assume that we are given a distributed load vector fieldf in Ω, and homogeneous

kinematic boundary conditions

u = 0 (2.2)

on the whole boundary ofΩ (this is not very realistic, but it is just to simplify the formulae).
As we said, we take the model of linear elasticity for a homogeneous and isotropic material,

with Hooke’s law and corresponding Lamé coefficientsLλ and Lµ. Note that we cannot
use the more common symbolsλ andµ for Lamé coefficients, since we are going to use
these symbols (or, actually, very similar ones) for the Lagrange multipliers at the interface.
For simplicity, we are not going to discuss the case ofnearly incompressible materials, and
therefore we shall assume that

Lλ ≃ Lµ. (2.3)

Our basic unknown will be, as usual, the displacement fieldu. A priori we are not assuming
neitheru nor any virtual displacementv to be continuous across the interfaceΣ, defined as

Σ := ∂Ω1 ∩ ∂Ω2. (2.4)

The restrictions ofu to each subdomainΩk will be denoted withuk (k = 1, 2), while the
three components of the vectoru will be denoted by(u1, u2, u3).

In terms ofu we define in each subdomain the strain tensorεεε as

{εεε}i,j :=
( ∂ui

∂xj
+

∂uj

∂xi

)
/2. (2.5)

More generally, for a given (virtual) displacement fieldv we define the corresponding
(virtual) strain tensor

{εεε(v)}i,j :=
( ∂vi

∂xj
+

∂vj

∂xi

)
/2. (2.6)

As in (2.5), we shall often simply writeεεε for εεε(u). Note that we can easily use (2.5) to define
εεε(u) on the whole domain (including the interfaceΣ) but we do not have the right to define
εεε(v) on the interfaceΣ, as we have in mind virtual displacements that might be discontinuous
across it. This is an important point, because, even if thetrue solutionu will surely be
continuous, we are going to look for anapproximate solutionuh that is discontinuous from
one subdomain to another. And we cannot really do better, as we are going to use different
meshes in the two subdomains.

Finally, always in terms ofu, in each subdomain, we define the stress field as

σσσ := 2Lµ εεε + LλI tr(εεε), (2.7)
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whereI is the identity matrix andtr(εεε) is the trace ofεεε defined asε11+ε22+ε33. The (virtual)
stress fieldσσσ(v) associated to a virtual displacementv will then be defined as

σσσ(v) := 2Lµ εεε(v) + LλI tr(εεε(v)). (2.8)

As before, we will often writeσσσ in place ofσσσ(u). We point out again thatσσσ(u) is clearly
defined in the whole domainΩ, but the genericσσσ(v) is only defined separately in each sub-
domainΩk, k = 1, 2.

The solutionu that we are looking for inΩ could be seen, in strong form, as the solution
of

divσσσ(u) + f = 0 in Ω, u = 0 on∂Ω, (2.9)

or alternatively as the minimizer of the total potential energy, as usual. Here however we
are going to work with virtual displacements that are allowed to be discontinuous across the
interfaceΣ, and some additional care is required.

The contribution of each subdomain to the internal energy and to the work of external
forces can now be made precise as follows:

Ek :=
1

2

∫

Ωk

σσσ : εεε dV Fk := −
∫

Ωk

f · udV. (2.10)

The “total energy” associated to a virtual displacementv will then be

Etot(v) =

2∑

k=1

(
1

2

∫

Ωk

σσσ(v) : εεε(v) dV −
∫

Ωk

f · v dV

)
. (2.11)

It is now time to make precise the space where we allow the virtual displacements to vary.
For this we define first theinternal energy normin each subdomainΩk (k = 1, 2)

||v||2E,k :=

∫

Ωk

σσσ(v) : εεε(v) dV (2.12)

(that is actuallytwice the energy), and the global (broken) internal energy norm

||v||2E,b := ||v||2E,1 + ||v||2E,2. (2.13)

We define then the spaceV of virtual displacements as

V := {v such that||v||E,b is finite andv = 0 on∂Ω}. (2.14)

It is worth noticing that the norm (2.13) is naturally associated with the scalar product

(u,v)E,b :=

2∑

k=1

∫

Ωk

σσσ(u) : εεε(v) dV ≡
2∑

k=1

∫

Ωk

σσσ(v) : εεε(u) dV, (2.15)

and that the usual Cauchy-Schwarz inequality holds

(u,v)E,b ≤ ||u||E,b ||v||E,b. (2.16)
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8 F. Brezzi and L.D. Marini: 3-field formulation

The idea would be to minimize

Etot(v) ≡ 1

2
||v||2E,b −

∫

Ω

f · v dS (2.17)

over all possible virtual displacementsv ∈ V, but this will clearly be wrong, since we did not
(yet) require any continuity at the interfaceΣ. The minimum, in this case, would be attained
by the solution oftwo independent problems, one in each subdomain, with (homogeneous)
kinematic boundary conditions on∂Ωk ∩ ∂Ω and no-tension boundary conditions (σσσ · n = 0)
on both sides ofΣ (which isnotwhat we want).

Hence we will introducea second representationof the displacement field (that we denote
by ψ) on Σ, and we force the matching of bothu1 andu2 with ψ by means of suitable
Lagrange multipliers(one for each side ofΣ). Note that each virtual displacementv ∈ V

is double-valued onΣ, but ψ is assumed to be single-valued. Actually, it will be better to
introduce a whole spaceΦ of virtual displacements onΣ. We first define, fork = 1, 2, the
spaceDk as the space of the restrictions toΣ (or tracesonΣ) of the virtual displacementsvk

that have finite energy inΩk:

Dk := {δk such that∃vk ∈ Vk with vk
|Σ = δk}. (2.18)

Actually, we remark that, with our definition, and in our particular case oftwo subdomains,
we haveD1 ≡ D2. In eachDk we introduce the (natural) norm:

||δk||D,k := inf
vk
|Σ

=δk
||v||E,k (2.19)

that is, in other words,the lowest possible energy of a virtual displacement inΩk that is equal
to δk onΣ. Note that, even though the two spacesD1 andD2 are equal (since we have only
two subdomains)the two norms|| · ||D,1 and || · ||D,2 will be different, in general, unless the
domainΩ is symmetric with respect toΣ. It can be proved, however, that the two norms are
equivalent, in the sense that you can bound one of them by a constant (depending only onΩ1

andΩ2) times the other. We then define

D := {δ = (δ1, δ2) with δ1 ∈ D1 andδ2 ∈ D2} (2.20)

with

||δ||2D :=
2∑

k=1

||δk||2D,k. (2.21)

As we are actually interested in virtual displacements thataresingle valuedon Σ, it will
be convenient to consider the spaceΦ ⊂ D, defined as the space ofpairs of identical (vector
valued) functions, one for each side ofΣ:

Φ := {ϕ = (ϕ1,ϕ2) ∈ D such thatϕ1 = ϕ2}. (2.22)

In the sequel, asϕ1 andϕ2 are always equal, we shall often call them bothϕ. This is anabuse
of notation, but we hope that it will not cause confusion. More generally, when speaking of
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a pairχ = (χ1,χ2) = ((χ1
1, χ

1
2, χ

1
3), (χ

2
1, χ

2
2, χ

2
3)) we say thatχ is single valuedon Σ if

χ1 = χ2. Otherwise we say thatχ is double valued. The spaceΦ will inherit the norm ofD,
that is

||ϕ||2Φ :=

2∑

k=1

||ϕ||2D,k. (2.23)

A nice consequence of the above definition (2.21) is the following property. For everyw ∈ V

and for everyk = 1, 2 we have first, in an obvious way, that

||wk||D,k ≤ ||w||E,k, (2.24)

since in (2.19) we took the infimum. As a consequence of (2.24)and (2.21) we have then

||w||D ≤ ||w||E,b. (2.25)

Together with the spacesD andΦ we introduce then two spaces of Lagrange multipliers
M1 andM2. Again, in our particular case (since we have only two subdomains), the two
spaces will be equal to each other (but this will not be the case for more than two subdomains,
see e.g. [18] or [19]). Still it is convenient to use two different names for them, as we are
going to discretize them in two different ways. We set, for k=1,2,

Mk := { dual space ofDk}. (2.26)

We consider then the global space of Lagrange multipliers as

M := {µ = (µ1,µ2) with µ1 ∈ M1 andµ2 ∈ M2}. (2.27)

The norm inM will therefore be defined as

||µ||M := sup
δ∈D

2∑

k=1

∫
Σ

µk · δk dS

||δ||D
. (2.28)

The spaceM could also be defined, in a rough way, as the space of vector valued pairs
µ = (µ1,µ2) such that the above quantity (2.28) is finite. From the physical point of view,
the elements ofM aretensions(force per unit surface). When defining the norm inD (see
(2.19) and (2.21)) we associated, in a natural way, an energyto each virtual displacement on
Σ. Here, the square of theM-norm of a tensionµ could now be interpreted asthe maximum
work thatµ can make on a virtual dispacementv having a unitary associated energy. An
easy consequence of the definition of the norm (2.28) is the following Cauchy-Schwarz-like
inequality, valid for anyµ ∈ M andχ ∈ D (and physically obvious):

2∑

k=1

∫

Σ

µk · χk dS ≤ ||µ||M ||χ||D. (2.29)

Indeed, we easily have

2∑

k=1

∫
Σ

µk · χk dS

||χ||χ
≤ sup

δ∈D

2∑

k=1

∫
Σ

µk · δk dS

||δ||D
≡ ||µ||M. (2.30)
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10 F. Brezzi and L.D. Marini: 3-field formulation

Using (2.29) and (2.25) we also obtain, for everyµ ∈ M and for everyv ∈ V,

2∑

k=1

∫

Σ

µk · vk dS ≤ ||µ||M ||v||E,b. (2.31)

We also point out that, since the two norms|| · ||D,1 and|| · ||D,2 are equivalent, if, by chance,
µ is single valued (that isµ1 = µ2), then its norm inM could be bounded, up to a constant,
by taking the supremum only onΦ, instead ofD. This means that there exists a constant
γ > 0 such that,for all µ such thatµ1 = µ2:

γ||µ||M ≤ sup
ϕ∈Φ

2∑

k=1

∫
Σ

µk · ϕk dS

||ϕ||Φ
. (2.32)

We realize that both norms (2.23) and (2.28) are not very friendly for a certain number of
readers, and we promise that we are going to makea very moderate useof them. It might
however help the reader to know thatall the norms we are using in this paper are “energy
norms”, in the sense that their square has the physical dimensions of anenergy.

With all the machinery ready to use Lagrange multipliers, weconsider now the functional

L(v,µ,ϕ) :=
1

2
||v||2E,b−

∫

Ω

f ·v dS+

∫

Σ

(ϕ−v1)·µ1 dS+

∫

Σ

(ϕ−v2)·µ2 dS, (2.33)

andwe look for the stationarity point(u,λ,ψ) ofL when(v,µ,ϕ) varies overV×M×Φ.
It is not difficult to show that the following result holds true.

Theorem 2.1 Assume that(u,λ,ψ) is the stationarity point ofL when(v,µ,ϕ) varies
overV × M × Φ. Then we have

divσσσ(u) + f = 0 in eachΩk, (k = 1, 2), (2.34)

σσσ(uk) · nk = λk onΣ, nk = outward unit normal to∂Ωk, (k = 1, 2), (2.35)

u1 = u2 = ψ onΣ, (2.36)

λ1 + λ2 = 0, onΣ, (2.37)

and thereforeu coincides with the unique solution of the linear elasticityproblem(2.9) set
directly on the whole domainΩ.

P r o o f. Take first the derivative ofL(v,µ,ϕ) with respect tov at the point(u,λ,ψ). We
have

∫

Ωk

σσσ(uk) : εεε(vk) dV −
∫

Σ

λk · vk dS =

∫

Ωk

f · vk dV (2.38)

for all vk having finite energy inΩk, and vanishing on∂Ωk ∩∂Ω, (k = 1, 2). Assumingf and
λk as given, and considering (2.38) as a variational equation in the unknownuk, we easily
obtain that its (unique) solutionuk satisfies conditions (2.34) and (2.35), for eachk. Taking
now the derivative ofL(v,µ,ϕ) with respect toµ at the point(u,λ,ψ) we have

∫

Σ

(ψ − uk) · µk dS = 0, (2.39)
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for all µk (k = 1, 2), that immediately gives (2.36). Taking finally the derivative ofL(v,µ,ϕ)
with respect toϕ at the point(u,λ,ψ) we have

∫

Σ

ϕ · λ1 dS +

∫

Σ

ϕ · λ2 dS = 0, (2.40)

for all ϕ, that immediately gives (2.37).
Finally, the vector-valued function defined asu1 in Ω1 andu2 in Ω2 satisfies the equilib-

rium conditions (2.34) in eachΩk, is continuous onΣ (thanks to (2.36)), and its corresponding
stress field has its normal component continuous onΣ, thanks to the joint use of (2.35) and
(2.37). Hence it is the solution of the global problem.

3 Discretization of the three-field formulation

We can now tackle the problem of discretizing the three-fieldformulation described in the
previous section. The first step should be to choose finite element subspacesVh, Mh, and
Φh, of V, M andΦ, respectively.

Instead of actually making a precise choice for them, we are basically going to indicate
general guidelines.
Choice of Vk

h. We assume (as it wasthe name of the gamefrom the very beginning) that
we aregiventwo independent meshesK1

h andK2
h in Ω1 and inΩ2, respectively. We play the

game that we cannot (or we do not want to) touch them, and we leave them unchanged. Hence
the first step will be to choose, in eachΩk, a finite element spaceVk

h on the meshKk
h. To fix

the ideas, let us take conforming finite elements of degreer = r(k) (that might vary from one
subdomain to another), verifying the homogeneous boundaryconditions on∂Ωk ∩ ∂Ω. No
continuity will be required at the interfaceΣ. Once theVk

h’s have been chosen, we set, in a
natural manner,

Vh = {v = (v1,v2) such thatvk ∈ Vk
h (k = 1, 2)}. (3.1)

The other two fields, however, areour job, and we have more freedom in their construction.
Choice ofMk

h. A general, preferred choice is to take the mesh forMk
h onΣ asthe restriction

to Σ of the meshKk
h (for k = 1, 2). Then we choose finite element spacesMk

h by taking, on
these meshes, piecewise polynomials of degreeℓ = ℓ(k). An important choice to be made is
whether to use continuous or discontinuous finite elements.Although the choice of continuous
finite element approximations for the Lagrange multipliersµk was advocated, for instance, in
[1], [2], we believe thatallowing discontinuities is a healthy choice, at least when the interface
Σ is not smooth (which means, in this context, that its normal unit vectorn has jumps that do
not tend to zero with the mesh size), as it will almost always be the case when dealing with
more than two subdomains. Indeed, in view of (2.35), the solution λk has to jump whenevern
jumps (as we expect eachσσσ(uk) to be smooth). And it will be impossible, for the approximate
solutionλk

h, to produce a good approximation ofλk if we force continuity on it. Once the
Mk

h’s have been chosen, we set, in a natural manner,

Mh = {µ = (µ1,µ2) such thatµk ∈ Mk
h (k = 1, 2)}. (3.2)
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12 F. Brezzi and L.D. Marini: 3-field formulation

Choice of Φh. Here, finally, we are totally freed of the two decompositions Kk
h that have

been given to us, and we can choose anew decompositionSh on Σ. Here the preferred
choice isa uniform decomposition, as much as the geometry ofΣ allows an easy choice for
it. For two-dimensional problems, whereΣ is therefore one-dimensional, the uniform grid
is an obvious winner ([1], [18]). For three-dimensional problems, the geometry ofΣ can be
much more complicated, and a uniform grid might even lack anysense (what is “a uniform
decomposition of an ellipse”?) The main interest in having auniform grid, whenever possible,
is to allow an easy way to find the element ofSh that contains a given node ofKk

h. A second
important point, that will be also mentioned in the next section in connection with Domain
Decomposition Methods, is the possibility of building powerful preconditioners onΣ. For
both aspects, when a uniform grid could not be chosen, a structured hierarchical grid might
be a reasonable substitute. One way or another, we shallassumehere that you have a sort of
favorite gridSh. Then we take asΦh the space of piecewise polynomials of degree, say,p
on the gridSh. Here, continuity is recommended: in view of (2.36), we expect the discrete
solutionψh to approximateu on Σ. And it is quite reasonable to assume thatu is smooth
there. Sometimes, in particular for two-dimensional problems (whereΣ is a line) the choice
of a very coarseSh with a rather highp has been advocated [1], [2]. The use ofwaveletson
Σ has also been proposed and analyzed in [12]. We finally point out that, from the theoretical
point of view (that is, when proving theorems) we shall actually treat Φh as a space of pairs
of identical (vector valued) functions (in agreement with the definition (2.22) of the spaceΦ),
but in practiceone shall obviously consider it asjust one space.

We point out that, at this point, we havethreedifferent grids defined on the interfaceΣ:
one coming from the (given) decompositionK1

h, another coming from the (given) decompo-
sitionK2

h, and a third (of our choice) defined onΣ independently of the other two, and used
to approximate the variableψ. The situation is illustrated in Figure 2 where, for didactic pur-
poses, the two subdomains have been drawn far apart, and the interfaceΣ has been triplicated
in order to show the three decompositions. Once the three discrete spacesVh, Mh andΦh

have been chosen, we can write thediscrete problemas follows.

• Find the stationarity point(uh,λh,ψh) of the functionalL(v,µ,ϕ) given in (2.33)
whenv, µ andϕ vary overVh, Mh, andΦh, respectively.

To see the discrete problem under a better light, it will be convenient to write the corre-
sponding equations that come out when we impose that the derivatives ofL(v,µ,ϕ) vanish.
Taking the derivatives with respect tov as in (2.38) we have now

∫

Ωk

σσσ(uk
h) : εεε(vk) dV −

∫

Σ

λk
h ·vk dS =

∫

Ωk

f ·vk dV ∀vk ∈ Vk
h (k = 1, 2). (3.3)

Taking now the derivative with respect toµ as in (2.39) we have
∫

Σ

(ψh − uk
h) · µk dS = 0, ∀µk ∈ Mk

h (k = 1, 2). (3.4)

Taking finally the derivative with respect toϕ as in (2.40) we have
∫

Σ

ϕ · λ1
h dS +

∫

Σ

ϕ · λ2
h dS = 0, ∀ϕ ∈ Φh. (3.5)

Copyright line will be provided by the publisher



gamm header will be provided by the publisher 13

4 The three-field decomposition as a DDM

In this section we shall give some hints on the possible use ofthe three-field formulation in the
framework of DDM (Domain Decomposition Methods), and the use of parallel computers. It
is clear that the particular case presented here, using onlytwo subdomains, will not, as such,
be very appealing for using a parallel computer. However it will be clear that what we say
will hold for a decomposition in an arbitrary finite number ofsubdomains, and equally clear
will come out the interest of this approach for parallel computations.

The first important point is that the above equations (3.3)-(3.5) can be grouped in a different
way. In particular, we might think that for any given (tentative choice) ofψh we solve,
independently in each subdomain, the problems (corresponding to (3.3)-(3.4)):





find (uk
h,λk

h) ∈ Vk
h × Mk

h such that
∫
Ωk σσσ(uk

h) : εεε(vk) dV −
∫
Σ

λk
h · vk dS =

∫
Ωk f · vk dV ∀vk ∈ Vk

h∫
Σ

uk
h · µk dS =

∫
Σ

ψh · µk dS ∀µk ∈ Mk
h,

(4.1)

and that to check whether the choice ofψh is correct we use equation (3.5). We repeat now,
in more details, the same concept from a different point of view (and with different notation).
Let us denote byAk the matrix associated with the bilinear form onVk

h × Vk
h

ak(wk,vk) :=

∫

Ωk

σσσ(wk) : εεε(vk) dV, (4.2)

then denote byBk the matrix associated with the bilinear form onVk
h × Mk

h

bk(vk,µk) := −
∫

Σ

vk · µk dS, (4.3)

and finally denote byCk the matrix associated with the bilinear form onMk
h × Φh

ck(µk,ϕ) =

∫

Σ

ϕ · µk dS. (4.4)

Equations (3.3)-(3.5) can now be written in matrix form (with rather obvious meaning of the
notation):




A1 0 (B1)
T

0 0

0 A2 0 (B2)
T

0

B1 0 0 0 (C1)
T

0 B2 0 0 (C2)
T

0 0 C1 C2 0







u1

u2

λ1

λ2

ψ




=




f1

f2

0
0
0




(4.5)

Changing the order of the unknowns and of the equations (4.5)becomes



A1 (B1)
T

0 0 0

B1 0 0 0 (C1)
T

0 0 A2 (B2)
T

0

0 0 B2 0 (C2)
T

0 C1 0 C2 0







u1

λ1

u2

λ2

ψ




=




f1

0
f2

0
0




(4.6)
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14 F. Brezzi and L.D. Marini: 3-field formulation

Setting now

A =




A1 (B1)
T

0 0
B1 0 0 0

0 0 A2 (B2)
T

0 0 B2 0


 U =




u1

λ1

u2

λ2


 F =




f1

0
f2

0


 (4.7)

and

C =
[
0 C1 0 C2

]
, (4.8)

the system can be written as
[
A CT

C 0

] [
U

ψ

]
=

[
F

0

]
. (4.9)

What is important in (4.9) is that the matrixA is block diagonal. And this will be the case even
for a decomposition into an arbitrary finite number of subdomains. Hence if we eliminateU,
and write the system as

CA−1CT ψ = CA−1F, (4.10)

and solve it by, say, preconditioned conjugate gradient, the solution of the systemAUn+1 =
Gn (to be computed at each step) can be performed workingin parallel (each processor being
dedicated to a subdomain).

It might be interesting to point out that, from the mechanical point of view, the solution of
a problem of the type

[
A1 (B1)

T

B1 0

] [
u1

λ1

]
=

[
f1

−(C1)T ψ

]
(4.11)

(that is one of the problems that we have to solve, in parallel, at each step of our iterative
procedure), corresponds to solving a problem inΩ1 with distributed loadf1 and prescribed
kinematic boundary conditionsu1 = ψ onΣ andu1 = 0 on the rest of the boundary (that is
∂Ω1 \ Σ). In particular, we solve the problem in the formulationwith Lagrange multipliers,
in the style of [5].

It is also relevant to point out that the choice of a uniform grid (or at least a nested grid) on
Σ is not just a commodity, but a potential powerful instrumentto construct suitableprecondi-
tionersfor problem (4.10). We have no time here to discuss the matter, in particular since the
literature on preconditioners for Domain Decomposition Methods is impressive. We just refer
for instance to [11], [13], [15], [22], [26], [27], [28], [30], [31], [33], [35], [37], [39], [40].

5 Stability conditions and error estimates

We discuss here the conditions on the choices of finite element spaces that will ensurestability
andoptimal error estimatesfor the discrete problem (3.3)-(3.5). For this, we first needto
choose suitable norms for all the spaces at play. Asthere are many ways to skin a catwe
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can do this as well in many different ways. Here, we are going to see two of them. The
first choice will make use of the (difficult) norms (2.23) and (2.28), but the error bounds will
come out rather easily. However, checking theinf-supconditions in each particular case using
these difficult norms would be much more complicated. Since,in the sequel, we are going
to suggest a ”Check yourself the inf-sup conditions” strategy, we would like, instead, to use
easier norms(no matter how difficult the proof of error estimates might become).

In this section, we deal with the “easy” error estimates withthe difficult norms. To make
life easier to the reader, we start from the study of thestability of our discrete problem. This
means that we would like to prove that there exists a constantC, independent of the mesh
sizes, such that: for every givenf , every possible solution(uh,λh,ψh) of the discrete prob-
lem (3.3)-(3.5) (that we repeat here for convenience of the reader)

∫

Ωk

σσσ(uk
h) : εεε(vk) dV −

∫

Σ

λk
h ·vk dS =

∫

Ωk

f ·vk dV ∀vk ∈ Vk
h (k = 1, 2), (5.1)

∫

Σ

(ψh − uk
h) · µk dS = 0 ∀µk ∈ Mk

h (k = 1, 2), (5.2)

∫

Σ

ϕ · λ1
h dS +

∫

Σ

ϕ · λ2
h dS = 0 ∀ϕ ∈ Φh, (5.3)

will satisfy thea priori estimate

||uh||E,b + ||λh||M + ||ψh||Φ ≤ C ||f ||∗, (5.4)

where||f ||∗ is theload norm(defined asthe dual of the energy norm), that is

||f ||∗ := sup
v∈V

∫
Ω

v · f dV

||v||E,b
. (5.5)

The property (5.4) will follow immediately (well, almost) from the two following assumptions
on the grid.
Assumption 1 (control µ by the v’s). There exists a constantβM > 0 such that: for every
µ ∈ Mh we can find avµ ∈ Vh such that

||vµ||E,b = 1 and ||µ||M ≤ 1

βM

2∑

k=1

∫

Σ

vk
µ · µk dS. (5.6)

Assumption 2 (control ϕ by the µ’s). There exists a constantβΦ > 0 such that: for every
ϕ ∈ Φh we can find aµϕ ∈ Mh such that

||µϕ||M = 1 and ||ϕ||Φ ≤ 1

βΦ

2∑

k=1

∫

Σ

µk
ϕ · ϕ dS. (5.7)

Assumptions (5.6) and (5.7) are justinf-sup conditions in disguise. We point out that, using
(5.6) and (2.31) we easily haveβM ≤ 1, while using (5.7) and (2.29) we haveβΦ ≤ 1.

Let us see how theinf-supconditions can give us the desired stability property (5.4).
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16 F. Brezzi and L.D. Marini: 3-field formulation

Take firstv = uh in (5.1),µ = −λh in (5.2), andϕ = ψh in (5.3). Summing the three
equations, and then using the definition (5.5) of load norm weget

||uh||2E,b =

∫

Ω

f · uh dV ≤ ||f ||∗ ||uh||E,b, (5.8)

that gives immediately

||uh||E,b ≤ ||f ||∗. (5.9)

To estimateλh consider thev = vλ that we get from Assumption 1 whenµ = λh. Using
(5.6), then (5.1) withv = vλ, then the Cauchy-Schwarz inequality (2.16) and the definition
(5.5) of the load norm, and finally again (5.6) (to see that thenorm ofvλ is 1), we have

βM ||λh||M ≤
2∑

k=1

∫

Σ

vk
λ · λk

h dS =
2∑

k=1

∫

Ωk

σσσ(uk
h) : εεε(vk

λ) dV −
∫

Ω

f · vλ dV

≤ ||uh||E,b ||vλ||E,b + ||f ||∗ ||vλ||E,b ≤ ||uh||E,b + ||f ||∗. (5.10)

In a similar way we can derive the estimate forψh. Indeed consider theµ = µψ that we get
from Assumption 2 whenϕ = ψh. Using (5.7), then (5.2), then the Cauchy-Schwarz-like
inequality (2.31), and finally again (5.7) (to see that the norm of µψ is 1), we have

βΦ||ψh||Φ ≤
2∑

k=1

∫
µk

ψ · ψh dS =

2∑

k=1

∫
µk

ψ · uk
h dS

≤ ||µψ||M ||uh||E,b = ||uh||E,b. (5.11)

Collecting (5.9), (5.10), and (5.11) we have then

||uh||E,b + ||λh||M + ||ψh||Φ ≤
(
1 +

2

βM
+

1

βΦ

)
||f ||∗. (5.12)

We have therefore the following theorem.

Theorem 5.1 Let the spacesVh, Mh andΦh satisfy Assumptions 1 and 2 (namely(5.6)
and(5.7)). Then for every given loadf problem(5.1)-(5.3)has a unique solution(uh,λh,ψh)
in Vh × Mh × Φh. Moreover, such solution satisfies the stability bound(5.4)with

C = 1 +
2

βM
+

1

βΦ
. (5.13)

P r o o f. The problem (5.1)-(5.3) has as many equations as unknowns. If we takef = 0 in
(5.12) we see that the homogeneous system has only the trivial solution. This implies that the
determinant of the corresponding matrix is different from0. Hence for every given right-hand
sidef the problem has a unique solution. The stability bound (5.4)(with the prescribed value
for the constantC) follows again from (5.12).

Under Assumptions1 and2 we can also proveoptimal a priori error estimates, as shown,
with classical arguments (see [17]), in the following theorem, whose detailed proof will be
reported in Appendix A.
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Theorem 5.2 Under the same assumptions of Theorem 5.1, if(u,λ,ψ) and(uh,λh,ψh)
are the solutions of the elasticity problem(2.9)(as given in Theorem 2.1) and of the discretized
problem(5.1)-(5.3), respectively, then we have

||u − uh||E,b + βM ||λ − λh||M + βΦ||ψ − ψh||Φ
≤ C

(
inf

v∈Vh

||u − v||E,b + inf
µ∈Mh

||λ − µ||M + inf
ϕ∈Φh

||ψ − ϕ||Φ
)
, (5.14)

whereC depends only on the constantsβM andβΦ appearing in(5.6)and(5.7), respectively,
and is bounded by1/βM + 1/βΦ.

We are not going to discuss the conditions that need to be imposed on the meshes and on
the type of finite elements in order to ensure that Assumptions 1 and2 hold true. Roughly
speaking, in order to ensure Assumption2 we just have to choose a meshSh on Σ in such a
way that it iscoarserthan at least one of the two meshesK1

h|Σ andK2
h|Σ. Actually it has to be

coarser, somehow, than “the union” of the two meshes (provided that we can give a meaning
to the union of two meshes). One can also obviously lower the degree of the local polynomials
instead of coarsening the mesh. However, the use of a high degreep (for the elements ofΦh)
together with a very coarse mesh was advocated for instance in [1], [2]. On the other hand,
Assumption1 would require, roughly speaking, that the degrees of freedom for Vk

h on Σ are
more than the degrees of freedom forMk

h (for bothk = 1 andk = 2). This can be obtained
by taking forMk

h polynomials of one degree lower than that used forVk
h (in other words,

ℓ(k) = r(k) − 1), as proposed in [1] and [2]. Often it would be sufficient to lower the degree
ℓ only for the elements near∂Σ as it is done (roughly speaking) in themortar method(see
[8], [9], [33], [39]). Another possibility (advocated for instance in [16], [20], and [19]) is to
stabilize the problem by augmenting the spacesVk

h, at the boundary, by means of suitable
boundary bubbles. Or one can add suitablestabilizing termsat the boundary, as in [7], [6],
[10], [34].

6 More difficult error estimates using easier norms

We have seen that Assumptions1 and2 ensure, with a rather easy proof, optimal error bounds.
Proving that these assumptions actually hold true for a given choice of the finite element
spaces can be easy or difficult, according with the differentparticular case,if you are a spe-
cialist. If you are not, however, you would like to have some practical instrument to check
whether a certain choice (that you are willing to use) has reasonable chances or not.

Following [17], and in the spirit of [23], we would like to present in the next section a
simple way to check, in each particular case, whether your choice of finite element spaces is
reliable or not. This cannot however be easily done with our original choice for the norms in
Φ and inM (see e.g. [29]). We introduce therefore some different norms to be used instead
of the original ones. In particular, all the new norms will bedefined by simpleintegrals, and,
as announced, they will all beenergy norms. For the spacesMk

h we choose

||µk||2
Mk

h
:=

∑

K∈Kk
h|Σ

∫

K

hK

Lµ
|µk|2 dS, (k = 1, 2), (6.1)
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18 F. Brezzi and L.D. Marini: 3-field formulation

where, for allK that is a face, onΣ, of an element belonging toKk
h, we denoted byhK its

diameter. From (6.1) we construct the norm for the spaceMh in a natural way:

||µ||2Mh
:= ||µ1||2

M1

h
+ ||µ2||2

M2

h
. (6.2)

It will also be handy to define norms on the spaceD of traces onΣ of the functions ofV, as
defined in (2.18) and (2.20). We set

||vk||2
Dk

h
:=

∑

K∈Kk
h|Σ

∫

K

Lµ

hK
|vk|2 dS (k = 1, 2), (6.3)

and in a way similar to (6.2)

||v||2Dh
:= ||v1||2

D1

h
+ ||v2||2

D2

h
. (6.4)

It will be convenient, in this section, to denote by( , )0,Σ the usualL2-inner product onΣ,
that is

(v,µ)0,Σ :=

2∑

k=1

∫

Σ

vk · µk dV. (6.5)

We note that for the two normsMh andDh we have the Cauchy-Schwarz-like inequality:

(v,µ)0,Σ :=

2∑

k=1

∫

Σ

vk · µk dV ≤ ||v||Dh
||µ||Mh

. (6.6)

Both the norms (6.2) and (6.4) can be easily seen to beenergy norms. In order to introduce
norms onD andM that mimic theL2(Σ)-norm, but are also energy norms, we definedΩ to
be a typical length of the problem, as for instance the diameter ofΩ, and we set

κ :=
Lµ

dΩ
(6.7)

||v||20,D :=

2∑

k=1

∫

Σ

κ|vk|2 dS, ||µ||20,M :=

2∑

k=1

∫

Σ

κ−1|µk|2 dS. (6.8)

Note that( , )0,D (scalar product associated with|| · ||0,D) is a scalar productfor displace-
ments, while ( , )0,M (scalar product associated with|| · ||0,M ) is a scalar productfor stresses.
Moreover,( , )0,Σ couples displacements and stresses. In general, recalling (6.7) we have

(µ,v)0,Σ = (µ, κv)0,M = (κ−1µ,v)0,D. (6.9)

We point out that here too we have the Cauchy-Schwarz inequalities

(κv,µ)0,M ≤ ||κv||0,M ||µ||0,M and (v,µ)0,Σ ≤ ||v||0,D ||µ||0,M (6.10)
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It will also be convenient to denote byhS and hK the numbersobtained taking the ratio
between the maximum diameters of the elements inSh and inKh|Σ, respectively, and the
characteristic lengthdΩ:

hK := max
K∈Kh|Σ

hK

dΩ
hS := max

K∈Sh

hK

dΩ
. (6.11)

We are finally ready to present the modified version of Assumptions1 and2.

Assumption 1h (controlµ by the v’s). There exists a constantβ∗
M > 0 such that: for every

µ ∈ Mh we can find avµ ∈ Vh such that

||vµ||Dh
= 1 and ||µ||Mh

≤ 1

β∗
M

(vµ,µ)0,Σ. (6.12)

Assumption 2h (controlϕ by the µ’s). There exists a constantβ∗
Φ > 0 such that: for every

ϕ ∈ Φh we can find aµϕ ∈ Mh such that

||µϕ||0,M = 1 and ||ϕ||0,D ≤ 1

β∗
Φ

(µϕ,ϕ)0,Σ. (6.13)

We notice that using (6.12) and (6.6) we easily haveβ∗
M ≤ 1, while using (6.13) and (6.10)

we haveβ∗
Φ ≤ 1.

We have the following theorem.

Theorem 6.1 Assume that our choices of finite element spaces forVh, Mh andΦh satisfy
Assumptions1h and2h. If (u,λ,ψ) and(uh,λh,ψh) are the solutions of the elasticity prob-
lem (2.9) (as given in Theorem 2.1) and of the discretized problem(5.1)-(5.3), respectively,
then we have the following error estimate:

||u − uh||E,b + β∗
M ||λ − λh||M

≤ CB

(
inf

v∈Vh

||u − v||E,b + (h
1/2
K + h

1/2
S ) inf

µ∈Mh

||λ − µ||0,M + inf
ϕ∈Φh

||ψ − ϕ||Φ
)
, (6.14)

whereCB has the form

CB = cB

( 1

β∗
M

+
1

(β∗
Φ)2

)
(6.15)

andcB depends only on the shape of the elements inSh and of those elements inKh that have
at least a vertex onΣ.

The proof of the theorem is rather technical, and could be omitted by the readers without
at least a certain amount of Mathematical curiosity. We decided therefore to present it in
Appendix B.

7 Check yourself your owninf-sup

Our aim here is to discuss a test that everybody can perform inorder to check whether As-
sumptions1h and2h are satisfied or not. We shall discuss in more detail Assumption1h, (in

Copyright line will be provided by the publisher



20 F. Brezzi and L.D. Marini: 3-field formulation

particular fork = 1), as the arguments for Assumption1h for k = 2, as well as (mutatis
mutandis) for Assumption2h, will be identical.

As we are going to use arguments from linear algebra, it will be convenient to pass from
our functional spaces toIRN . We choose therefore a basis in each of the spacesM1

h, M2
h,

Φh, as well as for the restrictions ofV1
h andV2

h to Σ. For discussing Assumption1h with
k = 1 only the spacesM1

h and the restriction ofV1
h to Σ will enter the game. Let therefore

{µ(1),µ(2),µ(3), ...,µ(NM1)} be a basis for the former, and{v(1),v(2),v(3), ...,v(NV 1)} be
a basis for the latter. The numbersNM1 andNV 1 are obviously the respective dimensions of
these spaces. Then we construct a one-to-one mapping fromM1

h to IRNM1 defined by

m ≡ (m1,m2, ....mNM1) ↔
NM1∑

i=1

miµ
(i). (7.1)

Similarly we construct a one-to-one mapping from “the restrictions toΣ of V1
h” to IRNV 1

defined by

q ≡ (q1, q2, ....qNV 1) ↔
NV 1∑

j=1

qjv
(j). (7.2)

We consider then theNM1 × NV 1 matrixB defined by

Bi,j :=

∫

Σ

µ(i) · v(j) dS (i = 1, .., NM1; j = 1, .., NV 1), (7.3)

together with the two matrices that define the norm|| · ||Dh,1 (see (6.3)) and the norm|| · ||M1

h

(see (6.1)): theNM1 × NM1 matrixR, defined by

Ri,r :=
∑

T∈K1

h|Σ

∫

Σ

hT

Lµ
µ(i) · µ(r) dS (i, r = 1, .., NM1), (7.4)

and theNV 1 × NV 1 matrixQ, defined by

Qj,s :=
∑

T∈K1

h|Σ

∫

Σ

Lµ

hT
v(j) · v(s) dS (j, s = 1, .., NV 1). (7.5)

In terms of the vectorsm andq, Assumption1h can now be written as follows.There exist a

β∗ > 0 such that: for everym ∈ IRNM1 there exists aq ∈ IRNV 1 with

(qt Qq)1/2 = 1 and qt Bt m ≥ β∗(mt Rm)1/2. (7.6)

Our goal is to relate (7.6) with some known and computable properties of the matricesB, R,
andQ. For this, consider, for every fixedm ∈ IRNM1, the quantity

S(m) := sup
(qt Q q)1/2=1

qt Bt m ≡ sup
q6=0

qt Bt m

(qt Qq)1/2
, (7.7)
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where we take the supremum (which actually will be a maximum)to pick upthe best possible
choice forq oncem has been fixed. The supremum in (7.7) is actually easily computable:
with the change of variablez := Q1/2q (implying qt = ztQ−1/2), we easily have

S(m) = sup
z6=0

zt Q−1/2 Bt m

(ztz)1/2
, (7.8)

and it is now easy to see that the supremum must be taken whenz = Q−1/2 Bt m, giving

S(m) = (mt B Q−1 Bt m)1/2. (7.9)

On the other hand, it is clear that to check whether Assumption 1h holds you must, in terms
of (7.6): find the biggestβ such that

S(m) ≥ β (mt Rm)1/2, ∀m ∈ IRNM1. (7.10)

Substituting the computed value (7.9) ofS(m) into (7.10) and squaring both sides you have
to find the biggestβ such that

mt B Q−1 Bt m ≥ β2mt Rm, ∀m ∈ IRNM1. (7.11)

But this corresponds to findthe smallest eigenvalue of the ( generalized) eigenvalue problem

B Q−1 Bt m = λRm. (7.12)

Hence, here is the recipe: you compute the matricesB, R andQ, and you solve the gen-
eralized eigenvalue problem (7.12). If the smallest eigenvalue is equal to zero, you lost. If
the smallest eigenvalue is not small (for reasonably fine meshes), you won. If it is small, try
halving both meshes: if the smallest eigenvalue stays essentially constant, you won. If, say,
the smallest eigenvalue is divided by four,you definitely have a problem. If you are not con-
vinced, try halving the meshes again: if it is again divided by four, give up: Assumption1h,
in the subdomainΩ1, holds only with a constantβ∗

M that goes to zero withh, and this will
spoil your accuracy. As a general rule: if you perform the test on the same grid that you will
use for computing your finite element solution, thenthe smallest the constant you compute in
the test, the more spoiled is likely to be the accuracy of yourfinite element solution(compared
with the best possible accuracy that your grid could provide, if you used a stable method).

A similar analysis can obviously be performed fork = 2 (that is, in the subdomainΩ2)
just by repeating the same procedure.

For assumption2h, instead, you have to choose a basis{ϕ(1), ...,ϕ(NP )} in Φh (where
NP denotes the dimension ofΦh), anda basis for the whole spaceMh (which means, taking
into account bothM1

h and M2
h). Let then{µ(1), ...,µ(NM)} be such a basis, where the

numberNM = NM1 + NM2 is the dimension ofMh. Now construct the matrices

Ci,j :=

∫

Σ

ϕ(i) · µ(j) dS (i = 1, .., NP ; j = 1, .., NM), (7.13)

Ri,r :=
Lµ

dΩ

∫

Σ

ϕ(i) · ϕ(r) dS (i, r = 1, .., NP ), (7.14)
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Qj,s :=
dΩ

Lµ

∫

Σ

µ(j) · µ(s) dS (j, s = 1, .., NM), (7.15)

and solve (inIRNP ) the generalized eigenvalue problem

C Q−1 Ct p = λRp. (7.16)

The constantβ∗
Φ will be the square root of the smallest eigenvalue of (7.16).And so on.

8 Conclusions

We have seen that the three-field formulation can be a viable method to deal with non-
matching grids. In the context of elasticity problems it corresponds to have three different
types of approximating fields: the displacements within each subdomain, the displacements
on the interface between subdomains, and the normal component of the stress fields at the
boundary of each subdomain (acting as a Lagrange multiplierto force the continuity between
the displacements inside the subdomains and the displacements on the interface). One weak
point is the necessity to havetwo types ofinf-supconditions satisfied. However, we propose
here an alternative way to write them (usingmesh dependent norms) that allows the use of a
simple and reliable numerical test in order to check whethertheseinf-supconditions are sat-
isfied or not. For Engineers this might be even better than a theorem stating thatthere exists a
positive constantβ∗, independent ofh such that..., without actually knowing how small such
a constant is. With the numerical test, for every meshKh you compute aβ∗(Kh), and you
might have difficulties in seeing whether or not there existsa positiveβ∗, independent ofh,
such thatβ∗(Kh) ≥ β∗ for all possibleh: the best you can do is to just try a few meshes to
seethe trend. However, if you computeβ∗(Kh) for the grid that you are willing to use, then
at least you knowexactlyhow small the constant ison that grid.

A Appendix: proof of Theorem 5.2

In this Appendix we report the detailed proof of Theorem 5.2,whose statement we recall for
the convenience of the reader.

Theorem A.1 Assume that our choices of finite element spaces forVh, Mh andΦh satisfy
Assumptions1h and2h. If (u,λ,ψ) and(uh,λh,ψh) are the solutions of the elasticity prob-
lem (2.9) (as given in Theorem 2.1) and of the discretized problem(5.1)-(5.3), respectively,
then we have

||u − uh||E,b + βM ||λ − λh||M + βΦ||ψ − ψh||Φ
≤ CA

(
inf

v∈Vh

||u − v||E,b + inf
µ∈Mh

||λ − µ||M + inf
ϕ∈Φh

||ψ − ϕ||Φ
)
, (A.1)

whereCA depends only on the constantsβM andβΦ appearing in(5.6)and(5.7), respectively,
and is bounded by1/βM + 1/βΦ.

P r o o f. The proof will be rather long and a little boring, but not difficult. In particular,
as we shall see, the use of the “difficult norms” makes everything turn smoothly as a well
lubricated engine.
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We begin by noting that the following classicalGalerkin Orthogonalityproperty holds:

a(u − uh,vh) + b(vh,λ − λh) = 0 ∀vh ∈ Vh, (A.2)

b(u − uh,µh) + c(µh,ψ − ψh) = 0 ∀µh ∈ Mh, (A.3)

c(λ − λh,ϕh) = 0 ∀ϕh ∈ Φh, (A.4)

with obvious meaning of the bilinear forms (see (4.2)-(4.4))

a = a1 + a2, b = b1 + b2, c = c1 + c2. (A.5)

Next, we define theinterpolantsui ∈ Vh, λi ∈ Mh, andψi ∈ Φh of u, λ, andψ, respec-
tively, as follows:

||u − ui||E,b ≡ inf
v∈Vh

||u − v||E,b,

||λ − λi||M ≡ inf
µ∈Mh

||λ − µ||M , (A.6)

||ψ − ψi||Φ ≡ inf
ϕ∈Φh

||ψ − ϕ||Φ.

(To be rigorous, we should actually call themprojections, but the nameinterpolantsis more
evocative.) Finally, we start a lengthy add-and-subtract procedure. In all the following formu-
lae, a-s stands foradd and subtract:

||u − uh||2E,b = ( use (2.12)-(2.13) with (A.5) and (4.2))

= a(u − uh,u − uh) = (a-sui)

= a(u − uh,u − ui)︸ ︷︷ ︸
I

+a(u − uh,ui − uh) = ( use (A.2))

= I + b(uh − ui,λ − λh) = (a-su)

= I + b(u − ui,λ − λh)︸ ︷︷ ︸
II

+b(uh − u,λ − λh) = ( a-sλi)

= I + II + b(uh − u,λ − λi)︸ ︷︷ ︸
III

+b(uh − u,λi − λh) = ( use (A.3)) (A.7)

= I + II + III + c(λi − λh,ψ − ψh) = ( a-sλ)

= I + II + III + c(λi − λ,ψ − ψh)︸ ︷︷ ︸
IV

+c(λ − λh,ψ − ψh) = ( a-sψi)

= I + II + III + IV + c(λ − λh,ψ − ψi)︸ ︷︷ ︸
V

+c(λ − λh,ψi − ψh) = ( use (A.4))

= I + II + III + IV + V.
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Our Cauchy-Schwarz inequalities (2.16), (2.31) and (2.29), together with the definitions (A.5)
and (4.2)-(4.4), will provide an immediate estimate for thefive termsI-V appearing in (A.7):

I ≡ a(u − uh,u − ui) ≤ ||u − uh||E,b ||u − ui||E,b. (A.8)

II ≡ b(u − ui,λ − λh) ≤ ||u − ui||E,b ||λ − λh||M. (A.9)

III ≡ b(uh − u,λ − λi) ≤ ||u − uh||E,b ||λ − λi||M. (A.10)

IV ≡ c(λi − λ,ψ − ψh) ≤ ||λ − λi||M ||ψ − ψh||Φ. (A.11)

V ≡ c(λ − λh,ψ − ψi) ≤ ||λ − λh||M ||ψ − ψi||Φ. (A.12)

To end the proof, we have to estimateλ−λh andψ−ψh in terms ofu−uh. Let us start from
λ−λh, and let us bound first the differenceλi−λh. We use Assumption1 with µ = λi−λh:
we start using (5.6) and (4.3), then

βM ||λi − λh||M ≤ b(vµ,λh − λi) = (a-sλ)

= b(vµ,λh − λ) + b(vµ,λ − λi) = (use (A.2))

= a(u − uh,vµ) + b(vµ,λ − λi)+ ≤ (use (2.31) and (2.16))

≤ ||u − uh||E,b ||vµ||E,b + ||λ − λi||M ||vµ||E,b (use||vµ||E,b = 1)

= ||λ − λi||M + ||u − uh||E,b.

(A.13)

Combining (A.13) with the triangle inequality we easily get

||λ − λh||M ≤ ||λ − λi||M + ||λi − λh||M

≤ ||λ − λi||M +
1

βM
(||λ − λi||M + ||u − uh||E,b)

≤ βM + 1

βM
||λ − λi||M +

1

βM
||u − uh||E,b.

(A.14)

For estimatingψ−ψh we proceed in an identical manner: we just have to use Assumption
2 with ϕ = ψi − ψh. We start using (5.7) and (4.4), then

βΦ||ψi − ψh||M ≤ c(µϕ,ψi − ψh) = (a-sψ)

= c(µϕ,ψi − ψ) + c(µϕ,ψ − ψh) = (use (A.3))

= c(µϕ,ψi − ψ) + b(uh − u,µϕ) ≤ (use (2.29) and (2.31))

≤ ||ψ − ψi||Φ ||µϕ||M + ||u − uh||E,b ||µϕ||M = (use||µϕ||M = 1)

= ||ψ − ψi||M + ||u − uh||E,b.

(A.15)

As in (A.14) we can combine the triangle inequality with (A.15) and obtain

||ψ − ψh||Φ ≤ ||ψ − ψi||Φ + ||ψi − ψh||Φ

≤ ||ψ − ψi||Φ +
1

βΦ
(||ψ − ψi||Φ + ||u − uh||E,b)

≤ βΦ + 1

βΦ
||ψ − ψi||Φ +

1

βΦ
||u − uh||E,b.

(A.16)
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At this point we can come back to our estimate (A.7). We setEu := ||u − uh||E,b, Eλ :=
||λ − λh||M, Eψ := ||ψ − ψh||Φ, thenIu := ||u − ui||E,b, Iλ := ||λ − λi||M, and finally
Iψ := ||ψ − ψi||Φ. Inserting the estimates (A.8)-(A.12) forI-V into (A.7) we have first

E2
u ≤ Eu Iu + Iu Eλ + Eu Iλ + Iλ Eψ + Eλ Iψ (A.17)

Inequalities (A.14) and (A.16), recalling thatβM ≤ 1 andβΦ ≤ 1, become now:

Eλ ≤ 2

βM
Iλ +

1

βM
Eu and Eψ ≤ 2

βΦ
Iψ +

1

βΦ
Eu, (A.18)

that inserted in (A.17) give

E2
u ≤

( 2

βM
+

2

βΦ

) (
Eu(Iu + Iλ + Iψ) + Iu Iλ + Iλ Iψ

)
, (A.19)

At this point we just need a suitable amount of arithmetic-geometric mean inequalities (valid
for all real numbersa, b, and for allε > 0)

2ab ≤ εa2 + b2/ε (which is just telling that(a
√

ε − b/
√

ε)2 ≥ 0), (A.20)

to reach the form

E2
u ≤ C2 (I2

u + I2
λ + I2

ψ), (A.21)

with C bounded by1/βM +1/βΦ. From (A.21) and (A.18) the desired estimate (A.1) follows
easily.

B Appendix: proof of Theorem 6.1

We present here the proof of Theorem 6.1, whose statement is recalled for convenience of the
reader.

Theorem B.1 Assume that our choices of finite element spaces forVh, Mh andΦh satisfy
Assumptions1h and2h. If (u,λ,ψ) and(uh,λh,ψh) are the solutions of the elasticity prob-
lem (2.9) (as given in Theorem 2.1) and of the discretized problem(5.1)-(5.3), respectively,
then we have the following error estimate:

||u − uh||E,b + β∗
M ||λ − λh||M

≤ CB

(
inf

v∈Vh

||u − v||E,b + (h
1/2
K + h

1/2
S ) inf

µ∈Mh

||λ − µ||0,M + inf
ϕ∈Φh

||ψ − ϕ||Φ
)
, (B.1)

whereCB has the formCB = cB

( 1

β∗
M

+
1

(β∗
Φ)2

)
andcB depends only on the shape of the

elements inSh and of those elements inKh that have at least a vertex onΣ.

Before proving the new error estimates we need some additional notation and a few crucial
lemmata. In (A.6) we introduced the interpolants ofu, λ, andψ in Vh, Mh andΦh, respec-
tively. In the sequel, we shall need to use the interpolants of displacements (asv or ϕ) in the
spaceMh. As this, dimensionally, could make people uneasy, we shallactually interpolate
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κv (or κϕ), with κ defined in (6.7). Hence, forv ∈ V or ϕ ∈ Φ, we definevi,M andϕi,M

in Mh as

||vi,M − κv||0,M = inf
µ∈Mh

||κv − µ||0,M ; ||ϕi,M − κϕ||0,M = inf
µ∈Mh

||κϕ − µ||0,M . (B.2)

We recall, without proof (we refer, for instance, to [24]), the following approximation
results:

||κv−vi,M ||0,M ≤ CK h
1/2
K ||v||D, and ||κϕ−ϕi,M ||0,M ≤ CK h

1/2
K ||ϕ||Φ (B.3)

whereCK depends only on the shape of the elements inKh|Σ . We shall also need to interpo-
late on thenatural gridwith respect to theL2-types norms. In particular we set

||λ − λI ||0,M = inf
µ∈Mh

||λ − µ||0,M ; ||ϕ − ϕI ||0,D = inf
χ∈Φh

||ϕ − χ||0,D. (B.4)

Comparing (6.1)-(6.2) with (6.7)-(6.8), and using (6.11),we easily obtain

||λ − λI ||Mh
≤ h

1/2
K ||λ − λI ||0,M . (B.5)

We also recall (see always [24]), that:

||ϕ − ϕI ||0,D ≤ CS h
1/2
S ||ϕ||Φ, (B.6)

whereCS depends only on the shape of the elements inSh. We consider now the following
lemma.

Lemma B.2 Under Assumption2h, for everyλ = (λ1,λ2) in, say,(L2(Σ))3 × (L2(Σ))3

there exist a uniqueλ∗
i in Mh and a uniqueζ∗ in Φh such that

(λ − λ∗
i ,µ)0,M = (µ, ζ∗)0,Σ ∀µ ∈ Mh, (B.7)

(λ − λ∗
i ,ϕ)0,Σ = 0 ∀ϕ ∈ Φh. (B.8)

Moreover we have the estimates

||λ − λ∗
i ||0,M ≤ 2

β∗
Φ

||λ − λI ||0,M , βΦ∗ ||ζ∗||0,M ≤ ||λ − λ∗
i ||0,M , (B.9)

||λ − λ∗
i ||M ≤ C1

(
CK h

1/2
K + CS h

1/2
S

)
||λ − λI ||0,M , (B.10)

whereCK andCS are the constants in(B.3) and (B.6), respectively, andC1 is given by

C1 =
10

γ(β∗
Φ)2

, (B.11)

whereγ is the constant appearing in(2.32).

P r o o f. As we did for Theorem 5.1 we shall prove directly the estimates (B.9) and (B.10)
for any possible solutionof (B.7)-(B.8). Since forλ = 0 we obviously haveλI = 0 as
well, then (B.9) will imply that forλ = 0 the problem (B.7)-(B.8) can only have the zero
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solution: hence the determinant of the corresponding matrix is different from zero, hence for
any givenλ the system will have a unique solution. Let us prove, therefore, the estimates
(B.9) and (B.10). We first estimateζ∗ in terms ofλ − λ∗

i in the || · ||0,M norm. For this we
use Assumption2h. Let µ∗ be theµϕ ∈ Mh that we obtain from it takingϕ = ζ∗: we use
(6.13), then (B.7), then the usual Cauchy-Schwarz inequality and the fact that||µ∗||0,M = 1
to obtain

β∗
Φ||ζ∗||0,D ≤ (µ∗, ζ∗)0,Σ = (λ − λ∗

i ,µ
∗)0,M ≤ ||λ − λ∗

i ||0,M . (B.12)

We now pass to the estimate ofλ − λ∗
i in the norm|| · ||0,M :

||λ − λ∗
i ||20,M = (λ − λ∗

i ,λ − λ∗
i )0,M = (a-sλI )

= (λ − λ∗
i ,λ − λI)0,M︸ ︷︷ ︸

I

+(λ − λ∗
i ,λI − λ∗

i )0,M = (use (B.7))

= I + (ζ∗,λI − λ∗
i )0,Σ = (a-sλ)

= I + (ζ∗,λI − λ)0,Σ︸ ︷︷ ︸
II

+(ζ∗,λ − λ∗
i )0,Σ = (use (B.8))= I + II,

which implies, using (6.10), and then (B.12) for estimatingζ∗:

||λ−λ∗
i ||20,M ≤ ||λ−λ∗

i ||0,M ||λ−λI ||0,M +
1

β∗
Φ

||λ−λ∗
i ||0,M ||λ−λI ||0,M , (B.13)

that usingβ∗
Φ ≤ 1, gives easily (B.9).

We now estimateκζ∗ in the normM. We remember thatκζ∗ is single valued onΣ. Hence
we can use (2.32), recalling that we obviously haveγ ≤ 1. Let ϕ ∈ Φ be the element that
realizes the supremum in (2.32), that is

γ ||κζ∗||M ≤ sup
ϕ∈Φ

(κζ∗,ϕ)0,Σ

||ϕ||Φ
=

(κζ∗,ϕ)0,Σ

||ϕ||Φ
. (B.14)

Then we have

(κζ∗,ϕ)0,Σ = (ζ∗, κϕ)0,Σ = (a-sϕi,M )

= (ζ∗, κϕ − ϕi,M )0,Σ︸ ︷︷ ︸
I

+(ζ∗,ϕi,M )0,Σ = (use (B.7) withµ = ϕi,M )

= I + (λ − λ∗
i ,ϕi,M )0,M = (a-sκϕ)

= I + (λ − λ∗
i ,ϕi,M − κϕ)0,M︸ ︷︷ ︸

II

+(λ − λ∗
i , κϕ)0,M = (a-sκϕI )

= I + II + (λ − λ∗
i , κϕ − κϕI)0,M + (λ − λ∗

i , κϕI)0,M = (use (6.9))

= I + II + (λ − λ∗
i ,ϕ − ϕI)0,Σ︸ ︷︷ ︸

III

+(λ − λ∗
i ,ϕI)0,Σ = (use (B.8) withϕ = ϕI )

= I + II + III ≤ (use (6.10), with (B.3) forI andII and with (B.6) forIII)

≤ (CK h
1/2
K ||ζ∗||0,D + CK h

1/2
K ||λ − λ∗

i ||0,M + CS h
1/2
S ||λ − λ∗

i ||0,M )||ϕ||Φ,
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which combined with (B.12) and (B.14) gives immediately

γ ||κζ∗||M ≤ (
β∗

Φ + 1

β∗
Φ

CK h
1/2
K + CS h

1/2
S ) ||λ − λ∗

i ||0,M . (B.15)

We finally estimateλ − λ∗
i in theM norm. We remember thatλ − λ∗

i is double valued on
the interfaceΣ. Let v the element inV that realizes the supremum for the dual normM (see
(2.28)), that is

||λ − λ∗
i ||M ≡ sup

v∈V

(λ − λ∗
i ,v)0,Σ

||v||D
=

(λ − λ∗
i ,v)0,Σ

||v||D
. (B.16)

Then, using (6.9), adding and subtractingvi,M , using (B.7) , then adding and subtractingκv,
then using (6.10) and (B.3) we have

(λ − λ∗
i ,v)0,Σ = (λ − λ∗

i , κv)0,M

= (λ − λ∗
i , κv − vi,M )0,M︸ ︷︷ ︸

I

+(λ − λ∗
i ,vi,M )0,M

= I + (ζ∗,vi,M )0,Σ = I + (ζ∗,vi,M − κv)0,Σ + (κζ∗,v)0,Σ (B.17)

≤ CK h
1/2
K ||v||D (||λ − λ∗

i ||0,M + ||ζ∗||0,D) + ||κζ∗||M ||v||D,

which joined with (B.16) and (B.12) gives immediately

||λ − λ∗
i ||M ≤ CK h

1/2
K

β∗
Φ + 1

β∗
Φ

||λ − λ∗
i ||0,M + ||κζ∗||M. (B.18)

Combining (B.18) with (B.15), and recalling thatγ andβ∗
Φ are≤ 1, we have then

||λ − λ∗
i ||M ≤ 1

γ

( 4

β∗
Φ

CK h
1/2
K + CS h

1/2
S

)
||λ − λ∗

i ||0,M . (B.19)

This, joined with (B.9) (already proved) easily implies (B.10) with (B.11).

Before tackling the final estimate, we need two additional results. To state them, however,
it will be convenient to introduce, as an additional notation, the set̃Kh defined as follows

K̃h := {K ∈ Kh | K has at least a vertex onΣ} (B.20)

We have then the following lemmata.

Lemma B.3 Letv ∈ Vh be a vector valued finite element pair that vanishes at all degrees
of freedom that are not onΣ. Then

||v||E,b ≤ C∗ ||v||Dh
, (B.21)

where the normDh is the one defined in(6.4), andC∗ is a constant that depends only on the
shape of the elements iñKh .

P r o o f. The property is known (see e.g. [9]). It can also be easily checked by direct
computation on the reference element and suitable scaling arguments.
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Lemma B.4 There exists a constantC∗, depending only on the shape of the elements of
K̃h, such that: for everyv ∈ V we can find avh ∈ Vh such that

||v − vh||Dh
≤ C∗ ||v||D ||vh||E,b ≤ C∗ ||v||D. (B.22)

P r o o f. This is also a known property (see e.g. [9]). You have to define firstvh onΣ as a
Clément interpolant ofv. The first inequality follows from local interpolation estimates plus
the known fact that the sum of the squares of the1/2-seminorms on the elements is bounded
by the1/2-seminorm on the whole domain. The second inequality follows from an extension
theorem, by constructing a suitable prolongation ofvh to Ω (see e.g. [38] or [9]).

We are finally ready for the error estimates on the three-fieldformulation, under the As-
sumptions1h and2h. We follow exactly the procedure (A.7), using howeverλ∗

i instead of
λi. Let us see how the different termsI to V (appearing in (A.7)) can be estimated in the
present situation.

I ≡ a(u − uh,u − ui) ≤ ||u − uh||E,b ||u − ui||E,b. (B.23)

II ≡ b(u − ui,λ − λh) ≤ ||u − ui||E,b ||λ − λh||M. (B.24)

III ≡ b(uh − u,λ − λ∗
i ) ≤ ||u − uh||E,b ||λ − λ∗

i ||M. (B.25)

IV ≡ c(λ∗
i − λ,ψ − ψh) = (use (B.8))

= c(λ∗
i − λ,ψ − ψi) ≤ ||λ − λ∗

i ||M ||ψ − ψi||Φ.
(B.26)

V ≡ c(λ − λh,ψ − ψi) ≤ ||λ − λh||M ||ψ − ψi||Φ. (B.27)

The M-norm of λ − λ∗
i has been estimated already. We need to estimate that ofλ − λh.

Proceeding as in (A.13) we use Assumption1h with µ = λI − λh, and we remark that we
are using the correspondingvµ only onΣ. This implies that we are allowed to assume that
all its degrees of freedom that are not onΣ are set to zero, so that the property (B.21) holds.
Then, keeping also in mind that||vµ||Dh

= 1 we have:

β∗
M ||λh − λI ||Mh

≤ (use (6.12) and (4.3))

≤ b(vµ,λI − λh) = (a-sλ)

= b(vµ,λI − λ) + b(vµ,λ − λh) (use (A.2)) (B.28)

= b(vµ,λI − λ) + a(uh − u,vµ) ≤ (use (6.6) and (2.16))

≤ ||λ − λI ||Mh
||vµ||Dh

+ ||u − uh||E,b ||vµ||E,b ≤ (use (B.21))

≤ ||λ − λI ||Mh
+ C∗ ||u − uh||E,b ≤ (use(B.5))

≤ h
1/2
K ||λ − λI ||0,M + C∗ ||u − uh||E,b.

A simple use of the triangle inequality together with (B.5) and (B.28) gives then

||λ − λh||Mh
≤ β∗

M + 1

β∗
M

h
1/2
K ||λ − λI ||0,M +

C∗

β∗
M

||u − uh||E,b. (B.29)

Finally we use Lemma B.4 to estimate theM norm ofλ−λh: let first, as in (B.16),v be the
element inV that realizes the supremum for the dual normM, that is

||λ − λh||M ≡ sup
v∈V

(λ − λh,v)0,M

||v||D
=

(λ − λh,v)0,M

||v||D
, (B.30)
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and letvh be the element inVh described in Lemma B.4. Then we have:

(λ − λh,v)0,Σ = (a-svh)

= (λ − λh,v − vh)0,Σ + (λ − λh,vh)0,Σ = (use (A.2))

= (λ − λh,v − vh)0,Σ + a(u − uh,vh) ≤ (use (6.6) and (2.16)) (B.31)

≤ ||λ − λh||Mh
||v − vh||Dh

+ ||u − uh||E,b ||vh||E,b (use (B.22))

≤ (||λ − λh||Mh
+ ||u − uh||E,b)C∗ ||v||D,

which joined with (B.30) and then using (B.29) gives

||λ − λh||M ≤ C∗(||λ − λh||Mh
+ ||u − uh||E,b)

≤ 1

β∗
M

(
2C∗ h

1/2
K ||λ − λI ||0,M + C∗ (C∗ + 1)||u − uh||E,b

)
. (B.32)

We can now proceed as in the previous section. We setEu := ||u − uh||E,b, Eλ :=

||λ − λh||M, thenIu := ||u − ui||E,b, I∗λ := ||λ − λ∗
i ||M, Iλ := (h

1/2
K + h

1/2
S )||λ − λI ||0,M ,

and finallyIψ := ||ψ − ψi||Φ. Inserting the estimates (B.23)-(B.27) forI-V into (A.7) we
have this time

E2
u ≤ Eu Iu + Iu Eλ + Eu I∗λ + I∗λ Iψ + Eλ Iψ (B.33)

Inequalities (B.10) and (B.32) become now:

I∗λ ≤ C2

(β∗
Φ)2

Iλ and Eλ ≤ C3

β∗
M

(Iλ + Eu), (B.34)

with constantsC2 andC3 depending only onγ, CK andCS (hence on the geometry ofΩ and
on the shapes of the elements iñKh andSh). Inserting (B.34) into (B.33) gives

E2
u ≤ C4

( 1

β∗
M

+
1

(β∗
Φ)2

)
{Eu(Iu + Iλ + Iψ) + Iu Iλ + Iλ Iψ}, (B.35)

where againC4 depends only on the geometry ofΩ and on the shapes of the elements iñKh

andSh. With a few arithmetic-geometric mean inequalities (A.20), this can be reduced to the
form (A.21), and the result of Theorem B.1 follows, using also (B.32) one more time.

With amore complicatedargument, involving duality estimates and using quasi-uniformity
of the meshes, we could also prove an estimate forψ − ψh. (“That’s nothing to what I could
say if I chose,” the Duchess replied, in a pleased tone[21].)
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