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The three-field decomposition method is particularly suited for decompuositioth non
matching grids. It corresponds to introduce an additional grid (usualfpum, or “easy”) at
the interface. The unknown is then represented independently in eladbrsainandon the
interface. The matching between its value in each subdomain and on tHadatisrprovided
by suitable Lagrange multipliers. Here we discuss the main features ogttedifor a linear
three-dimensional elasticity problem, in the simplest case of two subdemAmeasy nu-
merical test to check whether tivéf-supconditions (necessary for the stability) are satisfied
is also presented.
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1 Introduction

Sometimes, there are coincidences, in research, so gttt the only explanation seems
to be:times were ripelndeed, in April 1992 two papers were presented almostlsimeously
at two different Meetings (one [18] in Nice, France, from 8@ and one [1] in Dallas, Texas,
from 13 to 15) containing exactly the same idea. The two gsaf@muthors did not know each
other, and they belonged to two different communities (Mathticians and Engineers). Itis
totally impossible that the information could have tragdlfrom one group to another, and
the only possible explanation is thifiey had the same idea at the same tirAetually both
groups traced back the origin of their idea to previous wankthe engineering literature:
[36], and [4], respectively. Still, as both references waready relatively “old and cold” at
the time, their simultaneous revival is a remarkable cdiecce.

In order to see the idea, let us first see the problem: in skeapmications, one has to
solve problems that couple several domains arriving eat itgi own decomposition, done
by an independent team within the factory. As an examplewihg and the fuselage of an
airplane are typically studied first by different groupsddhe relative grids are constructed
independently one from another. If you are in charge of sgla problem involving the whole
plane, you have to do something about these man matching grids Similarly, in several
applications, one needs a local refinement in a specific soaohy and would like to do it
independently of the decomposition of the remaining pathefdomain. Here again, if one
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4 F. Brezzi and L.D. Marini: 3-field formulation

wants to avoid a local remeshing near the transition interfpossibly having to use rather
distorted elements, the problemmdn matching gridgops out again. There are obviously
other applications where you cannot avoid non matchingsgridr instance when studying

sliding pieces [14], or contact problems [25], or severhkotypes of problems (see e.g. [3],
[34], [32], [39], [33] and the references therein). In a verude and schematic way, the

situation is depicted in Fig. 1.
e EiEeEE
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Fig. 1 Example of non matching grids Fig. 2 The three grids o
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Using a linear elasticity problem as a model problem, asshiate:' andu? represent the
displacement fields in the two subdomains andQ?, respectively, and that, for the sake of
simplicity, we are setting the displacements to zero alt tive boundary of the whole domain
Q, union of2' and2. The total potential energy can be presented as the sum whitks 7,
of the external forces in each subdom@if, plus the contributions), to the internal energy
of each subdomaif?” :

Eiot = F1+ Fo+ &1+ &, (1.1

whereF; and&; depend om'® while F, and€&, depend omi?. We would like to minimizeE;
over all displacement fields that satisfy the kinematic latzunp conditions on the boundary of
Q plus suitable continuity requirements on the interfadeetweer2! and?2.

The first possibility is to force the continuity by means olitable set of Lagrange multi-
pliers. This amounts to add t,; an interface contribution

L=L(uA) := / A (u! —u?)ds (1.2)
b>

and to require the stationarity of the functional
Fi+Fa+tE&+E+L (1.3)

At the equilibrium, XA will represent the normal component of the stress fieldonThis
is possibly the most common way of dealing with the problend the celebratedhortar
method(see e.g. [8], [31], [33], [39]) is actually based on it.

The idea that we are talking about here is however diffedéatnounts to introduce a new
mesh on the interface (different, in general, from both the decompositions iretlion3 by
the two given decompositions 6 and)?). There we introduce a new representatigpnpf
the displacement field, and we introdues Lagrange multipliers (one for each subdomain);

£r= Ll )= [ A (! - )ds (L4)

b
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and

Ly = Ly(u? A% ) := /EV - (u2 — ) dS. (1.5)

Then we consider the stationarity of the functional
Fi+Fo+& + &+ L+ L. (1.6)

At the equilibrium \* will represent the (outward) normal component®of the stress field
in the subdomait*.

As we shall see with more details in the following sectioh® $tationarity of the func-
tional (1.6) implies the equilibrium equations in each subdin (obtained when taking the
derivatives with respect ta' andu?, respectively), but it also implies the continuity equato

ul _ ’l[i, 112 — w’ (17)

obtained when taking the derivatives with respecitamnd?, respectively, and the equilib-
rium on the interface

A+ A?=0, (1.8)

obtained when taking the derivative with respect/to

It is clear that, for the discretized problem, both the dftiilm equations in the subdo-
mains and the interface conditions (1.7)-(1.8) will be ir@d onlyin a weak sense

The main features of the three-field formulation will be grE®ed in the next section. In
Section 3 we shall discuss its discretization (essentiadlfg conforming finite elements for
each field, possibly with different degrees from one fieldrtotaer). The interest in using the
three field formulation in the context of Domain DecompasitMethods, with the possible
use of parallel computers, will be outlined in Section 4. &t$Hn 5 we present sufficient con-
ditions that ensure stability and optimal error bounds irakmost immediate way. As these
conditions might be difficult to check in practice, in padi@r for non mathematicians, in Sec-
tion 6 we present alternative conditions, that make the emance proof more difficult but
allow a very easy numerical test that can give reliable iaiiiims on their validity in each par-
ticular case. The testitself is presented in Section 7. Smmelusions are drawn in Section 8.
Finally, in Appendices A and B we report the detailed prodfthe two theorems containing
the error estimates. More precisely, Appendix A contaimsgioof of error estimates using
theinf-supconditions of Section 5, based on more difficult norms, wAigendix B contains
the more complicated proof of error estimates usingrikgsupconditions of Section 6, based
on easier norms (the ones that can be easily checked witksheftSection 7).

2 The three-field formulation

Let us consider, for the sake of simplicity, a polyhedral damf2 c IR?, that will be the

region occupied by our elastic body. For simplicity we sloally consider the case of a de-
composition intawo (polyhedral) subdomair@' andQ?. Most of the theory (and basically
all the practice) will hold unchanged in the case of an aabjtfinite number of subdomains.
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6 F. Brezzi and L.D. Marini: 3-field formulation

We shall try to point out, with suitable remarks, the issines tould require a special attention
when dealing with more subdomains. We then assume that

Q=0'0u0? (2.2)

and we do not make an issue on whetfiar theQ*'s are assumed to be open or closed.
Let us see now thdatathat we are taking for odmear elasticity model problem
We assume that we are given a distributed load vector fighd 2, and homogeneous
kinematic boundary conditions

u=20 (2.2)

on the whole boundary @? (this is not very realistic, but it is just to simplify the foulae).

As we said, we take the model of linear elasticity for a honmagels and isotropic material,
with Hooke’s law and corresponding L&ncoefficientsL and L,,. Note that we cannot
use the more common symbolsand i for Lamé coefficients, since we are going to use
these symbols (or, actually, very similar ones) for the aage multipliers at the interface.
For simplicity, we are not going to discuss the caseedirly incompressible materialand
therefore we shall assume that

Ly~L,. (2.3)

Our basic unknown will be, as usual, the displacement field priori we are not assuming
neitheru nor any virtual displacememnt to be continuous across the interfacedefined as

2 = 90! N 902, (2.4)

The restrictions ofi to each subdomaift* will be denoted withu”* (k = 1, 2), while the
three components of the vectamwill be denoted by(u,, ua, us3).
In terms ofu we define in each subdomain the strain tergsas

(€}, = <Z—Z + ng)/2. (2.5)

More generally, for a given (virtual) displacement fieldwe define the corresponding
(virtual) strain tensor

o (9’07; 61)]-
fev)}i = ( 5e 8%) /2. (2.6)
As in (2.5), we shall often simply writefor €(u). Note that we can easily use (2.5) to define
€(u) on the whole domain (including the interfak® but we do not have the right to define
g(v) on the interfac&, as we have in mind virtual displacements that might be dicoous
across it. This is an important point, because, even iftthe solutionu will surely be
continuous, we are going to look for approximate solutioni;, that is discontinuous from
one subdomain to another. And we cannot really do better,eaarergoing to use different
meshes in the two subdomains.

Finally, always in terms ofi, in each subdomain, we define the stress field as

0:=2L, e+ L \Itr(g), (2.7)
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wherel is the identity matrix andr(€) is the trace of defined ag1; +e22+¢35. The (virtual)
stress fields(v) associated to a virtual displacementill then be defined as

o(v) :=2L, &)+ LI tr(g(v)). (2.8)

As before, we will often writas in place ofa(u). We point out again thas(u) is clearly
defined in the whole domaifi, but the generio(v) is only defined separately in each sub-
domainQ*, k =1,2.

The solutionu that we are looking for if2 could be seen, in strong form, as the solution
of

dive(u) +f = 01in Q, u=00ndQ, (2.9)

or alternatively as the minimizer of the total potential gyye as usual. Here however we
are going to work with virtual displacements that are alldwe be discontinuous across the
interfaceX:, and some additional care is required.

The contribution of each subdomain to the internal energy tanthe work of external
forces can now be made precise as follows:

1
5k;=—/ G:edV Fp:=— [ f-udV. (2.10)
2 Ok Ok

The “total energy” associated to a virtual displacementill then be

Ernlv) = Z(% | ot sy - [

£. vdV). 2.11)
k=1 o

It is now time to make precise the space where we allow thaalidisplacements to vary.
For this we define first thimternal energy nornin each subdomaife® (k = 1, 2)

vt [ otv) stvjav (2.12)
(that is actuallytwice the energy and the global (broken) internal energy norm

vl

B = VIEL + IVIEe: (2.13)
We define then the spadé of virtual displacements as
V := {v such thai|v| gz is finite andv = 0 on 9Q}. (2.14)

It is worth noticing that the norm (2.13) is naturally assted with the scalar product

(W, v)gp ;:; /Q _O(u) g(v)dV = kzl /m o(v) : g(u)dv, (2.15)

and that the usual Cauchy-Schwarz inequality holds

(w,v)es < |ules [v]Es (2.16)
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8 F. Brezzi and L.D. Marini: 3-field formulation

The idea would be to minimize

N =

Eot(V) = HVH%J) — /Q f-vdS (2.17)
over all possible virtual displacementse 'V, but this will clearly be wrong, since we did not
(yet) require any continuity at the interfage The minimum, in this case, would be attained
by the solution oftwo independent problemsne in each subdomain, with (homogeneous)
kinematic boundary conditions @2 N 2 and no-tension boundary conditions-( = 0)

on both sides oE (which isnotwhat we want).

Hence we will introduce second representatiasf the displacement field (that we denote
by 9) on 3, and we force the matching of botl! and u? with vy by means of suitable
Lagrange multipliergone for each side af}). Note that each virtual displacemente V
is double-valued orxt, but is assumed to be single-valued. Actually, it will be better t
introduce a whole spac® of virtual displacements o&. We first define, fok = 1,2, the
spaceD* as the space of the restrictionsXdor traceson X) of the virtual displacements®
that have finite energy ift*:

D* := {§" such thafiv¥ € V* with vf, = 6"}. (2.18)

Actually, we remark that, with our definition, and in our peutar case otwo subdomains
we haveD! = D2. In eachD* we introduce the (natural) norm:

16" b, == Jnf viek (2.19)

that is, in other wordshe lowest possible energy of a virtual displacemen?/irthat is equal

to 8" on X. Note that, even though the two spad@5sandD? are equal (since we have only
two subdomainsihe two normg - [p,1 and| - |p > will be different in general, unless the
domain2 is symmetric with respect t&. It can be proved, however, that the two norms are
equivalentin the sense that you can bound one of them by a constantr(diegeonly onQ!
and?) times the other. We then define

D = {§ = (6',6”) with §' € D' ands” € D?} (2.20)
with
2
813 == > 16" B (2.21)
k=1

As we are actually interested in virtual displacements #nasingle valuecon %, it will
be convenient to consider the spake_ D, defined as the space péirs of identical (vector
valued) functionsone for each side of:

® = {¢ = (¢',¢?) € D such thatp" = ©?}. (2.22)

In the sequel, ag' andy? are always equal, we shall often call them bethThis is amabuse
of notation but we hope that it will not cause confusion. More generallyen speaking of
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apairx = (x',x*) = ((x1,x3, x3), (x1, X3, x3)) we say thaty is single valuedon  if
x! = x?. Otherwise we say that is double valuedThe spaceP will inherit the norm ofD,
that is

2
lelz =D leld i (2.23)
k=1

A nice consequence of the above definition (2.21) is thevietig property. For everw € V
and for everyk = 1, 2 we have first, in an obvious way, that

W lpk < [W]Ek, (2.24)
since in (2.19) we took the infimum. As a consequence of (2a8d)(2.21) we have then
Iwlp < W]z (2.25)

Together with the spacdd and® we introduce then two spaces of Lagrange multipliers
M! andMZ2. Again, in our particular case (since we have only two subaios), the two
spaces will be equal to each other (but this will not be the éasmore than two subdomains,
see e.g. [18] or [19]). Still it is convenient to use two diffat names for them, as we are
going to discretize them in two different ways. We set, fol 25

M* := { dual space oD*}. (2.26)
We consider then the global space of Lagrange multipliers as

M := {pu = (p', p?) with ' € M' andp? € M?}. (2.27)
The norm inM will therefore be defined as

2 k. sk

lelna = sup > w0745 (2.28)
sep 7= |6lp

The spaceM could also be defined, in a rough way, as the space of vectaedgbairs
p = (put, u?) such that the above quantity (2.28) is finite. From the plajgioint of view,
the elements oM aretensiong(force per unit surface). When defining the norniDn(see
(2.19) and (2.21)) we associated, in a natural way, an erterggch virtual displacement on
3. Here, the square of tHel-norm of a tensionu could now be interpreted dse maximum
work thatu can make on a virtual dispacemeinthaving a unitary associated energyn
easy consequence of the definition of the norm (2.28) is thewimg Cauchy-Schwarz-like
inequality, valid for anyu € M andx € D (and physically obvious):

2
Z/u%ﬁ%gWWhm. (2.29)
k=172

Indeed, we easily have

pk de pk 8% ds
Z& wzhw = |ulm. (2.30)

Ixlx seD
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10 F. Brezzi and L.D. Marini: 3-field formulation

Using (2.29) and (2.25) we also obtain, for every M and for everyw € 'V,

2
> [ utvhas < Judsa vl (2.31)
E=1"%

We also point out that, since the two noringp 1 and| - |p 2 are equivalent, if, by chance,
w is single valued (that ig! = p?), then its norm inVI could be bounded, up to a constant,
by taking the supremum only o, instead ofD. This means that there exists a constant
v > 0 such thatfor all p such thatu! = p?:

2 k k
plye < sup 3 2t 21 48 232
per = |ele

We realize that both norms (2.23) and (2.28) are not veryditie for a certain number of
readers, and we promise that we are going to nskery moderate usef them. It might
however help the reader to know tradt the norms we are using in this paper are “energy
norms”, in the sense that their square has the physical dimensf@rmsamergy

With all the machinery ready to use Lagrange multipliers caesider now the functional

1
L) = gIvEe— [ £vast [ (pv)utast [(p—v?) s, 239

andwe look for the stationarity poir(iu, A, v») of £ when(v, i, ) varies overV x M x ®.
It is not difficult to show that the following result holds &u

Theorem 2.1 Assume thatu, A, 1) is the stationarity point ofZ when(v, u, ¢) varies
overV x M x &. Then we have

diva(u) 4 f = 0in eachQ”, (k=1,2), (2.34)
o(u®)-n* = A*onx, n* = outward unit normal t#Q2*, (k=1,2), (2.35)
u' =u? =y ony, (2.36)
A+ A% =0, ony, (2.37)

and thereforea coincides with the unique solution of the linear elastigtpblem(2.9) set
directly on the whole domaifl.

Proof. Take first the derivative df(v, i, ) with respect tos at the pointu, A, ¢»). We
have

/ G(uk):e(vk’)dV—/)\k-vde: f.vhdv (2.38)
QF b QF

for all v¥ having finite energy if2*, and vanishing o8Q* N 9Q, (k = 1, 2). Assumingf and
¥ as given, and considering (2.38) as a variational equatidhé unknownu*, we easily
obtain that its (unique) solution” satisfies conditions (2.34) and (2.35), for edchraking
now the derivative of (v, u, ) with respect tqu at the point(u, A, ¥)) we have

/ (p —u¥) - p*ds =0, (2.39)
JX
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forall u* (k = 1, 2), thatimmediately gives (2.36). Taking finally the derivatof £(v, u, )
with respect tap at the pointu, A\, ¢») we have

/Ego-)\ld5+/2<p~)\2d520, (2.40)

for all , that immediately gives (2.37).

Finally, the vector-valued function definedakin Q' andu? in 2 satisfies the equilib-
rium conditions (2.34) in eaci®, is continuous ofX (thanks to (2.36)), and its corresponding
stress field has its normal component continuou&pthanks to the joint use of (2.35) and
(2.37). Hence it is the solution of the global problem.

O

3 Discretization of the three-field formulation

We can now tackle the problem of discretizing the three-ffetthulation described in the
previous section. The first step should be to choose finiteexé subspacey¥;,, M;,, and
®,, of V, M and®, respectively.

Instead of actually making a precise choice for them, we asgchlly going to indicate
general guidelines.
Choice of VF. We assume (as it wake name of the ganfeom the very beginning) that
we aregiventwo independent meshég, andK: in Q' and inQ2?, respectively. We play the
game that we cannot (or we do not want to) touch them, and we tham unchanged. Hence
the first step will be to choose, in eatH, a finite element space} on the mesHCy. To fix
the ideas, let us take conforming finite elements of degree-(k) (that might vary from one
subdomain to another), verifying the homogeneous boundamditions ondQ*F N 9. No
continuity will be required at the interface. Once theV}’s have been chosen, we set, in a
natural manner,

V;, = {v = (v}, v?) such thav* € V} (k = 1,2)}. 3.1)

The other two fields, however, aper job, and we have more freedom in their construction.
Choice of M¥. A general, preferred choice is to take the mesHMHj on 3 asthe restriction
to X of the mestCy (for & = 1,2). Then we choose finite element spadd§ by taking, on
these meshes, piecewise polynomials of degree/(k). An important choice to be made is
whether to use continuous or discontinuous finite elemétitisough the choice of continuous
finite element approximations for the Lagrange multipligfswas advocated, for instance, in
[1], [2], we believe thagllowing discontinuities is a healthy choica least when the interface
3 is not smooth (which means, in this context, that its nornmétl vectorn has jumps that do
not tend to zero with the mesh size), as it will almost alwagthe case when dealing with
more than two subdomains. Indeed, in view of (2.35), thetgmil\* has to jump whenever
jumps (as we expect eadiiu”) to be smooth). And it will be impossible, for the approximate
solution ¥, to produce a good approximation Af if we force continuity on it. Once the
M/’s have been chosen, we set, in a natural manner,

M, = {p = (', pu?) such thap* € MY (k= 1,2)}. (3.2)
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12 F. Brezzi and L.D. Marini: 3-field formulation

Choice of ®;,. Here, finally, we are totally freed of the two decompositide} that have
been given to us, and we can choosaeav decompositios;, on ¥. Here the preferred
choice isa uniform decompositigras much as the geometry Bbfallows an easy choice for
it. For two-dimensional problems, whekeis therefore one-dimensional, the uniform grid
is an obvious winner ([1], [18]). For three-dimensional lgems, the geometry df can be
much more complicated, and a uniform grid might even lack semse (what is “a uniform
decomposition of an ellipse™?) The main interest in having#orm grid, whenever possible,
is to allow an easy way to find the elementf that contains a given node &f. A second
important point, that will be also mentioned in the next matin connection with Domain
Decomposition Methods, is the possibility of building pofuk preconditioners ort. For
both aspects, when a uniform grid could not be chosen, atstedhierarchical grid might
be a reasonable substitute. One way or another, we as&liménere that you have a sort of
favorite gridS;,. Then we take a®,, the space of piecewise polynomials of degree, pay,
on the gridS;. Here, continuity is recommended: in view of (2.36), we etghe discrete
solutiont),, to approximateu on 3. And it is quite reasonable to assume thais smooth
there. Sometimes, in particular for two-dimensional peofd (wherez is a line) the choice
of a very coarse;, with a rather highp has been advocated [1], [2]. The usenaveletson

3’ has also been proposed and analyzed in [12]. We finally poirthat, from the theoretical
point of view (that is, when proving theorems) we shall altjuaeat ®;, as a space of pairs
of identical (vector valued) functions (in agreement wita tefinition (2.22) of the space),
butin practiceone shall obviously consider it @sst one space

We point out that, at this point, we hatleree different grids defined on the interfa¢ca
one coming from the (given) decompositifii, another coming from the (given) decompo-
sition C2, and a third (of our choice) defined ahindependently of the other two, and used
to approximate the variablg. The situation is illustrated in Figure 2 where, for didagtur-
poses, the two subdomains have been drawn far apart, antt¢naceX has been triplicated
in order to show the three decompositions. Once the threeetésspace¥V;,, M, and®,;
have been chosen, we can write thiscrete problenas follows.

e Find the stationarity pointuy, Ax, ;) of the functionalL(v, s, ¢) given in (2.33)
whenv, p andg vary overVy, M;,, and®;,, respectively

To see the discrete problem under a better light, it will bevenient to write the corre-
sponding equations that come out when we impose that theatieeis of£(v, u, ¢) vanish.
Taking the derivatives with respecttoas in (2.38) we have now

/ o(u}) :e(vk)dV—/ Avkds = [ fvFdV wr eV (k=1,2). (3.3)
Qk b)) Qk

Taking now the derivative with respect toas in (2.39) we have

Jon =) utas =0, vt e (k=1.2) (3.4)

Taking finally the derivative with respect to as in (2.40) we have
/¢~A}Lds+/<p->\,%dszo, Ve € ®y,. (3.5)
z =
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4 The three-field decomposition as a DDM

In this section we shall give some hints on the possible uieeahree-field formulation in the
framework of DDM (Domain Decomposition Methods), and the agparallel computers. It
is clear that the particular case presented here, usingtanlgubdomains, will not, as such,
be very appealing for using a parallel computer. Howeverilithve clear that what we say
will hold for a decomposition in an arbitrary finite numbersafbdomains, and equally clear
will come out the interest of this approach for parallel caapions.

The first important point is that the above equations (333%)(can be grouped in a different
way. In particular, we might think that for any given (temtatchoice) ofi, we solve,
independently in each subdomaihe problems (corresponding to (3.3)-(3.4)):

find (uf, AF) € V¥ x M¥ such that
JopO(uf) :e(vF)dV — [L A} -vFdS = [, £-vFAV WV e VE (4.1)
Jouf - pFdS = [, -pFdS vut e My,

and that to check whether the choiceyf is correct we use equation (3.5). We repeat now,
in more details, the same concept from a different point efwfand with different notation).
Let us denote byl* the matrix associated with the bilinear form ¥ x V¥

a®(wk vF) ::/ o(w") : g(vF)dv, (4.2)
Ok
then denote by3* the matrix associated with the bilinear form & x M
Ve (vE, k) = — / vE . pkds, (4.3)
z

and finally denote by>* the matrix associated with the bilinear form b x @),

F(pk,p) = /Zso -k ds. (4.4)

Equations (3.3)-(3.5) can now be written in matrix form (witither obvious meaning of the
notation):

At o (BY o0 0 ul £l
0 A2 o B)" o0 u? £2

B 0 0 0 (©oH" A; =10 (4.5)
0 B 0 0o (@) | A 0

Lo o ¢ 2 0 Y 0

Changing the order of the unknowns and of the equations &&mes

AY (BHY 0 0 0 7 rat £l

B0 0 0 ()| 0
0o o A2 B)" o u’| = £ (4.6)

2

o 0o BX 0 ()7 [A 0

Lo ¢t o 2 0 Y 0
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14 F. Brezzi and L.D. Marini: 3-field formulation

Setting now
At BHY" 0 o0 ui £l
A= 1?)1 8 0 (Bg)T u=|N F= | (4.7)
0 0 B> 0 A? 0
and
c=1[0 ¢c' o ¢?, (4.8)

the system can be written as

A ¢t [ul [F
¢ SILI-6) @
What is important in (4.9) is that the mattikis block diagonal And this will be the case even

for a decomposition into an arbitrary finite number of subdora. Hence if we eliminat#J,
and write the system as

CAICTy =CA™'F, (4.10)

and solve it by, say, preconditioned conjugate gradieetstiution of the systendU"+! =
G" (to be computed at each step) can be performed woikipgrallel (each processor being
dedicated to a subdomain).

It might be interesting to point out that, from the mechahjmint of view, the solution of
a problem of the type

[gi (B(?T] m B [—(Cfllﬂ/;] (4.11)

(that is one of the problems that we have to solve, in paraiekach step of our iterative
procedure), corresponds to solving a problenf2inwith distributed loadf! and prescribed
kinematic boundary conditions' = +) onX andu' = 0 on the rest of the boundary (that is
o0\ ¥). In particular, we solve the problem in the formulatiwith Lagrange multipliers
in the style of [5].

Itis also relevant to point out that the choice of a uniforrid dor at least a nested grid) on
3 is not just a commodity, but a potential powerful instrumgntonstruct suitablprecondi-
tionersfor problem (4.10). We have no time here to discuss the mattearticular since the
literature on preconditioners for Domain Decompositiortihdels is impressive. We just refer
for instance to [11], [13], [15], [22], [26], [27], [28], [30[31], [33], [35], [37], [39], [40].

5 Stability conditions and error estimates

We discuss here the conditions on the choices of finite elegpates that will ensusgability
and optimal error estimategor the discrete problem (3.3)-(3.5). For this, we first néed
choose suitable norms for all the spaces at play.th&se are many ways to skin a cae
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can do this as well in many different ways. Here, we are goingee two of them. The
first choice will make use of the (difficult) norms (2.23) ar2d28), but the error bounds will
come out rather easily. However, checking itifesupconditions in each particular case using
these difficult norms would be much more complicated. Siittéhe sequel, we are going
to suggest a "Check yourself the inf-sup conditions” stggteve would like, instead, to use
easier normgno matter how difficult the proof of error estimates mightbme).

In this section, we deal with the “easy” error estimates whih difficult norms. To make
life easier to the reader, we start from the study ofdtability of our discrete problem. This
means that we would like to prove that there exists a congianmdependent of the mesh
sizes, such that: for every givénevery possible solutiofuy, Ax, v;,) of the discrete prob-
lem (3.3)-(3.5) (that we repeat here for convenience of ¢laeler)

/ o(uf) :e(vk)dV—/ Avkds = [ fvFdV wWrP eV (k=1,2), (5.1)
Qk b)) Qk
[ =y wtas =0 vt emp (k=1.2) (5.2)
3
/go-)\;lLdS—l—/cpv\idS:O Vo € &, (5.3)
> b

will satisfy thea priori estimate

[unlzs + 1Anlm + [ le < Cf]-, (5.4)

where|f|. is theload norm(defined ashe dual of the energy nomthat is

v -fdV
I£]. i= sup 39

L 5.5
S T Ve (5-5)

The property (5.4) will follow immediately (well, almost)dm the two following assumptions
on the grid.

Assumption 1 (control i by the v’s). There exists a constagh; > 0 such that: for every
p € M, we can find a7, € V;, such that

2
1
v =1 and < /vk- kds. 5.6
Iviles "N”M_ﬁM; Vi (5.6)

Assumption 2 (control ¢ by the u'’s). There exists a constapt, > 0 such that: for every
@ € P, we can find p, €M, such that

2
1
lugha =1 and ela < =Y [ ubepds (5.7)
¢ =/

Assumptions (5.6) and (5.7) are jusf-sup conditions in disguisé/Ne point out that, using
(5.6) and (2.31) we easily hays, < 1, while using (5.7) and (2.29) we hayg < 1.
Let us see how thmf-supconditions can give us the desired stability property (5.4)
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16 F. Brezzi and L.D. Marini: 3-field formulation

Take firstv = uy, in (5.1), 0 = =Xy, in (5.2), andp = v, in (5.3). Summing the three
equations, and then using the definition (5.5) of load norngete

[unl,, = / £y AV <[], [unles, (5.8)

that gives immediately

To estimate\;,, consider thev = v, that we get from Assumption 1 whgn = X;. Using
(5.6), then (5.1) withv = v, then the Cauchy-Schwarz inequality (2.16) and the dedimiti
(5.5) of the load norm, and finally again (5.6) (to see thatiben ofv, is 1), we have

5M||,\,,\|M<Z/vA Al dS = Z/ (W) g(vE)ydV — /f vadV

I Ivales < lunlep + [£].. (5.10)

Bb < [f]. (5.9)

S ”uh

In a similar way we can derive the estimate {p}. Indeed consider the = p,, that we get
from Assumption 2 wherp = ;. Using (5.7), then (5.2), then the Cauchy-Schwarz-like
inequality (2.31), and finally again (5.7) (to see that themof p,, is 1), we have

2 2
Balwnle < Z/uiz apydS = Z/uf;: ~uf dS
k=1 k=1

< lpylm lunlee = lun]pp.  (5.11)
Collecting (5.9), (5.10), and (5.11) we have then

2 1
larles + IXnlm + [nle < (1+ v 6_) I£]+- (5.12)

We have therefore the following theorem.

Theorem 5.1 Let the space¥,;,, M;, and ®,, satisfy Assumptions 1 and 2 (haméy6)
and(5.7)). Then for every given loafiproblem(5.1)(5.3)has a unique solutiofuy,, A, 1;,)
in V;, x My, x ®;,. Moreover, such solution satisfies the stability bo@bd) with
2 1

C=1+— 5.13

B e 5-13)

Proof. The problem (5.1)-(5.3) has as many equations asowr If we takef = 0 in
(5.12) we see that the homogeneous system has only thé s@lidion. This implies that the
determinant of the corresponding matrix is different frontHence for every given right-hand
sidef the problem has a unique solution. The stability bound (&wth the prescribed value

for the constan€) follows again from (5.12). O

Under Assumption$ and2 we can also proveptimal a priori error estimatesas shown,
with classical arguments (see [17]), in the following thear whose detailed proof will be
reported in Appendix A.
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Theorem 5.2 Under the same assumptions of Theorem 5(,if\, ¥) and (up, Ap, ¢},)
are the solutions of the elasticity problgéh9)(as given in Theorem 2.1) and of the discretized
problem(5.1)}(5.3), respectively, then we have

lu—un|es + Bald — Anlm + Balvp — Py e
ol e o o |
< O Jnf Ju—vlep+ it A plt il Y- els). (5.14)

whereC' depends only on the constaritg and G4 appearing in(5.6)and(5.7), respectively,
and is bounded by/8y + 1/ 4.

We are not going to discuss the conditions that need to besetbon the meshes and on
the type of finite elements in order to ensure that Assumptioand2 hold true. Roughly
speaking, in order to ensure Assumptibwe just have to choose a meSh on X in such a
way that it iscoarserthan at least one of the two meshl@ﬁE andlC,%lE. Actually it has to be
coarser, somehow, than “the union” of the two meshes (pealttiat we can give a meaning
to the union of two meshes). One can also obviously lower ¢geesk of the local polynomials
instead of coarsening the mesh. However, the use of a higlkeleg¢for the elements o;,)
together with a very coarse mesh was advocated for instand4,i[2]. On the other hand,
Assumptionl would require, roughly speaking, that the degrees of freetts Vi on X are
more than the degrees of freedom M (for bothk = 1 andk = 2). This can be obtained
by taking forM¥ polynomials of one degree lower than that used Vg (in other words,
(k) = r(k) — 1), as proposed in [1] and [2]. Often it would be sufficient tavé the degree
¢ only for the elements nedtX as it is done (roughly speaking) in tineortar methodsee
[8], [9], [33], [39]). Another possibility (advocated fonstance in [16], [20], and [19]) is to
stabilize the problem by augmenting the spa¥ds at the boundary, by means of suitable
boundary bubblesOr one can add suitabiabilizing termsat the boundary, as in [7], [6],
[10], [34].

6 More difficult error estimates using easier norms

We have seen that Assumptiohand2 ensure, with a rather easy proof, optimal error bounds.
Proving that these assumptions actually hold true for argolice of the finite element
spaces can be easy or difficult, according with the diffepamticular caseif you are a spe-
cialist. If you are not, however, you would like to have somagtical instrument to check
whether a certain choice (that you are willing to use) hasarable chances or not.

Following [17], and in the spirit of [23], we would like to ment in the next section a
simple way to check, in each particular case, whether yooicehof finite element spaces is
reliable or not. This cannot however be easily done with oigimal choice for the norms in
® and inM (see e.g. [29]). We introduce therefore some different saiovbe used instead
of the original ones. In particular, all the new norms willdefined by simpléntegrals and,
as announced, they will all kEnergy normsFor the spaced? we choose

hi
Wy = Y [ s =1.2) 6.1)
" Kek} o K
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18 F. Brezzi and L.D. Marini: 3-field formulation

where, for allK that is a face, or, of an element belonging %, we denoted by its
diameter. From (6.1) we construct the norm for the s@elein a natural way:

lia, = i By + 12 (6.2)

It will also be handy to define norms on the sp&a®f traces onX of the functions oV, as
defined in (2.18) and (2.20). We set

L X
My = 3 [ AV k=12) 6.3)

k
KEK}ME

and in a way similar to (6.2)
VI3, = v I5 + V213 - (6.4)

It will be convenient, in this section, to denote py), x; the usualL-inner product ort,
that is

2
(viwos =3 /2 vE .k av. (6.5)
k=1

We note that for the two nornisl;, andD;, we have the Cauchy-Schwarz-like inequality:

2
(oo = 3 [ VE A < Vi, L, (6.6)
k=1

Both the norms (6.2) and (6.4) can be easily seen &ngegy normslin order to introduce
norms onD andM that mimic theL?(X)-norm, but are also energy norms, we defiigeto
be a typical length of the problem, as for instance the dianfi2, and we set

L,
= -t 6.7
o= (6.7

vl

2 2
Soi= >0 [AVEAS ula =Y [t as. ©38)
k=17% k=17%

Note that(, )o,p (scalar product associated with | p) is a scalar produdbor displace-
ments while (, )o,as (scalar product associated with | o, a) is a scalar produdbr stresses
Moreover,(, )o,» couples displacements and stresdagyeneral, recalling (6.7) we have

(1 v)oz = (1, 6v)onr = (K7, V)o,p- (6.9)
We point out that here too we have the Cauchy-Schwarz iniigsal

(kv o < [vlons [plons  and (v, o < [vio,p leelon (6.10)
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It will also be convenient to denote bys and hx the numbersobtained taking the ratio
between the maximum diameters of the elements,irand in Ky, s, respectively, and the
characteristic lengthg,:

h
hix := max — hs := max —. (6.11)

We are finally ready to present the modified version of Assionptl and2.

Assumption 1h (control p by the v's). There exists a constagt;, > 0 such that: for every
p € M, we can find av,, € V, such that

1
[vilp, =1 and |p|m, < 6—*("#,#)0,2- (6.12)
M

Assumption 2h (control ¢ by the p’s). There exists a constapf, > 0 such that: for every
¢ € @), we can find qu,, € M, such that

1
lpplor =1 and [elop < 6—*(%7%0)0,2 (6.13)
P

We notice that using (6.12) and (6.6) we easily haye < 1, while using (6.13) and (6.10)
we havef; < 1.
We have the following theorem.

Theorem 6.1 Assume that our choices of finite element space¥V{gM;, and®,, satisfy
Assumptiongh and2h. If (u, A, ¢) and (uy, A, 70,,) are the solutions of the elasticity prob-
lem (2.9) (as given in Theorem 2.1) and of the discretized prob{&rih)-(5.3), respectively,
then we have the following error estimate:

lu—unles + Bi A — Anlm

. 1/2 1/2y . .
< Cp (nf Ju—vlps+ (0 +hY%) it A= plon + inf [ - ls). (6.14)
whereCg has the form

1 1

andcg depends only on the shape of the element,iand of those elements ig, that have
at least a vertex ofx.

The proof of the theorem is rather technical, and could bdtethby the readers without
at least a certain amount of Mathematical curiosity. We disttitherefore to present it in
Appendix B.

7 Check yourself your owninf-sup

Our aim here is to discuss a test that everybody can perforonder to check whether As-
sumptionslh and2h are satisfied or not. We shall discuss in more detail Assumpti, (in
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20 F. Brezzi and L.D. Marini: 3-field formulation

particular fork = 1), as the arguments for Assumptiah for £ = 2, as well as futatis
mutandi3 for Assumptior2h, will be identical.

As we are going to use arguments from linear algebra, it véltbnvenient to pass from
our functional spaces tlRR". We choose therefore a basis in each of the sphipsM?,
&, as well as for the restrictions 8f} andV?# to ¥. For discussing Assumptioth with
k = 1 only the spacedl} and the restriction oV} to X will enter the game. Let therefore
(D, p1@ pG L u(NMDY be a basis for the former, afa (), v(?) v®3) vV pe
a basis for the latter. The numbe¥3/1 and NV 1 are obviously the respective dimensions of
these spaces. Then we construct a one-to-one mappingVthro R defined by

NM1 ‘
m = (m1, Mo, ...myM1) < Z mip®. (7.1)
i=1

Similarly we construct a one-to-one mapping from “the iiens to> of V}” to RM!
defined by

NV1 )
a=(q1,q2,anv1) « Y ;v (7.2)
j=1
We consider then th&/A/1 x NV'1 matrix B defined by
B, = / p® . vdas  (i=1,.,NM1; j=1,. NV1), (7.3)
by

together with the two matrices that define the ngrip, 1 (see (6.3)) and the norin- |y
(see (6.1)): theVM1 x NM1 matrix R, defined by ’

Ripi= > /EZ—T,N')-N(“ ds  (i,r=1,.., NM1), (7.4)
y7i

1
TeKhm

and theNV'1 x NV1 matrix @, defined by

L .
Q= § : Ly v ds (s =1,..,NV1). (7.5)
75 . hT
TeK), 5

In terms of the vectorm andq, Assumptionl/ can now be written as follows here exist a
B* > 0 such that: for everyn € R™! there exists @ € R™"" with

(@'Qq)'?=1 and q¢'B'm > f*(m' Rm)"/> (7.6)

Our goal is to relate (7.6) with some known and computabl@énties of the matrices, R,
andQ. For this, consider, for every fixath ¢ R™!, the quantity
S(m) := sup ¢B'm=sup————— (7.7)
(@' Qa)t/?=1 q#0 (@' Qq)
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where we take the supremum (which actually will be a maximtmpjck upthe best possible
choice forq oncem has been fixed. The supremum in (7.7) is actually easily coafyber

with the change of variabte := Q'/2q (implying q* = z'Q~'/2), we easily have

Zt Q71/2 Btm
S(m) = iilgw, (7.8)

and it is now easy to see that the supremum must be takenavke@—'/2 B m, giving
S(m) = (m'BQ™' B'm)'/%. (7.9)

On the other hand, itis clear that to check whether Assumpficholds you must, in terms
of (7.6): find the biggest! such that

S(m) > g (m'Rm)"/?,  vme R (7.10)

Substituting the computed value (7.9).8fm) into (7.10) and squaring both sides you have
to find the biggest such that

m'BQ !'B'm > Fm'Rm, Vme R (7.11)
But this corresponds to finithe smallest eigenvalue of the ( generalized) eigenvalokel@m
BQ 'B'm = A\Rm. (7.12)

Hence, here is the recipe: you compute the matrige® and(@, and you solve the gen-
eralized eigenvalue problem (7.12). If the smallest eigkresis equal to zero, you lost. If
the smallest eigenvalue is not small (for reasonably finehe®s you won. If it is small, try
halving both meshes: if the smallest eigenvalue stays @abgronstant, you won. If, say,
the smallest eigenvalue is divided by foygu definitely have a problentf you are not con-
vinced, try halving the meshes again: if it is again dividgddwur, give up: Assumptionh,
in the subdomaif2!, holds only with a constant;, that goes to zero with, and this will
spoil your accuracy. As a general rule: if you perform the ¢esthe same grid that you will
use for computing your finite element solution, thba smallest the constant you compute in
the test, the more spoiled is likely to be the accuracy of fioite element solutiofcompared
with the best possible accuracy that your grid could provifdgou used a stable method).

A similar analysis can obviously be performed for= 2 (that is, in the subdomaif??)
just by repeating the same procedure.

For assumptior2h, instead, you have to choose a bagis?, ..., oV ?)} in &, (where
N P denotes the dimension @), anda basis for the whole spadd;, (which means, taking
into account botiM}, and M?). Let then{p™), ..., u(™D} pe such a basis, where the
numberNM = NM1 + NM?2 is the dimension oM,,. Now construct the matrices

Ci; 2=/<p(i)-u(j) dS  (i=1,.,NP; j=1,..,NM), (7.13)
b
Lu [ o). 0 :
R, == [ ¢ -\"dS (i,r=1,.,NP), (7.14)
s dQ 5

Copyright line will be provided by the publisher



22 F. Brezzi and L.D. Marini: 3-field formulation

d )
Qus=7 [ p9-pds  (js=1,.,NM), (7.15)
nJE

and solve (infR™?) the generalized eigenvalue problem
CQ'C'p = ARp. (7.16)

The constang;, will be the square root of the smallest eigenvalue of (7.26)d so on.

8 Conclusions

We have seen that the three-field formulation can be a vialgdthed to deal with non-
matching grids. In the context of elasticity problems itresponds to have three different
types of approximating fields: the displacements withirhesthdomain, the displacements
on the interface between subdomains, and the normal compofi¢he stress fields at the
boundary of each subdomain (acting as a Lagrange multiplifarce the continuity between
the displacements inside the subdomains and the displateme the interface). One weak
point is the necessity to haveo types ofinf-supconditions satisfied. However, we propose
here an alternative way to write them (usimgsh dependent norjrthat allows the use of a
simple and reliable numerical test in order to check wheteseinf-supconditions are sat-
isfied or not. For Engineers this might be even better thaearém stating thahere exists a
positive constant*, independent of such that.,.without actually knowing how small such
a constant is. With the numerical test, for every mgshyou compute &*(X;,), and you
might have difficulties in seeing whether or not there exdspositive3*, independent of,
such that3*(K,,) > g* for all possibleh: the best you can do is to just try a few meshes to
seethe trend However, if you compute™(/C;,) for the grid that you are willing to use, then
at least you knovexactlyhow small the constant isn that grid

A Appendix: proof of Theorem 5.2

In this Appendix we report the detailed proof of Theorem ®/Bpse statement we recall for
the convenience of the reader.

Theorem A.1 Assume that our choices of finite element space¥{giM;,, and ®;, satisfy
Assumptiongh and2h. If (u, A, 1) and (u, A, 10,,) are the solutions of the elasticity prob-
lem (2.9) (as given in Theorem 2.1) and of the discretized prob{&rih)-(5.3), respectively,
then we have

lu—anlep + BmlA = Anlm + Ba b — ¥y ]
< . _ . _ . _ .
< Ca(nf Ju=vlps+ ol A=l + ol [ —els). (AD)
whereC' 4 depends only on the constaptg and ¢ appearing in(5.6)and(5.7), respectively,
and is bounded b¥/3ys + 1/fs.

Proof. The proof will be rather long and a little boring, butt mifficult. In particular,
as we shall see, the use of the “difficult norms” makes evargtkurn smoothly as a well
lubricated engine.
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We begin by noting that the following classidahlerkin Orthogonalityproperty holds:

a(u — uh,vh) + b(vh,)\ — )\h) =0 Vvp € Vy, (A.Z)
b(u —up, py) + c(pp, Y =) =0 Vu, € My, (A.3)
C(A - Ah? ‘Ph) =0 VLph € (P]’m (A4)

with obvious meaning of the bilinear forms (see (4.2)-(%.4)
a=a'+d? b=0b'+ b2, c=c'+ 2. (A.5)

Next, we define thénterpolantsu; € Vj, A; € My, andy, € ®;, of u, A, and, respec-
tively, as follows:

J[u—wlegy= inf Ju—v|gey,

VEV,
A= = inf |[A-— , A.6
I I nf IA = pfar (A.6)

[y —ile = inf |4 - els.

(To be rigorous, we should actually call themrojections but the naménterpolantsis more
evocative.) Finally, we start a lengthy add-and-subtramtg@dure. In all the following formu-
lae, a-s stands fadd and subtract

Ju— %, = (use (2.12)-(2.13) with (A.5) and (4.2)
=a(u—up,u—uy) = (a-sw)

=a(u—up,u—w;)+a(u—up,u; —uy) = (use (A.2)

I
=1+ b(uh —u, A — )\}L) = (a'Su)
=T+bu—u;, A=) +b(uy, —u, A= Ap) = (a-s\)
17
=I+1I+ b(uh —u, A — )\1) +b(uh —u, A\ — >\h) = ( use (A3) (A.7)
II7
= [+ 11+ IIT+ (A — Ao — ) = (@-SA)
=T+ 1T+ 11T+ c(Ai — AP —pp,) +c( A — Ay, —y,) = (a-S9p;)
v
=T+ IT+ IIT+ IV + e(A = Anyp — ;) +c(A — An, b, — b, ) = (use (A.4)

14

=I+I1I+I1IT+1V+V.

Copyright line will be provided by the publisher



24 F. Brezzi and L.D. Marini: 3-field formulation

Our Cauchy-Schwarz inequalities (2.16), (2.31) and (2 2@)ether with the definitions (A.5)
and (4.2)-(4.4), will provide an immediate estimate for filve termsI-V appearing in (A.7):

I=a(u—up,u—u) < (A.8)
IT=b(u—u , A=) < Ju—y A= AnlMm- (A.9)
IIT=b(up —u, A= X)) < J[u—up|ep A= Ai|m- (A.10)
IV =cAi =AY =) < [A=Ailm ¢ — ¥y e (A.11)
V=cA =AY —4,) < A= An|m ¥ — ¥ile. (A.12)

To end the proof, we have to estimate- A;, andy — 1, in terms ofu— uy,. Let us start from
A— Ay, and let us bound first the differendage— \;,. We use Assumptiohwith . = \; — A\p:
we start using (5.6) and (4.3), then

Bt Ai = Anlar S b(vu, An — X)) = (@-SA)

=b(V, A — A) + (v, A= A;) = (use (A.2))

=a(u—up,v,) +b(v,, A — A+ < (use (2.31) and (2.16)) (A.13)
<lu—upleslveles + 1A = Xilm [vulep (use|vy] ey = 1)

= A= Ailm + Ju—un|e,.

Combining (A.13) with the triangle inequality we easily get
A= Anlne < A= Aillve + [Ai = Anfm

1
<A = Ailm + 6—(||)\—>\z'\|M+ Ju—unlep) (A.14)

+1
”3M A A||M+—nu unlzs.

For estimatingp — v, we proceed in an identical manner: we just have to use Assompt
2 with ¢ = 1, — 1,,. We start using (5.7) and (4.4), then

Bolv; — Ypllm < c(py,; — ) = (@-sy)

= c(pyr ;= ) + c(py,, Y — ) = (use (A.3))

= C(HW P, — ) +b(up — u, '“w) < (use (2.29) and (2.31)) (A.15)
1Y = Yille [rplv + [u—anlep |1, lm = (use|p, v = 1)

= [ —ilm + [u—ap| e

IN

As in (A.14) we can combine the triangle inequality with (B)Jnd obtain

1Y —Ynle < ¥ —¥le + ¥, — ¥ule

1
ST —dile + 519 — il + o —uifz) (A.16)
Ba + 1

| —ville + ||u up| z.p-
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At this point we can come back to our estimate (A.7). WeBgt= |u — u| g, Ex =
”)\ — )\}L”M, E,l/, = ”'(p — ’(ph”@, thenIu = ||u — u,'HEJ), I = ”}\ — )‘iHMa and flnally
I, == | — v,|s. Inserting the estimates (A.8)-(A.12) féfV into (A.7) we have first

E2< EyI,+1,Ex+ EyIy+ I\ Ey + E\ I (A.17)

Inequalities (A.14) and (A.16), recalling that; < 1 andg3s < 1, become now:

2 1 2 1
Ex< —I,+—FE, and Ey< —I,+—FE,, A.18
=B Bu Y= 8s " B ( )
that inserted in (A.17) give
2 2
E? < <— T —) (Eu(Iu Iy Iy) + LIy + I L/,), (A.19)
Bu  Bo

At this point we just need a suitable amount of arithmetiorgetric mean inequalities (valid
for all real numbers, b, and for alle > 0)

2ab < ea® + b* /e (which is just telling thatay/e — b/v/¢)* > 0), (A.20)
to reach the form
E. < C*(I7+ I3 +17), (A.21)

with C bounded byl /8xs +1/8s. From (A.21) and (A.18) the desired estimate (A.1) follows
easily. |

B Appendix: proof of Theorem 6.1

We present here the proof of Theorem 6.1, whose statemesta#ied for convenience of the
reader.

Theorem B.1 Assume that our choices of finite element space¥ gV, and®;, satisfy
Assumptionsgh and2h. If (u, A, 1) and(uy, Ap, 10;,) are the solutions of the elasticity prob-
lem (2.9) (as given in Theorem 2.1) and of the discretized prob(&r)-(5.3), respectively,
then we have the following error estimate:

lu—unles + B IX — Anlm

. 172, ,1/2y . . )
< _ _ _ .
< Cgp (vlen\ﬁh la—v]ep+ (h™ + hg )Hleliﬁlh IA = plo.ar + wléqu;h lv —ele), (B.1)

1 1
whereCp has the formCg = cp ( —) and cp depends only on the shape of the

= T e
, O (B3)
elements irf5;, and of those elements g, that have at least a vertex dn.

Before proving the new error estimates we need some additiatation and a few crucial
lemmata. In (A.6) we introduced the interpolantaf\, and in V;, M;, and®,,, respec-
tively. In the sequel, we shall need to use the interpolahtsplacements (ag or ¢) in the
spaceM;,. As this, dimensionally, could make people uneasy, we swilally interpolate
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26 F. Brezzi and L.D. Marini: 3-field formulation

kv (or k), with « defined in (6.7). Hence, for € V or ¢ € ®, we definev; yy andey; ,
in M, as

Vi, — Kv]om = ”ierll\ﬁh lev — ploars i — welon = #iefll\fdh | — plom- (B.2)

We recall, without proof (we refer, for instance, to [24hetfollowing approximation
results:

1/2
K

Isv—vinloar < Ce b’ [Vlp,  and ke —; plloar < Cie h*leple (B.3)

whereCy. depends only on the shape of the elementsify; . We shall also need to interpo-
late on thenatural grid with respect to thd.2-types norms. In particular we set

A—A = inf |[A-— I; — = inf — . B.4
I 1lo,ar b IA = wloars e —wilon Jnf le = xlo,p.  (B.4)
Comparing (6.1)-(6.2) with (6.7)-(6.8), and using (6.4 easily obtain

IA = Az, < h2IX = Arlos. (B.5)
We also recall (see always [24]), that:

00 < Cs h‘1g/2|\90||4>, (B.6)

I =il

whereC's depends only on the shape of the elementS;inWe consider now the following
lemma.

Lemma B.2 Under Assumptiofih, for everyh = (A, A?) in, say,(L?(X))? x (L(X))?
there exist a uniqué\; in M, and a unique™ in @, such that

A=Al mom = (1,¢T oz Vi € My, (B.7)
A=A, Pz =0 Ve &y (B.8)

Moreover we have the estimates

* 2 * *
A = Ailo,ar < 7 IA=Xtloar,  Bax[€¢ o, < A = Af o014 (B.9)
[
A= Xl < G (Cehl® + Cs hY®) IA= Atllo, (B.10)
whereCyx andCs are the constants i(B.3) and (B.6), respectively, and’; is given by
10
C, = —> (B.11)
! 7(B3)?

wherey is the constant appearing i{2.32)

Proof. Aswe did for Theorem 5.1 we shall prove directly thénestes (B.9) and (B.10)
for any possible solutioof (B.7)-(B.8). Since forA = 0 we obviously have\; = 0 as
well, then (B.9) will imply that forA = 0 the problem (B.7)-(B.8) can only have the zero
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solution: hence the determinant of the corresponding miuifferent from zero, hence for
any given the system will have a unique solution. Let us prove, thegefthe estimates
(B.9) and (B.10). We first estimatg" in terms ofA — A} inthe| - | 2z norm. For this we
use Assumptiorzh. Let u* be thep,, € My, that we obtain from it takings = ¢*: we use
(6.13), then (B.7), then the usual Cauchy-Schwarz inetyualid the fact thafu*|o.ar = 1
to obtain

Bal¢ oo < (15, ¢ 0. = (A=Al w5 )o.ar < A= Ao (B.12)
We now pass to the estimate ®f— A} in the norm| - o, as:

IX= XTI = A=A X = X))o = (@A)

=A=AL A= An)om HA = AL, A = Af)o,mr = (use (B.7))

I
=1+ (C*,)\[ — Ar)(),z; = (a-s)\)
=14+ (" A1 = Noxs+(C" A= A)ox = (use (B.8))=1+ 11,
—_— —

11

which implies, using (6.10), and then (B.12) for estimatdfig

IXN= X718 .00 < X = AT llo,n IA = A

ot - A= Ao 1A~ Arfo.ar, (B19)
B
that usings;, < 1, gives easily (B.9).
We now estimate¢™ in the normM. We remember that¢™ is single valued oft. Hence
we can use (2.32), recalling that we obviously have 1. Letg € ® be the element that
realizes the supremum in (2.32), that is

v [£¢T M < sup (K€", p)o.x — (kC™, P)o.x
Y S (%] F 3 lele

(B.14)

Then we have

(K¢, Poz = (CF wP)oz = (@-SP; pr)
= (¢", 5@ — @, m)o,s H(C Py oz = (use (B.7) withu = ; 1)

I
=TI+ A= X,P;mom = (@-SKP)
=TI+ A=A, — 6P)om +(A = Aj, kP)omr = (a-SKep))

II

=I+II+ (X=X 6@ —K@;)om + (A=A k@ )om = (use (6.9))
=I+IT+ A=A, P =P1)os +(A = A, @) = (use (B.8) withy = 5,)

111
=1+11+1II < (use (6.10), with (B.3) fof and/I and with (B.6) for/1I)

< (Cx B2 1€ 0.0 + Cx B IA = Alfoar + Cs hy > IA = Al o.a1) @] @,
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which combined with (B.12) and (B.14) gives immediately

By +1
B

We finally estimateh — A in the M norm. We remember that — A is double valued on

the interface:. Letv the element ifV that realizes the supremum for the dual ndvin(see
(2.28)), that is

Ce b+ Cs hd®Y IA = Ao (B.15)

YIr¢ Im < (

()\ — A:(, V)O,E - (A — Ar,V)QE

vio Nl

IA = Xf[m = sup (B.16)
vev

Then, using (6.9), adding and subtractig,,, using (B.7) , then adding and subtractityg,
then using (6.10) and (B.3) we have

(A — )\?,V)(),Z = (}\ — )\;k, KV)QM

= A=A,V =V m)om +(A— A, Vi m)o,m

I
=1+ (¢ Vimos =1+ (¢ Vim — 6¥)ox + (K¢, ¥)o,x (B.17)

< O b2 19p (1A = Aloar + 1€ o) + 15¢7 v 9D,

which joined with (B.16) and (B.12) gives immediately

A= Aflaa < G/ PEER A= Ao + 1T (©.18)
[
Combining (B.18) with (B.15), and recalling thatand3; are< 1, we have then
* 14 *
A=Al < = (G0 hil® + Cs BE? ) I = Xilor. (B.19)
Y Bq;
This, joined with (B.9) (already proved) easily implies 1B) with (B.11). O

Before tackling the final estimate, we need two additionsllilts. To state them, however,
it will be convenient to introduce, as an additional notafithe setC;, defined as follows

ICN;L :={K € K| K has at least a vertex o} (B.20)

We have then the following lemmata.

LemmaB.3 Letv € V}, be a vector valued finite element pair that vanishes at alteks)
of freedom that are not oB. Then

”V|E7b S C* HVHD}m (821)

where the nornDy, is thgvone defined i(6.4), andC,. is a constant that depends only on the
shape of the elements Ay, .

Proof. The property is known (see e.g. [9]). It can also belyeakecked by direct
computation on the reference element and suitable scalingreents. O
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__Lemma B.4 There exists a constaiit”, depending only on the shape of the elements of
K, such that: for everyw € V we can find av;, € V;, such that

Eb S C* HVHD (522)

Proof. Thisis also a known property (see e.g. [9]). You hawveffine firstv, on ¥ as a
Clément interpolant of’. The first inequality follows from local interpolation esites plus
the known fact that the sum of the squares of tfi2-seminorms on the elements is bounded
by thel/2-seminorm on the whole domain. The second inequality f@lénwm an extension
theorem, by constructing a suitable prolongatiowpto Q2 (see e.g. [38] or [9]). O

[v—=valp, < C"Ivip  |val

We are finally ready for the error estimates on the three-fmichulation, under the As-
sumptionsl s and2h. We follow exactly the procedure (A.7), using however instead of
;. Let us see how the different ternisto V' (appearing in (A.7)) can be estimated in the
present situation.

I=a(u—up,u—w) < |Ju—w|gpu—w|es. (B.23)
I = b(ll — U, A— Ah) < Hu - ui”E,b ”A - Ah”M (824)
IIT=b(up, —u, A= X)) < J[u—wp|ep A= A7 |m- (B.25)

IV = (A} = A9 —9,) = (use (B.8))
= A =AY =) < A= Allm ¢ — Yile.

V=cA=2n 9 —9,) < [A= M ¥ — ¥ile. (B.27)
The M-norm of A — A7 has been estimated already. We need to estimate that-of\,.
Proceeding as in (A.13) we use Assumptignwith u© = A; — Ay, and we remark that we
are using the corresponding, only onX. This implies that we are allowed to assume that
all its degrees of freedom that are not Brare set to zero, so that the property (B.21) holds.
Then, keeping also in mind thit, |p, = 1 we have:

BrrlAn — Arlm, < (use (6.12) and (4.3))

< b(Vu, Ar — Ah) = (a—s)\)

=b(Vu, A1 — A) +b(v, A — Ap) (use (A.2) (B.28)

=b(vy, A1 — A) +a(u, —u,v,) < (use (6.6) and (2.16))

< A= Aslm, [Vilp, + [u=an]sp [vales < (use (B.21))

< A= Azrlm, + Cs[u—un]pp < (use(B.5))

(B.26)

A

W 1A = Arfoar + Cs [u— up g

A simple use of the triangle inequality together with (B.8§4B.28) gives then

1 on

BM* Il X = Atlloar + == [u— up|g- (B.29)
B B

Finally we use Lemma B.4 to estimate tN& norm of A — A;,: let first, as in (B.16)y be the

element inV that realizes the supremum for the dual ndvii that is

A=A Vo (A= An,V)o,mr

IA = An|nm = sup = — . (B.30)
vev Ivip Ivlp

IA = Anlm, <
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and letv,, be the element iiV;, described in Lemma B.4. Then we have:

(A=A V)o,x = (a-svy)

= A=AV =Vp)ox + (A=A, Vr)ox = (use (A.2))

= (A= An,V—Vu)ox +alu—uv,) < (use (6.6) and (2.16)) (B.31)
IA = Ay, [V = Valp, + [u—un|es [Va] e (use (B.22))

(IA = Anlym, + o —unles) C* VD,

IA AN

which joined with (B.30) and then using (B.29) gives

IA=2Anlm < CH(IA = Anlm, + [u—wn]zp)

1
< Bt (20* hzlc/2|\)\ — A1l
M

o +C" (Cot Du— i), (B.32)

We can now proceed as in the previous section. WeEset= |u — uy| g, Ex =
A = Anlaa, thenl, = [u =i zp, 15 = A = Al Ly = (% 4 ™)X = Ao,
and finally I, := |¢ — ¢,|s. Inserting the estimates (B.23)-(B.27) fbiV into (A.7) we
have this time

E2 < Byl + 1, Ex+ B, I{ + I} I, + E\ I, (B.33)

Inequalities (B.10) and (B.32) become now:

K< 5 and Bv< B, (B.34)
(BCI)) ﬁ]u
with constantg”; andC; depending only ory, Cx andCs (hence on the geometry 6fand
on the shapes of the elementsip andSy,). Inserting (B.34) into (B.33) gives

11
By (B3)?

where agairC, depends only on the geometry @fand on the shapes of the element%
andS;,. With a few arithmetic-geometric mean inequalities (A,28)s can be reduced to the
form (A.21), and the result of Theorem B.1 follows, usingoaB.32) one more time.

With amore complicatedrgument, involving duality estimates and using quasieuniity
of the meshes, we could also prove an estimate/fer v,. (“That's nothing to what | could
say if | chose,” the Duchess replied, in a pleased tfit1g.)

E? < 04( ){Eu(Iu+IA+I¢)+IuIA+I,\ I}, (B.35)

Acknowledgements We acknowledge the support of MIUR project PRIN-2003.

References

[1] M.A. Aminpour, J.B. Ransom, and S.L. Mc Clear@€oupled Analysis of Independently Mod-
eled Finite Element Subdomajimsesented at the AIAA/ASME/ASCE/AHS/ASC 33rd Structures,
Structural Dynamics, and Materials Conference, Dallas, Texas, Apll5, (1992).

Copyright line will be provided by the publisher



gamm header will be provided by the publisher 31

(2]

(3]
(4]

(5]
(6]

(7]
(8]

(9]
(10]
[11]
[12]
(13]
(14]
[15]

[16]

[17]

(18]

[19]
[20]

[21]
[22]
(23]
[24]

M.A. Aminpour, J.B Ransom, and S.L. Mc Clead,coupled analysis method for structures with
independently modeled finite-element subdomdimts J. Numer. Meth. Engrg38, 3695-3718
(1995).

T. Arbogast, L. Cowsar, M.F. Wheeler and I. Yotdixed finite element methods on nonmatching
multiblock grids SIAM J. Numer. Anal37 1295-1315 (2000).

S.N Atluri, T. Nishioka, and M. NakagakiNumerical Modeling of Dynamic and Nonlinear Crack
Propagation in Finite Bodies by Moving Singular ElemertsNonlinear and Dynamic Fracture
Mechanics, edited by N. Perrone and S.N. Atluri, Vol. 35, (ASME 1939%6.

|. BabuSka, The finite element method with lagrangian multiplierslumer.Math.,20, 179-192
(1973).

C. Baiocchi, F. Brezzi, and L. D. MariniStabilization of Galerkin methods and applications to
domain decompositigrin Future Tendencies in Computer Science, Control and Applied Math-
ematics, edited by A. Bensoussan et al., (Springer Lecture Notes ip@emScience vol. 653
1992) p. 345.

H.J.C. Barbosa and T.J.R. HughBsundary Lagrange multipliers in finite element methods: error
analysis in natural normsNumer.Math.62, 1-16 (1992).

Ch. Bernardi, Y. Maday and A. PaterBomain decomposition by the mortar element method
in Asymptotic and numerical methods for partial differential equations wiifical parameters
(Beaune, 1992), ( NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 38dwer Acad. Publ., Dor-
drecht, 1993) p. 269.

Ch. Bernardi, Y. Maday and F. Rapetbjscrétisations variationnelles de praishes aux limites
elliptiques Springer Series on Maiimatiques et Applications , Vol. 45 (Springer, Berlin, 2004)
S. BertoluzzaAnalysis of a stabilized three-fields domain decomposition metihaaher. Math.,
93, 611-634 (2003).

S. Bertoluzza, Substructuring Preconditioners for the Three Fields Domain Decomposition
Method Math. Comput.73, 659-689 (2004)

S. Beroluzza and A. KunothVavelet stabilization and preconditioning for domain decomposition
IMA J. Numer. Anal.,20, 533-559 (2000).

P.E. Bjgrstad and O.B. Widlunéterative methods for the solution of elliptic problems on regions
partitioned into substructureSIAM J. Numer. Anal.23, 1093-1120 (1986).

F. Bouillault, A. Buffa, Y. Maday, and F. Rapefthe mortar edge element method in three dimen-
sions: application to magnetostaticSIAM J. Sci. Comput.24, 1303-1327 (2003).

J.H. Bramble, J. Pasciak and A. Schathe construction of preconditioners for elliptic problems
by substructuring, IlYMath. Comput.53, 1-24 (1989).

F. Brezzi, L. P. Franca, L. D. Marini, and A. RussStabilization techniques for domain decom-
position methods with non-matching gride Domain Decomposition Methods in Science and
Engineering, 4th International Conference, Bergen, Norway, 1996, edited by PsBidret al.
(Domain Decomposition Press, Bergen, 1998) p. 1.

F. Brezzi and M. FortinMixed and hybrid finite element methodSpringer-Verlag, New York,
1991).

F. Brezzi and L. D. MariniMacro hybrid elements and domain decomposition methodSpti-
mization et Conible, Meeting in honour of J. &, April 8-10 (1992), edited by J. Desideri et al.,
(CEPADUESs-Editions, Toulouse, 1993) p. 89.

F. Brezzi and L. D. MarinError estimates for the three-field formulation with bubble stabilization
Math. Comput. 70, 911-934 (2000), .

A. Buffa, Error estimate for a stabilized domain decomposition method with nhonmatchiig g
Numer. Math.90, 617-640 (2002).

L. Carroll, Alice’s adventures in Wonderlan@hapter IX, The Mock Turtle’s Story, (Oxford, 1865)
T.F. Chan and T.P. Mathe®omain decomposition algorithmacta Numerica, 61-144, (1994).

D. Chapelle and K.J. Bath&he inf-sup testComput. & Structures}7, 537-545 (1993).

P. G. Ciarlet,The finite element method for elliptic problerf$orth-Holland Publishing Company,
Amsterdam 1980).

Copyright line will be provided by the publisher



32

F. Brezzi and L.D. Marini: 3-field formulation

(25]

(26]

[27]

(28]

[29]

(30]

(31]
(32]
(33]
(34]
[35]
(36]
[37]

(38]

[39]

[40]

C. Eck and B. WohimuthConvergence of a Contact-Neumann Iteration for the Solution of Two-
Body Contact Problem#&/ath. Mod. Meth. Appl. Sci.13, 1103-1118 (2003)

C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson and D. Ri¥ETI-DP: a dual-primal unified
FETI method. I. A faster alternative to the two-level FETI metHad J. Numer. Meths. Engrg.,
50, 1523-1544 (2001).

S. Gaiffe, R. Glowinski and R. MassoBpmain decomposition and splitting methods for mortar
mixed finite element approximations to parabolic equatidhgner. Math.93, 53-75 (2002).

R. Glowinski, W.K. Kinton and M.F. WheeleAcceleration of domain decomposition algorithms
for mixed finite elements by multilevel methoitssThird Int. Symp. on Domain decomposition
methods for partial differential equations, edited by T. Chan et alANSPhiladelphia, 1990).

A. losilevich, K.J. Bathe, F. BrezzDn evaluating the Inf-Sup condition for plate bending elements
Int. J. Num. Meth. in Eng40 3639-3663 (1997).

Yu. A. Kuznetsov and M.F. WheeleBptimal order substructuring preconditioners for mixed finite
element methods on nonmatching grilast-West Journal of Numerical Mathematig,s]27-144
(1995).

P. Le TallecDomain decomposition methods in computational mecha@iomput. Mech. Advl
(1994), 121-220.

Q. Liu, L.K. Li and J.G. Huang©On mortar-type TRUNC element method for a plate bending
problem Math. Mod. Meth. Appl. Sci.13, 545-571 (2003)

A. Quarteroni and A. Vallibomain decomposition methods for partial differential equatidns
merical Mathematics and Scientific Computation, (Oxford University$idew York, 1999).

G. Rapin and G. LubetA stabilized scheme for the lagrange multiplier method for advection-
diffusion equationsMath Mod. Meth. Appl. Sci.14, 1035-1060 (2004)

B.F Smith and O.B. Widlundh domain decomposition algorithm using a hierarchical baSI&\M

J. Sci. Comput.11, 1212-1220 (1990).

P. Tong,New displacement hybrid finite element model for solid contimota J. Num. Meths.
Engrg.,2, 73-83 (1970).

C.H. Tong, T.F. Chan and C.C.J. Kubdomain decomposition preconditioner based on a change
to a multilevel nodal basjsSIAM J. Sci. Comput.12, 1486—-1495 (1991).

0.B. Widlund,An extension theorem for finite element spaces with three applicatroNsimer-

ical Techniques in Continuum Mechanics, Proceedings of the SecoiMs3eminar, edited by

W. Hackbush and K. Witsch, (Kiel, 1986)

B. Wohlmuth,Discretization Techniques and lterative Solvers Based on Domain Dexsitiop,
Lectures Notes in Computational Science and EngineetingSpringer, Berlin, 2001).

J. Xu, Theory of multilevel methodBhD thesis, Cornell University (1989).

Copyright line will be provided by the publisher



