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Abstract

We consider a convection–diffusion–reaction problem, and we analyze a stabi-
lized mixed finite volume scheme introduced in [23]. The scheme is presented in
the format of Discontinuous Galerkin methods, and error bounds are given, proving
O(h1/2) convergence in the L2-norm for the scalar variable, which is approximated
with piecewise constant elements.

1 Introduction

Advection-diffusion-reaction equations constitute a well-established model to de-
scribe a wide variety of problems in real-life applications. Transport and diffusion of
heat in a body or of a pollutant substance flowing into water, oxigen exchange across
an arterial wall in haemodynamics, electron and hole current flow in a semiconduc-
tor device are just a few but relevant examples of the use of advective-diffusive
models in applied sciences.

Here, we consider the stationary convection-diffusion-reaction model problem





−div (ε∇u) + div (βu) + γu = f in Ω,

u = g on ΓD,

(ε∇u− βu) · n = 0 on ΓN ,

(1.1)

where Ω is a convex polygonal domain in IR2 with boundary ∂Ω ≡ Γ = ΓD ∪ ΓN ,
n is the unit outward normal vector, and f, g are given functions, with f ∈ L2(Ω),
and g ∈ H1/2(ΓD). Moreover, ε = ε(x), β = β(x), and γ = γ(x) are given regular
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functions on Ω such that

∃ ε0, εM such that εM ≥ ε(x) ≥ ε0 > 0, (1.2)

∃ γ0, γM such that γM ≥ γ(x) ≥ γ0 ≥ 0, (1.3)

∃ b0 such that γ +
1

2
div β ≥ b0 > 0. (1.4)

Existence and uniqueness of the solution of (1.1) then follows by the maximum
principle. Moreover, under the additional assumption

β · n ≤ 0 on ΓN , (1.5)

the usual coercivity bound holds

∫

Ω
(ε0|∇u|2+b0u

2) dx−
1

2

∫

ΓN

β·nu2 ds ≤

∫

Ω
fu dx+

∫

ΓD

gε∇u·n ds−
1

2

∫

ΓD

g2β·n ds.

(1.6)
In the present paper we shall analyze a discretization of (1.1) based on a Mixed

Finite Volume approach described in [23, 10]. Essentially, this approach consists in
writing (1.1) in the mixed form, and to discretize the flux variable by the lowest
order Raviart-Thomas element, and the scalar variable by piecewise constants. The
use of a suitable quadrature formula (see [15, 4, 5]), which diagonalizes the “mass”
matrix applied to the flux vector variable, allows then to eliminate the flux variable
from the mixed system. In such a way the final scheme, acting on the scalar variable
only, can be regarded as a Mixed Finite Volume (MFV) cell-centered approximation
of problem (1.1). Other approaches for the“mass” matrix diagonalization in the
case of rectangular and triangular grids have been proposed and analyzed in [1, 11,
14, 19]. In the present paper particular attention is given to the case of advection
dominated problems, for which it is well known that a stabilization procedure is
necessary. This is done (see [23, 10]) by introducing a suitable artificial diffusion
term at each edge of the computational grid. For an application to semiconductor
device simulation see [26].

The paper is organized as follows. In Sect. 2 we recall the mixed formulation
of (1.1), and the discretization via the lowest-order Raviart-Thomas element. In
Sect. 3 we introduce the quadrature formula used to diagonalize the “mass” matrix,
and we recast the MFV scheme within the more general format of Discontinuous
Galerkin methods. This allows us to write the MFV approach as a generalized
Galerkin method using piecewise constant finite elements for the scalar variable.
The stabilization of the MFV procedure is described in Sect. 4. Then, in Sect. 5
the error analysis of the stabilized MFV scheme is carried out, proving O(h1/2)
convergence in the L2-norm for the approximate scalar variable. This error estimate
can be regarded as optimal, since the loss of half a power of h is sort of physiological
in advection dominated problems. Moreover, it is independent of the size of the
diffusion coefficient, so that it does not blow up in the limit of vanishing viscosity.
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2 Mixed finite element discretization

In order to write problem (1.1) in mixed form, we introduce the flux σ = ε∇u−βu
as an independent variable, so that (1.1) becomes

σ = ε∇u− βu, and −div σ + γu = f in Ω,
u = g on ΓD, σ · n = 0 on ΓN .

(2.1)

Defining the spaces

Σ =
{
τ ∈ (L2(Ω))2 | div τ ∈ L2(Ω), τ · n = 0 on ΓN

}
⊂ H(div ; Ω), (2.2)

V = L2(Ω), (2.3)

with norms

||v||V := ||v||L2(Ω), (2.4)

||τ ||2Σ := ||τ ||2H(div ;Ω) = ||τ ||2L2(Ω) + ||div τ ||2L2(Ω), (2.5)

the mixed variational formulation of problem (1.1) can be written as




Find (σ, u) ∈ Σ× V such that

a(σ, τ ) + b1(u, τ ) = < g, τ · n > ∀ τ ∈ Σ,

b2(v, σ)− c(u, v) = −(f, v) ∀ v ∈ V,

(2.6)

where, with α := ε−1, we set

a(σ, τ ) =

∫

Ω
ασ · τ dx, σ, τ ∈ Σ,

b1(v, τ ) =

∫

Ω
v div τ dx +

∫

Ω
α v β · τ dx, v ∈ V, τ ∈ Σ,

b2(v, τ ) =

∫

Ω
v div τ dx, v ∈ V, τ ∈ Σ,

c(u, v) =

∫

Ω
γ u v dx, u, v ∈ V.

(2.7)

In (2.6) the brackets < ., . > denote the duality between H1/2(Γ) and its dual space
H−1/2(Γ), and (·, ·) denotes the L2-scalar product. A way to prove existence and
uniqueness of the solution of problem (2.6) is to check that a solution of (2.1) (in
the distributional sense) is a solution of (2.6) and vice-versa, and use the obvious
equivalence of (2.1) and (1.1).

In order to discretize problem (2.6), let {Th}h be a family of regular decompo-
sitions of Ω into triangles T [12], such that there is always a vertex of Th on the
interface between ΓD and ΓN .
We shall approximate the scalar variable u with piecewise constant functions on
Th, and the vector variable σ with the lowest-order Raviart-Thomas element (see
[24] and [6]) defined, on each T ∈ Th, by

RT0(T ) = span {(1, 0), (0, 1), (x, y)} . (2.8)
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Next, we form the finite element spaces as

Σh =
{
τ h ∈ Σ | τ h|T ∈ RT0(T ) , ∀T ∈ Th

}
, (2.9)

Vh =
{
vh ∈ V | vh|T ∈ P0(T ) , ∀T ∈ Th

}
. (2.10)

Then, the discrete formulation of (2.6) is:





Find (σh, uh) ∈ Σh × Vh such that

a(σh, τ h) + b1(uh, τ h) = < g, τ h · n > ∀ τ h ∈ Σh,

b2(vh, σh)− c(uh, vh) = −(f, vh) ∀ vh ∈ Vh.

(2.11)

For future purposes it is convenient to assume that the convective field β in (2.11)
has continuous normal component across each edge of the triangulation. We there-
fore assume that β is itself a Raviart–Thomas element vector field. The algebraic
form of (2.11) reads

(
A B1

B2 C

) (
Φh

Uh

)
=

(
Gh

Fh

)
(2.12)

where Φh is the vector of the unknown fluxes of σh across each edge of Th, and Uh

is the vector of the unknown values of uh in each T ∈ Th. Eliminating Φh leads to
the following scheme for Uh

(C −B2A
−1B1)Uh = Fh −B2A

−1Gh.

The matrix M ≡ C−B2A
−1B1 is full and, in general, neither symmetric nor positive

definite, so that solving this system can be quite expensive. It is also well known
that M is not an M -matrix for any value of γ, as pointed out in [6, 20, 21] in the
case of reaction–diffusion problems. Moreover, for advection dominated problems
the scheme is not stable.
The reduced integration for the “mass” matrix and the connected stabilization
procedure developed in the forthcoming sections will allow us to circumvent the
drawbacks of the RT0 approximation, leading to stable cell-centered finite volume
methods that preserve the good approximation properties provided by the mixed
approach, though at a reduced computational cost.

3 The mixed finite volume formulation

In this section we introduce, starting from formulation (2.11), the mixed finite
volume (MFV) discretization of problem (1.1). As a first step, however, we need to
introduce convenient notation.

3.1 Notation

For a given regular triangulation Th [12], we denote by NE and NT the total number
of edges and triangles of Th, respectively. For every triangle Tk ∈ Th, let hT denote
the diameter of Tk, and h = maxTk∈Th

hT . In what follows, we then agree that
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• superscripts will be used for edges (as er, 1 ≤ r ≤ NE),

• subscripts will be used for triangles (as Tk, 1 ≤ k ≤ NT ),

and we introduce the following notation.

• Th denotes as well the set of triangles of the triangulation Th.

• Eh denotes the set of edges in Th, and E0
h the subset of those that do not

belong to ΓN .

• For r = 1, ..., NE the set T (r) contains the indices of the triangles having er

as an edge.

• For k = 1, ..., NT the set E(k) contains the indices of the edges of Tk.

• For k = 1, ..., NT and r ∈ E(k) we denote by nr
k the unit vector normal to er

and pointing out of Tk.

• For k = 1, ..., NT , with E(k) = (`, r, s), we also define the vectors e`
k, e

r
k, e

s
k

obtained by orienting the boundary of Tk counterclockwise. Observe that
er
j = −er

k for j, k ∈ T (r).

Hence r ∈ E(k), or, equivalently, k ∈ T (r), means that er is an edge of the triangle
Tk. Clearly, E(k) will always contain three indices, while T (r) might contain one
index or two, according to whether or not the edge er is a boundary edge. For
future purposes, it will also be useful to recall some notation typically used in the
treatment of Discontinuous Galerkin methods. Assume that ϕ is a piecewise smooth
scalar function and q a piecewise smooth vector valued function on Th.

• For each internal edge er, with T (r) = {j, k} we define averages and jumps as
follows.

{ϕ}r :=
ϕj + ϕk

2
, {q}r :=

qj + qk

2
,

[ϕ]r := ϕjn
r
j + ϕkn

r
k, [q]r := qj · n

r
j + qk · n

r
k.

(3.1)

• On a boundary edge er with T (r) = {k} we set instead

{ϕ}r :=
ϕk

2
, {q}r :=

qk

2
, [ϕ]r := ϕkn

r
k, [q]r := qk · n

r
k. (3.2)

The superscript r will sometimes be omitted, when no confusion can occur. We
point out that the jump of a scalar is a vector (normal to the edge) and the jump
of a vector is a scalar (that, in particular, only depends on the normal component).
We recall immediately the following basic identity

∑

Tk∈Th

∫

∂Tk

ϕkqk · nk ds =
∑

er∈Eh

∫

er

[q]r {ϕ}r ds +
∑

er∈Eh

∫

er

{q}r · [ϕ]r ds, (3.3)

that can be easily deduced by rearranging terms (see e.g. [7] or [3])).
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Figure 1

Primal triangulation Th with the corresponding lumping regions Dr (left), mesh parameters (right).

Our next step will be to define the so-called lumping regions. For this, we need
further assumptions on the triangulation. Namely, we assume that Th is a Delaunay
triangulation (see [13]). We then consider the dual tessellation Dh of Th, which is
constructed in the following way.

• For every edge er and for every index k ∈ T (r) we denote by Ck the circum-
center of Tk.

• For every edge er and for every index k ∈ T (r) we denote by T r
k the sub-

triangle of Tk having er as an edge and Ck as opposite vertex. If Ck belongs
to er (that means that the angle of Tk opposite to er is π/2) then sub-triangle
T r

k degenerates and we consider it to be empty.

• For every edge er the corresponding lumping region Dr is then given as (see
Figure 2)

Dr :=
⋃

k∈T (r)

T r
k . (3.4)

We define now some additional averages of functions and vectors on the mesh
Th or on its dual tessellation Dh.

• For any Tk ∈ Th and for any integrable function ϕ, we define its mean value
as

ϕk =
1

|Tk|

∫

Tk

ϕ dx (3.5)

where |Tk| is the area of Tk, and we denote by ϕ the corresponding piecewise
constant function assuming the value ϕk in Tk for every k.

• For any er ∈ Eh and for any integrable function ϕ, we define its mean value
on Dr as

ϕ̂r =
1

|Dr|

∫

Dr

ϕ dx (3.6)

where |Dr| is the area of Dr, and we denote by ϕ̂ the corresponding piecewise
constant function assuming the value ϕ̂r in Dr for every r.

• Finally, for every piecewise smooth vector valued function q having continuous
normal component on the edges in Eh, and for every er ∈ Eh we define its
normal flux vector q̂r by

q̂r :=
1

|er|

( ∫

er

q · nr ds

)
nr, (3.7)
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Figure 2

Examples of lumping regions for acute (left) and obtuse (right) triangles.

where nr is (any) unit vector normal to er. We note that, for the particular
case of q ∈ Σh, we have that q̂r corresponds to the normal part of q (the one
that is continuous).

• In general, a function denoted with an over-bar will always be assumed to be
piecewise constant on the triangulation, while a function denoted with a hat
will be assumed to be constant in each lumping region.

We are now ready to introduce the mixed finite volume discretization of (2.1),
setting, without loss of generality, g ≡ 0 in order to simplify the exposition. Our
main step will be the use of a suitable numerical integration to approximate the
bilinear forms a, b1, b2 and c appearing in (2.11).

3.2 The integration formula and the scheme

To simplify the notation, throughout this section we shall drop the subscript h from
our discrete unknowns and test functions. We shall get back to the proper notation
in the last section, where, for obtaining error estimates, it will be necessary to
distinguish σh from σ and uh from u.
To approximate some of the integrals in our mixed formulation we shall use a
quadrature formula based on that proposed and analyzed in [15, 4, 5], that we
recall here briefly. Let Tk ∈ Th, let q and p be smooth vector valued functions on
Tk and let µ be a smooth scalar function on Ω. We take

∫

Tk

µq · p dx '
∑

r∈E(k)

µ̂r q̂r · p̂r |er|2 ωr
k. (3.8)

Notice that formula (3.8) amounts to a diagonalization of the “mass” matrix when
p,q are RT0 vectors with degrees of freedom chosen as the edge fluxes. Moreover,
it can be proved that the formula (3.8) is exact for constant q, p, and µ, if and
only if the weights ωr

k are given by the formula:

ωr
k = −

ei
k · e

j
k

4|Tk|
i, j, r ∈ E(k) , i 6= r, j 6= r, i 6= j. (3.9)
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We point out that the quantities ωr
k can also be computed using the formula

ωr
k =

dr
k

|er|
, (3.10)

where dr
k is the distance between the circumcenter Ck and the edge er.

Remark 3.1 Actually, formula (3.10) could as well be used if Tk has an obtuse
angle, although ωr

k (when er is opposite to the obtuse angle) becomes negative. In
this case formula (3.10) will also hold, but taking dr

k to be minus the distance between
the circumcenter Ck (that now is external to Tk) and the edge er (see [10] for a
detailed discussion). Expression (3.10) is very important in view of the finite volume
interpretation of the numerical method obtained with the quadrature formula (3.8).
However, we point out that expression (3.9) is easier to compute, and is actually
used in the implementation of the method.

The analysis and examples of application of (3.8)-(3.10) can be found in [10, 23,
26, 27, 22].
Applying the quadrature formula (3.8) to the bilinear form a appearing in (2.7) we
get

a(σ, τ ) ≡

∫

Ω
ασ · τ dx '

∑

Tk∈Th

∑

r∈E(k)

α̂rσ̂r · τ̂ r |er|2ωr
k. (3.11)

Then we define our approximate bilinear form ah as:

ah(σ, τ ) :=
∑

Tk∈Th

∑

r∈E(k)

α̂rσ̂r · τ̂ r |er|2ωr
k. (3.12)

Setting also

dr :=
∑

j∈T (r)

dr
j and ωr :=

∑

j∈T (r)

ωr
j ≡

dr

|er|
, (3.13)

we can write our bilinear form as

ah(σ, τ ) :=
∑

er∈Eh

α̂rσ̂r · τ̂ r |er|2ωr ≡
∑

er∈Eh

α̂rσ̂r · τ̂ r |er|dr ≡ 2
∑

er∈Eh

α̂rσ̂r · τ̂ r |Dr|.

(3.14)

Remark 3.2 We observe that, for each edge er ∈ Eh, other choices of α̂r are
possible: here we have taken the average of α over the lumping region Dr, but this
is not mandatory. It suffices that α̂r is constant over Dr (see [23] for alternative
choices).

We consider now the bilinear form b1 appearing in (2.7). The first term does not
require any special adjustment. Indeed, using our basic formula (3.3) and taking
again into account the continuity of the normal component of the elements in Σh

we have
∫

Ω
u divτ dx =

∑

Tk∈Th

∫

∂Tk

uk τ k · nk ds =
∑

er∈Eh

∫

er

[u]r · {τ}r ds =
∑

er∈Eh

[u]r · τ̂ r |er|.

(3.15)
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This gives us at once a new way of writing the bilinear form b2 appearing in (2.7).
Indeed, we set

b2,h(v, σ) :=
∑

er∈Eh

[v]r · σ̂r |er| =
∑

er∈Eh

∫

er

[v]r · σ̂r ds(≡ b2(v, σ)). (3.16)

In order to apply the quadrature formula to the second integral appearing in the
definition of b1(·, ·) (see (2.7)), a unique value for u needs to be defined at each
edge. It seems natural, at first, to take the average of u on er, as defined in (3.1)
and (3.2). Then, applying quadrature formula (3.8) and arguing as in (3.14), we
have
∫

Ω
α u β · τ dx '

∑

Tk∈Th

∑

r∈E(k)

α̂r {u}r
β̂

r
· τ̂ r |er|2ωr

k ≡ 2
∑

er∈Eh

α̂r {u}r
β̂

r
· τ̂ r |Dr|.

(3.17)
Collecting (3.15) and (3.17) we can finally write

b1,h(u, τ ) :=
∑

er∈Eh

[u]r · τ̂ r |er|+ 2
∑

er∈Eh

α̂r {u}r
β̂

r
· τ̂ r |Dr|. (3.18)

To conclude, we take ch(u, v) ≡ c(u, v), as defined in (2.7), and we note that

ch(u, v) ≡ c(u, v) =
∑

Tk∈Th

γ uk vk|Tk|. (3.19)

Having defined the approximate bilinear forms ah, b1,h, b2,h, and ch, we can now
write the following final form of our scheme:





Find (σ, u) ∈ Σh × Vh such that

ah(σ, τ ) + b1,h(u, τ ) = 0 ∀ τ ∈ Σh,

b2,h(v, σ)− c(u, v) = −(f, v) ∀ v ∈ Vh.

(3.20)

Now we would like to take advantage of the fact that our bilinear form ah is diagonal,
in order to eliminate σ from the first equation of (3.20) and insert it into the second,
so that the final scheme could be written in terms of u only.

With this aim we recall from (3.14) and (3.18) that the first equation of (3.20)
can be written as

∑

er∈Eh

(
2 α̂rσ̂r · τ̂ r |Dr|+ [u]r · τ̂ r |er|+ 2 α̂r {u}r

β̂
r
· τ̂ r |Dr|

)
= 0, (3.21)

which gives immediately, for the edges er /∈ ΓN ,

σ̂r = −
[u]r |er|

2α̂r |Dr|
− {u}r

β̂
r

= −
[u]r

α̂r dr
− {u}r

β̂
r

∀er ∈ E0
h. (3.22)

Substituting into the second equation of (3.20) and using (3.16) and (3.19) we have
immediately

∑

er∈E0

h

(
[u]r · [v]r |er|

α̂r dr
+ {u}r

β̂
r
· [v]r |er|

)
+

∫

Ω
γ u v dx =

∫

Ω
f v dx ∀v ∈ Vh.

(3.23)
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Setting now
ε̂ r := (α̂ r)−1, (3.24)

recalling that
|er|

dr
= 2

|Dr|

(dr)2
, (3.25)

and finally recalling definition (3.7), relation (3.23) can also be written as

∑

er∈E0

h

2

∫

Dr

ε̂ r [u]r

dr
·
[v]r

dr
dx+

∑

er∈E0

h

∫

er

{u}r
β·[v]r ds+

∫

Ω
γ u v dx =

∫

Ω
f v dx ∀v ∈ Vh.

(3.26)
This allows us to write the final formulation of our MFV scheme in terms of the
scalars u and v only. Indeed, we can set

L(u, v) :=
∑

er∈E0

h

2

∫

Dr

ε̂ r [u]r

dr
·
[v]r

dr
dx+

∑

er∈E0

h

∫

er

{u}r
β · [v]r ds+

∫

Ω
γ u v dx, (3.27)

and write our discrete problem as
{

Find u ∈ Vh such that

L(u, v) = (f, v) ∀ v ∈ Vh.
(3.28)

We notice that, as far as the diffusive and reactive parts of the bilinear form L(u, v)
are concerned, i.e., the first and third terms in (3.27), respectively, it can be proved
that they give rise to an M -matrix (see e.g., [10]). In particular, the third term
yields a positive diagonal matrix, while the first term provides an M -matrix, pro-
vided that the terms dr appearing in (3.27) and defined in (3.13) are positive. This
is guaranteed if Th is a Delaunay triangulation. Actually, thanks to this property,
though one of the terms dr

j in (3.13) may be negative (when the angle opposite to
edge er in triangle Kj is obtuse), the term dr is always positive. However, the M -
matrix property is lost when in (3.27) advection dominates. In the next section a
stabilization of the MFV scheme (3.28) is introduced, with the effect that it always
yields an M -matrix, independently of the strength of the advective field β.

4 Stabilization of the mixed finite volume scheme

We start by noticing that, taking u = v in (3.27), we have

L(v, v) :=
∑

er∈E0

h

2

∫

Dr

ε̂ r

∣∣∣∣
[v]r

dr

∣∣∣∣
2

dx +
∑

er∈E0

h

∫

er

{v}r
β · [v]r ds +

∫

Ω
γ v2 dx. (4.1)

We also note that
2 {v}r [v]r = [v2]r, (4.2)

so that using our basic equation (3.3) with ϕ = v2 and q = β, and recalling that
[β] = 0, we get

2
∑

er∈E0

h

∫

er

{v}r
β·[v]r ds =

∑

Tk∈Th

∫

∂Tk\ΓN

β·nk v2
k ds =

∫

Ω
div β v2 dx−

∫

ΓN

β·n v2 ds.

(4.3)
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Combining (4.1), (4.3), and assumption (1.4), we finally have

L(v, v) = 2
∑

er∈E0

h

∫

Dr

ε̂ r

∣∣∣∣
[v]r

dr

∣∣∣∣
2

dx +

∫

Ω

(
1

2
div β + γ

)
v2 dx−

1

2

∫

ΓN

β · n v2 ds

≥ 2
∑

er∈E0

h

∫

Dr

ε̂ r

∣∣∣∣
[v]r

dr

∣∣∣∣
2

dx + b0 ||v||
2
0−

1

2

∫

ΓN

β · n v2 ds

︸ ︷︷ ︸
≥0

,

(4.4)
where the last term in (4.4) is nonnegative, due to (1.5). However, as ε can be very
small, the coercivity bound provided by (4.4) could be very poor, and insufficient
to prove error bounds with constants independent of ε. We are going to add,
therefore, some sort of additional diffusion. Actually, for every er ∈ E0

h we define a
real number θr with the assumption that

1/2 ≥ θr ≥ θ0 > 0, (4.5)

where θ0 is a constant independent of the decomposition. Then we set, always for
every er ∈ E0

h,

ρ̂ r := θr dr |β̂
r
|. (4.6)

Then we consider the stabilized bilinear form Ls(u, v) defined as

Ls(u, v) := 2
∑

er∈E0

h

∫

Dr

(ε̂ r + ρ̂ r)
[u]r

dr
·
[v]r

dr
dx +

∑

er∈E0

h

∫

er

{u}r
β · [v]r ds +

∫

Ω
γ u v dx.

(4.7)
It is clear that, instead of (4.4), we have now

Ls(v, v) ≥ 2
∑

er∈E0

h

∫

Dr

(ε̂ r + ρ̂ r)

∣∣∣∣
[v]r

dr

∣∣∣∣
2

dx + b0 ||v||
2
0 −

1

2

∫

ΓN

β · n v2 ds. (4.8)

We shall show that different choices of θr in (4.6) correspond to modify definition
(3.18) of the bilinear form b1,h(u, τ ), by taking proper values of u on the edge er

instead of the average {u}r. In particular, we shall consider two choices of θr that
lead to two well known stabilization methods, namely, the upwind scheme and the
Scharfetter-Gummel (SG) scheme. The SG stabilization amounts to introducing
exponential fitting into the MFV formulation and is the most widely used tech-
nique in the numerical simulation of semiconductor devices using drift-diffusion
and energy-transport models [28].
By defining the upwind value of u on the edge er

ur
upw =





1

2|β̂
r
· nr|

∑

j∈T (r)

uj

(
β̂

r
· nr

j + |β̂
r
· nr

j |
)
, β̂

r
· nr 6= 0

{u}r , β̂
r
· nr = 0,

it can be seen that taking θr = 1/2 in (4.6) corresponds to using the upwind value
ur

upw of u instead of the average {u}r in definition (3.18) of b1,h. Indeed, taking
∑

er∈Eh

α̂r ur
upw β̂

r
· τ̂ r|Dr|, instead of

∑

er∈Eh

α̂r {u}r
β̂

r
· τ̂ r |Dr| (4.9)

11



can be easily tracked to produce ur
upw β̂

r
instead of {u}r

β̂
r

in (3.22), ending up
with

∑

er∈E0

h

∫

er

ur
upw β · [v]r ds instead of

∑

er∈E0

h

∫

er

{u}r
β · [v]r ds (4.10)

in the final definition (3.27) of L. It is easy to check that, if we take nr
β to be such

that β · nr
β ≥ 0, then

ur
upw − {u}r =

1

2
nr

β · [u]r (4.11)

so that
ur

upw β · [v]r − {u}r
β · [v]r = θr

upw|β̂
r
|[u]r · [v]r, (4.12)

with θr
upw = 1/2 and where we took the absolute value to recall that we always

have a nonnegative term. Taking the integral of (4.12) over er gives

∫

er

θr
upw|β̂

r
|[u]r·[v]r ds = θr

upw|e
r| (dr)2 |β̂

r
|
[u]r

dr
·
[v]r

dr
= 2

∫

Dr

θr
upwdr |β̂

r
|
[u]r

dr
·
[v]r

dr
dx,

(4.13)

where θr
upwdr |β̂

r
| is precisely ρ̂ r with θr = θr

upw.
To show that we also recover the SG scheme, let us first define the “edge” value

of the scalar u

ur
SG =

∑

j∈T (r)

uj

(
B(−2Per

j)− 1

2Per
j

)
, (4.14)

where

B(t) =





t

exp(t)− 1
, t 6= 0,

1, t = 0,

is the Bernoulli function, and

Per
j =

β̂
r
· nr

j

2α̂rdr

is the local Péclet number. Notice that 0 < (B(−t)− 1)/t < 1, for t 6= 0, and it is
understood that (B(−t)− 1)/t = 1/2 at t = 0. As before, it follows that

ur
SG β · [v]r − {u}r

β · [v]r = θr
SG|β̂

r
|[u]r · [v]r, (4.15)

where

θr
SG =

B(−2Per
β)− 1

2Per
β

−
1

2
,

in which

Per
β =

β̂
r
· nr

β

2α̂rdr
> 0.

Notice that 0 < θr
SG < 1/2 and that the upwind value of θr

upw is recovered from θr
SG

for infinite local Péclet number.
The analogous result for the SG case, obtained from (4.15), holds with θr

SG. For
more details see [10] and [9].
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5 Error estimates

In order to prove error bounds for the stabilized mixed finite volume scheme corre-
sponding to using (4.8), we need some stricter assumptions on the decomposition
Th. In particular, we need that the coefficients dr appearing in (3.13) and used in
the numerical integration formula (3.8)-(3.10), are uniformly bounded from below
as

d1|e
r| ≥ dr ≥ d0|e

r| (5.1)

where d1 and d0 are some given constants independent of r and h. We also assume,
for simplicity, that the sequence of triangulations {Th}h>0 is quasi-uniform, in the
sense that there is a constant C∗, independent of the triangulation, such that

hT ≥ C∗h ∀T ∈ Th. (5.2)

As previously announced, in this section we go back to the original (and more
precise) notation of Section 2, reintroducing the index h for discrete solutions. In
particular, we shall indicate by uh the solution of the discretized stabilized problem

{
Find uh ∈ Vh such that

Ls(uh, v) = (f, v) ∀ v ∈ Vh,
(5.3)

where Ls is the stabilized bilinear form defined in (4.7). The ellipticity property
(4.8) easily implies existence and uniqueness of the solution of (5.3).

We recall that error estimates for the simpler case in which β = 0 and γ ≥ 0
have already been derived in [10]. In order to use these estimates, we set

f̃ := −div (ε∇u) in Ω g̃N := ε∇u · n ≡ β · nu on ΓN , (5.4)

and we consider the auxiliary problem





Find w ∈ H1(Ω) such that

−div (ε∇w) = f̃ ,

w = 0 on ΓD, ε∇w · n = g̃N on ΓN ,

(5.5)

whose solution is obviously w ≡ u. We then consider the discrete solution wh ∈ Vh

of (5.5) by means of the MFV scheme (3.28), that, in this case, becomes

Ldiff(wh, v) := 2
∑

er∈E0

h

∫

Dr

ε̂ r [wh]r

dr
·
[v]r

dr
dx =

∫

Ω
f̃v dx +

∫

ΓN

g̃Nv ds ∀v ∈ Vh,

(5.6)
and for which, under suitable hypotheses, we have the error estimate [5, 10]:

||u− wh||0,Ω ≤ C h ||u||2,Ω, (5.7)

where the constant C only depends on the geometric constants of the triangulation
Th, and on the maximum norm of γ, β, and of the derivatives of ε. Therefore, in
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order to get error estimates for (5.3), we can as well compare uh with wh. Setting,
for v ∈ Vh,

|||v|||2 := 2
∑

er∈E0

h

∫

Dr

(ε̂ r + ρ̂ r)

∣∣∣∣
[v]r

dr

∣∣∣∣
2

dx + b0 ||v||
2
0 −

1

2

∫

ΓN

β · n v2 ds, (5.8)

and setting δ := uh − wh we have from (4.8), (5.3) and the definitions (3.27) and
(4.7) of L and Ls, respectively

|||δ|||2 ≤ Ls(δ, δ) =

∫

Ω
f δ dx− L(wh, δ)− 2

∑

er∈E0

h

∫

Dr

ρ̂ r [wh]r

dr
·
[δ]r

dr
dx. (5.9)

On the other hand, using (3.27), then (5.6), and finally (5.4), we easily have

L(wh, δ) = Ldiff(wh, δ) +
∑

er∈E0

h

∫

er

{wh}
r
β · [δ]r ds +

∫

Ω
γ wh δ dx

=

∫

Ω
f̃ δ dx +

∫

ΓN

g̃Nδ ds +
∑

er∈E0

h

∫

er

{wh}
r
β · [δ]r ds +

∫

Ω
γ wh δ dx

=

∫

Ω
−div (ε∇u) δ dx +

∫

ΓN

β · nuδ ds +
∑

er∈E0

h

∫

er

{wh}
r
β · [δ]r ds +

∫

Ω
γ wh δ dx,

(5.10)
that using (1.1) becomes

L(wh, δ) =

∫

Ω
(f − div (βu)− γu) δ dx +

∫

ΓN

(β · n) uδ ds

+
∑

er∈E0

h

∫

er

{wh}
r
β · [δ]r ds +

∫

Ω
γ wh δ dx.

(5.11)

This easily gives, integrating by parts the term with the divergence and using the
basic property (3.3),

∫

Ω
f δ dx− L(wh, δ) =

∑

er∈E0

h

∫

er

{u− wh}
r
β · [δ]r ds +

∫

Ω
γ(u− wh) δ dx. (5.12)

Combining (5.9)-(5.12) we get

|||δ|||2 ≤
∑

er∈E0

h

∫

er

{u− wh}
r
β·[δ]r ds+

∫

Ω
γ(u−wh) δ dx−2

∑

er∈E0

h

∫

Dr

ρ̂ r [wh]r

dr
·
[δ]r

dr
dx.

(5.13)
We shall bound the three terms in the right-hand side of (5.13) separately. For the
first term, we easily get

∫

er

{u− wh}
r
β·[δ]r ds ≤ ||u−{wh}

r ||0,er ||β·[δ]r||0,er ≤ ||u−{wh}
r ||0,er |er|1/2 |β·[δ]r|.

(5.14)
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We also recall the following trace inequalities, that could be easily deduced from the
so-called Agmon inequality (see e.g. [2]) and our assumption (5.1): for all function
ϕ ∈ H1(Ω), for every v ∈ Vh, and for every edge er ∈ Eh

||ϕ− {v}r ||20,er ≤ C (|er|−1||ϕ− v||20,Dr + |er||ϕ|21,Dr),

||ϕ− [v]r||20,er ≤ C (|er|−1||ϕ− v||20,Dr + |er||ϕ|21,Dr). (5.15)

Using (5.15)1, we easily have

||u− {wh}
r ||20,er ≤ C (|er|−1||u− wh||

2
0,Dr + |er||u|21,Dr), (5.16)

while recalling the definition (4.6) of ρ̂ r, and the boundedness of β we have

|er|1/2|β · [δ]r| ≤ C (|β̂
r
|dr)1/2 |[δ]

r|

dr
(dr|er|)1/2 ≤ C(ρ̂ r)1/2 |[δ]

r|

dr
|Dr|1/2. (5.17)

Combining (5.14)-(5.17), using (5.2) and (5.7), and recalling the definition (5.8) of
the triple-bar norm, we then have

∑

er∈E0

h

∫

er

{u− wh}
r
β · [δ]r ds ≤ C h1/2 ||u||2,Ω |||δ|||, (5.18)

that bounds the first term in the right-hand side of (5.13). The second term is easy.
We immediately get

∫

Ω
γ(u− wh) δ dx ≤ C h ||γ||L∞(Ω) ||u||2,Ω||δ||0,Ω. (5.19)

We are left with the last term. For this we first have easily

−2
∑

er∈E0

h

∫

Dr

ρ̂ r [wh]r

dr
·
[δ]r

dr
dx ≤ 2

( ∑

er∈E0

h

∫

Dr

ρ̂ r

∣∣∣∣
[wh]r

dr

∣∣∣∣
2

dx
)1/2

|||δ|||. (5.20)

Then we estimate the term containing wh. Recalling again that 2|Dr| = dr|er|, and
the definition (4.6) of ρ̂ r, we have first

2
∑

er∈E0

h

∫

Dr

ρ̂ r

∣∣∣∣
[wh]r

dr

∣∣∣∣
2

dx=
∑

er∈E0

h

|er|drθ̂r|β̂
r
|dr

∣∣∣∣
[wh]r

dr

∣∣∣∣
2

=
∑

er∈E0

h

θ̂r|β̂
r
| ||[wh]r||20,er .

(5.21)

As θ̂r|β̂
r
| is easily bounded from above, we just deal with the L2 norm of the jumps

of wh, that actually coincide with the jumps of u − wh, since u is continuous. By
(5.15)2, we have

||[wh]r||20,er ≡ ||[u− wh]r||20,er ≤ C (|er|−1||u− wh||
2
0,Dr + |er| |u|21,Dr). (5.22)

Inserting (5.22) into (5.21) and using (5.2) and (5.7), we then have

2
∑

er∈E0

h

∫

Dr

ρ̂ r

∣∣∣∣
[wh]r

dr

∣∣∣∣
2

dx≤ C h ||u||22,Ω, (5.23)
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so that in the end, inserting (5.23) into (5.20), the third term can be bounded as
follows:

−2
∑

er∈E0

h

∫

Dr

ρ̂ r [wh]r

dr
·
[δ]r

dr
dx ≤ C h1/2||u||2,Ω|||δ|||. (5.24)

Collecting the three estimates (5.18), (5.19), and (5.24) and inserting them into
(5.13), we have

|||δ|||2 ≤ C h1/2||u||2,Ω|||δ|||+ C h||u||2,Ω||δ||0,Ω, (5.25)

that gives easily
|||δ||| ≤ C h1/2||u||2,Ω. (5.26)

Using (5.26), (5.7), and the triangle inequality, we finally get the error estimate.

Theorem 5.1 Let u be the solution of (1.1), and let uh be the solution of (5.3).
Assume moreover that {Th}h is a regular sequence of quasi-uniform Delaunay tri-
angulations satisfying (5.1). Then there exists a constant C (depending only on the
geometric constants of the sequence {Th}h, on the maximum norm of γ, β, and of
the derivatives of ε), such that

||u− uh||0,Ω ≤ C h1/2||u||2,Ω. (5.27)

We notice that the above estimate could be considered as optimal, since we are
using piecewise constant finite elements for uh, and the loss of half a power of h is
sort of physiological in these types of problems (see e.g. [18, 25, 8, 17, 16] and the
references therein). It is not optimal, however, with respect to the norm of u used
in the right-hand side of (5.27).

We believe that some improvement could be obtained by estimating directly the
distance uh − uI where uI is the L2-projection of u onto the space Vh of piecewise
constants. Indeed the trick of comparing uh with wh avoids a lot of technicalities
connected with the use of the numerical integration formula (3.8), but forces the use
of the quasi-uniformity assumption that, very likely, is not strictly needed. This
alone, however, cannot solve the problem of the use of the H2–norm of u, and
could at most trade it for some combination of the type ε||u||2 + ||u||1, that would
not improve much the quality of the estimate. The presence of the norm in H2

seems indeed not avoidable in a scheme based on mixed methods, unless a totally
different strategy of proof is employed.
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problèmes elliptiques, C. R. Acad. Sci. Paris, 319, série I 401–404 (1994).
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[17] P. Houston, E. Süli, Stabilized hp-finite element approximation of partial differ-
ential equations with non-negative characteristic form, Computing 66, 99-119
(2001).
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