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Abstract

SUPG and Residual-Free Bubbles are closely related methods that have been
used with success to stabilize a certain number of problems, including advection
dominated flows. In recent times, a slightly different idea has been proposed: to
choose a suitable subgrid in each element, and then solving Standard Galerkin on
the Augmented Grid. For this, however, the correct location of the subgrid node(s)
plays a crucial role. Here, for the model problem of linear advection-diffusion
equations, we propose a simple criterion to choose a single internal node such that
the corresponding plain-Galerkin scheme on the augmented grid provides the same
a priori error estimates that are typically obtained with SUPG or RFB methods.
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1 Introduction

We consider, for the sake of simplicity, the model problem of a linear elliptic convection-
diffusion equation in a polygonal domain Ω:

{
Lu = f in Ω
u = 0 on ∂Ω,

(1)

where
Lu = −ε∆u+ β · ∇u. (2)

Let Th = {K} be a family of regular discretizations of Ω into triangles K, and let
hK = diam(K), h = maxK∈Th

hK . We assume that the diffusion ε is a positive constant,
and both the convection field β and the right-hand side f are piecewise constant with
respect to the triangulation Th. If the operator L is convection-dominated, it is well
known that the exact solution of (1) can exhibit boundary and internal layers, i.e., very
narrow regions where the solution and its derivatives change abruptly. As a consequence,
if we employ a classical finite element method with a discretization scale which is too big
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to resolve the layers, the solution that we get has in general large numerical oscillations
spreading all over the domain, and can be completely unrelated to the true solution. To
properly resolve the layers, the mesh size (at least in the layer regions) must be of the
same size as the ratio between diffusion and convection. In many problems, this choice
would lead to a huge number of degrees of freedom, making the discretization intractable.

In recent years, many stabilization methods have been proposed to cope with this
kind of problems. Among them, the most popular is the SUPG method (Streamline-
Upwind Petrov/Galerkin), first described in [12], which has been successfully applied to
many different situations (see e.g. [14] and the references therein). As well known, the
method corresponds to adding a consistent term providing an additional diffusion in the
streamline direction (see (10) below). The amount of such additional diffusion is tuned by
a parameter τ that must be chosen in a suitable way. According to thumb-rule arguments
and a lot of numerical tests, several recipes have been proposed for the choice of τ (one
of them being recalled in (11) and (12) below). The method has been proved to have
a solid mathematical basis in several cases of practical interest (see e.g. [19], or [22]).
Nevertheless, the need for a suitable convincing argument to guide the choice of τ is still
considered as a major drawback of the method by several users.

Later on, SUPG has been related to the process of addition and elimination of suitable
bubble functions (see [1, 2]), that aroused considerable interest, although the problem of
the optimal choice of τ was simply translated into the problem of the optimal choice of the
bubble space. This was partly solved by the Residual Free Bubble approach, started in
[11] and further developed in [16]. An alternative viewpoint, the Multiscale Method, was
proposed in [18], but the two approaches were shown to be essentially equivalent in [3].
Roughly speaking this approach proposes to find the “optimal τ” through the solution of
a suitable boundary value problem (obviously, strictly related to the original one in Ω) in
each element K. For the case described above, and if we employ continuous, piecewise-
linear elements, this corresponds to solving, in each K, the following boundary-value
problem:

find b∗K ∈ H1
0 (K) such that Lb∗K = 1 in K (3)

(which is, in a sense, as difficult as (1)), and then setting

τ = (1/|K|)
∫

K

b∗K . (4)

For the limit case ε → 0, one can compute the limit solution in some special cases
(included the present one, as shown in [11]), but a general approach is still lacking.
The RFB method for advection dominated problems has also been analyzed from the
theoretical point of view, and a priori error bounds were proved, similar to the ones for
SUPG, for the case of piecewise linear elements in [4], and in [10] in the general case.
Additional results, including local error analysis were proved in [24], [25].

In more recent times several authors tried to deal with problems of the type (3) by
providing an approximate solution with the use of suitable subgrid problems. This is the
case of [9], where the subgrid consisted of a single internal node per triangle, but the
rationale for choosing the location of such node was not truly elementary. This is also
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the case, among others, of [15], where a subgrid consisting of a few Shishkin elements
(cfr e.g. [13]) was used. In general, however, a satisfactory error analysis was lacking
for these methods, apart from the case of the limit behavior for ε → 0, where they all
reproduce the same behaviour as SUPG.

Then a slightly different point of view, based on all these previous attempts, was
proposed in [7], [8]. The basic idea is to consider both the original grid and the subgrid
at the same time as an augmented grid, and to solve with Standard Galerkin method on
such Augmented Grid (SGAG). In practice, the internal nodes added with the subgrid
can still be eliminated by static condensation, so that the method could still be regarded
as a variant of the RFB approach. SGAG point of view, however, looks philosophically
more appealing. Indeed, once a convenient subgrid has been decided, the idea of using
a plain Galerkin code with no smart tricks is surely of interst. In [8] abstract conditions
on the choice of the subgrid were given (for advection dominated problems) that ensured
the same a priori error estimates of the original RFB method in all regimes. The idea
was further developed in [5] for one-dimensional advection-reaction-diffusion problems,
where a simple recipe was proposed for the choice of the subgrid (that, there, consisted of
two nodes per element). Essentially, the idea is to compute the coefficients of the subgrid
“stiffness” matrix as functions of the distance between each internal node and its closest
node at the boundary of the element. Then the distance is chosen in such a way that the
coefficient (in the row of the internal node) corresponding to the adjacent boundary node
becomes zero. The recipe provides an unsuitable location for the downwind internal node
when the problem is diffusion dominated, and hence if the required distance is bigger than
hK/3 we set it equal to hK/3. Similarly, the recipe provides an unsuitable location of
the upwind internal node unless the problem is reaction dominated. Hence, again, if the
required distance is bigger than hK/3 we set it equal to hK/3. The recipe is actually
more easy to implement than to describe.

Here we adapt the same idea of [5] to the case of advection dominated two dimensional
problems. Having no reaction terms we can get away with just one internal node. If the
triangle has only one inflow edge, the location of the internal node is set, a priori, on
the mediane connecting the (upwind) midpoint of the inflow edge with the opposite
(downwind) vertex, and the precise position along the mediane is chosen by requiring
the coefficient (of the row of the internal node) corresponding to the downwind vertex
to be zero. If, on the contrary, the triangle has two inflow edges, the location of the
internal node is set, a priori, on the mediane connecting the (downwind) midpoint of
the outflow edge with the opposite (upwind) vertex, and the precise position along the
mediane is chosen by requiring the sum of the coefficients (of the row of the internal node)
corresponding to the two vertices of the outflow edge to be zero. Similarly to the one-
dimensional case, the position is stopped at the barycenter when it would be required
(by the recipe) to be too much far away from the downwind vertex or the downwind
midpoint, in the two cases. Again, the recipe is actually more easy to implement than to
describe.

With the abovementioned choice for the position of the internal node, and hence of
the subgrid, we are then able to prove that the abstract assumptions of [8] are satisfied,
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and hence our choice provides the same error bounds of the RFB methods in all regimes.
The layout of the paper is as follows. In Section 2 we briefly recall the basic ideas of

the SUPG method, of RFB method and the Standard Galerkin on the Augmented Grid
method. In Section 3 we describe our choice of the subgrid, and in Section 4 we prove
the corresponding a priori error estimates.

2 SUPG, RFB, and SGAG

We consider the model convection-diffusion problem (1)-(2), and we recall its variational
formulation: {

find u ∈ H1
0 (Ω) such that

a (u, v) = F (v) for all v ∈ H1
0 (Ω)

(5)

where

a (u, v) = ε

∫

Ω

∇u · ∇v +

∫

Ω

(β · ∇u) v (6)

is a continuous and coercive bilinear form on the Hilbert space H1
0 (Ω) and

v 7→ F (v) =

∫

Ω

fv (7)

is in H−1(Ω). A Galerkin approximation of problem (1) consists in taking a finite-
dimensional subspace Vh of H1

0 (Ω), and then solving the variational problem (5) in Vh.
For the sake of simplicity, from now on we will restrict ourselves to the case of continuous,
piecewise linear elements, i.e., we will consider the finite element space

VL =
{
v ∈ H1

0 (Ω), v|K linear for all K ∈ Th

}
(8)

so that the approximation of (5) reads

{
find uL ∈ VL such that
a (uL, vL) = F (vL) for all vL ∈ VL.

(9)

As already pointed out, if the problem is convection-dominated, then, unless the mesh size
h is of the same size of ε/|β|, the solution of (9) will exhibit strong oscillations spreading
all over the domain. The SUPG method consists in adding to the original bilinear form
a (·, ·) a term which introduces a suitable amount of artificial diffusion in the direction
of streamlines, but without upsetting consistency. In the case of problem (1) (and with
linear elements) the SUPG method reads





find uL ∈ VL such that for all vL ∈ VL

a (uL, vL) +
∑

K∈Th

τK

∫

K

(β · ∇uL − f) (β · ∇vL) = F (vL), (10)

where τK is a stabilization parameter depending on the local character of the discretiza-
tion: in elements whose diameter is not small enough to resolve all scales, τK ≈ hK/|βK|
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and elsewhere τK ≈ 0. More precisely, we can introduce a mesh Péclet number in the
following way:

for each K ∈ Th, P eK =
|βK|hK

6ε
, (11)

and then define τK element by element according to the size of PeK:

τK =
hK

2|βK|
if PeK ≥ 1, τK =

h2
K

12ε
if PeK < 1. (12)

Scheme (10) leads to a reasonable numerical solution, where of course layers are not
resolved, but they are very well localized, and away from the layers the accuracy is very
good.

A priori error estimates for the SUPG method were proved in [20] to be of the type

ε||u− uS
L||21,Ω +

∑

K∈Th

hK||β · ∇(u− uS
L)||20,Ω ≤ C

∑

K∈Th

(εh2s−2
K ||u||2s,K + h2s−1

K ||u||2s,K) (13)

(where uS
L is the SUPG discrete solution) whenever the solution belongs to H s(Ω) for

some s with 1 < s ≤ 2. We refer to [14, 19–21, 26, 27] for further details. See also [22] for
a more complete presentation.

A possible drawback of the SUPG method is the sensitivity of the solution to the
stabilization parameter τK , whose value is not determined precisely by the available
theory. A way to recover intrinsically the value of τK is to use the residual-free bubbles
approach (see [3, 11, 16]). The idea is to enlarge the finite element space VL in the following
way. For each element K, we define the space of bubbles in K as BK = H1

0 (K), the
enlarging space VB as VB = ⊕K∈Th

BK , and set

Vh = V RFB
h = VL ⊕ VB. (14)

By (14) we have that any vh ∈ Vh can be split into a linear part vL ∈ VL and into a
bubble part vb ∈ VB in a unique way: vh = vL + vb ∈ VL ⊕ VB, and the bubble part itself
can be uniquely split element by element:

vb =
∑

K∈Th

vK
b , vK

b ∈ BK . (15)

Then, the variational problem (5) is approximated as follows:




find uh = uL + ub ∈ VL ⊕ VB such that
for all vL ∈ VL, K ∈ Th, and vK

b ∈ BK

a (uL + ub, vL) = F (vL)

aK (uL + uK
b , v

K
b ) = F (vK

b )K,

(16)

where the subscript (·)K indicates that the integrals involved are restricted to the element
K. Of course, we cannot expect to solve exactly problem (16), because Vh is infinite-
dimensional. But, for the moment, just assume that we can do it (say, with paper and
pencil).
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We introduce now, in each element K, the operator MK that to every right-hand side
g, say, in L2(K) associates the unique solution ϕ := MK(g) of

Lϕ = g in K, ϕ = 0 on ∂K. (17)

We now see that the second equation in (16) determines uK
b in terms of uL and f as

uK
b = MK(f − LuL). (18)

Substituting into the first equation of (16) we easily have

a (uL, vL) +
∑

K∈Th

aK (MK (f − LuL) , vL) = (f, vL)0,Ω ∀vL ∈ VL. (19)

Introducing L∗K as the formal adjoint of L on K (with zero boundary conditions on ∂K),
satisfying aK (vb, vL) = (vb,L∗KvL)0,K for all vb ∈ VB and vL ∈ VL, (19) can also be written
as

a (uL, vL) +
∑

K∈Th

(MK (f − LuL) ,L∗KvL)0,K

︸ ︷︷ ︸
effect of residual-free bubbles onto linears

= (f, vL)0,Ω ∀vL ∈ VL. (20)

Since the coefficients of the operator are piecewise constant, and the elements of VL are
piecewise linear, we have in each K

(f−LuL)|K = (f−β·∇uL)|K = constant, (L∗KvL)|K = −(β·∇vL)|K = constant. (21)

In particular we have that MK(f −LuL) = (f − β · ∇uL)|K MK(1). Using this, and some
simple manipulations, the resulting scheme (20) becomes





find uL ∈ VL such that for all vL ∈ VL

a (uL, vL) +
∑

K

τ̂K

∫

K

(β · ∇uL − f)(β · ∇vL) = F (vL)
(22)

where

τ̂K =
1

|K|

∫

K

MK(1). (23)

We see that (22) and the SUPG scheme (10) have an identical structure; we need only
to compare the two constants τK and τ̂K . Setting b∗K = MK(1) we see by (17) that b∗K
solves the following boundary value problem on K:

Lb∗K = 1 in K, b∗K = 0 on ∂K. (24)

We are left with the problem of evaluating, possibly in some approximate way, the integral
of b∗K . For strongly convection-dominated cases (the most interesting ones) we can argue
as in [11]: If ε � |βK| hK, then b∗K will be very close (in L1(K)) to the solution of the
purely convective problem β · ∇b∗K = 1 with boundary conditions b∗K = 0 on the inflow
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part of K. This is a pyramid whose volume can be computed by hand. If we define hβ
K

as the length of longest segment parallel to βK and contained in K, we have

∫

K

b∗K ≈ Volume of the pyramid =
|K|
3

hβ
K

|βK|
, (25)

so that

τ̂K =
1

|K|

∫

K

b∗K ≈ hβ
K

3 |βK|
. (26)

Using a scaling argument (see [23]), we can also show that when ε is large with respect to
|βK|hK, we have τ̂K ≈ C h2

K/ε, where C still depends on K and h but can be uniformly
bounded from above and from below if we have a regular family of triangulations. We
then see that the values of τK and τ̂K are very close in both limits.

A priori error estimates for the RFB method were proved in [4] for linear elements: if
the solution u belongs to Hs(Ω) for some s with 1 < s ≤ 2, then, as in SUPG,

ε||u− uR
L ||21,Ω +

∑

K∈Th

hK||β · ∇(u− uR
L)||20,Ω ≤ C

∑

K∈Th

(εh2s−2
K ||u||2s,K + h2s−1

K ||u||2s,K) (27)

where uR
L is the linear component of the RFB solution . The same type of estimates (in

the more general case of piecewise polynomials of degree k ≥ 1) were proved in [10] also
for the error u− uh, where uh = uL + uB. See also [24], [25] for additional results.

The method of Standard Galerkin on the Augmented Grid (SGAG) starts as a method
to compute an approximate solution of the local equation (24). As we have just seen,
originally this was done only for the case of ε � |βK|hK, by taking the solution of
the limit hyperbolic problem. Subsequently, several researchers tried to construct finite
dimensional subspaces BK

h ⊂ BK in such a way that the solution of the discrete local
problem

find bKh ∈ BK
h such that a (bKh , bh) = (1, bh) ∀bh ∈ BK

h (28)

could produce a solution bKh such that
∫

K

bKh '
∫
b∗K (29)

where b∗K is again the solution of (24). This was the case, for instance, of the Pseudo
Residual Free Bubbles in [9], where a suitable one-node subgrid was constructed in order
to satisfy (29). This was also done by the Two-Level FEM in [15], where a suitable subgrid
of Shishkin type was used to solve (28), and also in [6], where the use of a subgrid with
one node in the barycenter was suggested with a suitable subgrid viscosity (as in [17] but
with a finely tuned viscosity parameter). No error estimates however were available for
all these variants, unless in the limit for ε→ 0.

As pointed out in [8], most of these methods could be regarded from a slightly different
point of view. Indeed, we can consider that we augmented the original space VL with the
subgrid space BK

h , forming
V A

h = VL ⊕K∈Th
BK

h , (30)
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and then solve with Standard Galerkin in the space V A
h . Indeed in [8] it was proved that

if the BK
h satisfies certain sufficient conditions (that will be reported later on), then the

solution of the Standard Galerkin
{

find uh ∈ V A
h such that

a (uh, v) = F (v) for all v ∈ V A
h

(31)

satisfies the same a priori error bounds as SUPG or RFB methods. In the next section
we are going to choose a convenient subgrid, consisting of a single node per element, and
in the following section we shall use the general results of [8] to show that our choice
satisfies the sufficient conditions therein, and therefore the same error estimates as in the
SUPG and RFB methods hold true for the new method.

3 The choice of the subgrid

As we have seen in the previous section, the basic idea is to construct a subgrid in each
element K, and then solve the problem (31) on the augmented space, essentialy made of
piecewise linear functions on the augmented grid (that is the union of the original grid
and of the subgrid). As announced, we are going to take a subgrid that contains just
one additional node P = PK in each element K. The node is then joined to the three
vertices, thus splitting the triangle in three subgrid triangles.

To further specify our strategy of choice, we prescribe that the location of PK should
be chosen along one of the three medianes of K. The choice of the mediane, and the
position of PK on it will depend on the direction of β, and will be made precise in the
sequel.

As a first step, suppose the PK’s are given. In V A
h we choose a basis made, as usual,

of functions having value 1 at one node and 0 at the other nodes. The basis function
attached to the each point PK will have support contained in K. The other three basis
functions that are different from zero in K will have value one at one vertex, and 0 at
PK and at the other vertices.

As we are going to discuss each element separately, we drop most of the indices “K”,
and take a local numbering for the vertices, that will be denoted by Vi (i = 1, 2, 3) using,
as usual, the counterclockwise ordering. The basis functions that are different from 0 on
K will then be denoted by bP , ϕ1, ϕ2, ϕ3, where

bP (P ) = 1, bP (Vi) = 0 (i = 1, 2, 3), (32)

and
ϕi(Vi) = 1, ϕi(Vj) = 0 j 6= i, ϕi(P ) = 0. (33)

In the final “stiffness” matrix corresponding to (31), the row corresponding to the point
P will have the form

aK (bP , bP )uh(P ) +
3∑

i=1

aK (ϕi, bP )uh(Vi) = (f, bP ). (34)

8



 

PSfrag replacements

V1

V2

V3

K1

K2

K3

e1
e2

e3

z1

z2

z3

MP

Kδ

Kδ
reg

βP ∗

M1

S
Σ
N
S
E

W
Figure 1

Case 1: two inflow edges
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Case 2: one inflow edge

In order to specify our choice for P we need some additional notation. As in Fig. 1 and
Fig. 2 we denote by ei (i = 1, 2, 3) the edges of K, with ei opposite to Vi; |ei| will denote
the length of ei, n

i the outward unit normal to ei, and νi = |ei|ni. The actual numbering
of the vertices will be chosen according to the direction of β. Then, as announced,
P will be a point on the mediane m from V1 to the midpoint M of edge e1, that is,
m = (e3 − e2)/2. Finally, we denote by Ki, (i = 1, 2, 3) the three subtriangles obtained
by connecting P with the vertices Vi, by |Ki| the area of Ki, and by zi (i = 1, 2, 3) the
vectors from Vi pointing to P . (see Fig. 1 or Fig. 2).

In order to choose the position of P , we have to distinguish among three cases.

Case 1: The inflow boundary is made of two edges of K.
Referring to Fig. 1, let e2, e3 be the two inflow edges. The position of P along the mediane
from V1 will be determined by annihilating the sum of the contributions of V2 and V3 to
P . More precisely we look for P such that

aK (ϕ2, bP ) + aK (ϕ3, bP ) = 0. (35)

Writing
P = (1− t)V1 + tM, 0 < t < 1, (36)

we have then

z1 = mt, |K2| = |K3| = |z1|H/2 = |m|Ht/2,
|K| = |m|H, |K1| = |K| − |K2| − |K3| = |m|H(1− t),

(37)

H being the height from V2 (or V3) to m. Then we have:

aK (ϕ2, bP ) = ε
((e1, z3)

4|K1|
− (e3, z1)

4|K3|
)
− (β, ν2)

6
,

aK (ϕ3, bP ) = ε
((e2, z1)

4|K2|
− (e1, z2)

4|K1|
)
− (β, ν3)

6
.

(38)
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By summing and using (37) and the geometrical properties e1 +e2 +e3 = ν1 +ν2 +ν3 = 0,
e1 + z3 − z2 = 0, we obtain

aK (ϕ2, bP ) + aK (ϕ3, bP ) = ε
((e1, z3 − z2)

4|K1|
+

(e2 − e3, z1)

4|K2|
)

+
(β, ν1)

6

= ε
(
− (e1, e1)

4|m|H(1− t)
+

(e2 − e3, m)

2|m|H
)

+
(β, ν1)

6

= −ε
( |e1|2

4|K|(1− t)
+
|e2 − e3|2

4|K|
)

+
(β, ν1)

6
= 0.

(39)

Solving equation (39) for t gives

t∗1 = 1 +
ε|e1|2

ε|e2 − e3|2 − 2|K|(β, ν1)/3
. (40)

As actual value for t, however, we do not always take that given by (40). Indeed, for ε
not too small (that is, for diffusion dominated problems) this type of stabilization would
be unnecessary, and actually the value provided by (40) could be meaningless. Hence we
take 




t = t∗1, if ε ≤ ε∗1 ≡
2|K|(β, ν1)/3

3|e1|2 + |e2 − e3|2
t = 2/3 otherwise.

(41)

Notice that for ε = ε∗1 we have exactly t = t∗1 = 2/3, so that (41) actually gives a
continuous dependence of t upon ε. Moreover for 0 < ε < ε∗1 we have 1 > t∗1 > 2/3 so
that, for every ε > 0,we have

2

3
≤ t < 1. (42)

We also point out explicitly that there exist two constants γ∗,1 and γ∗1 , depending only
on β and the minimum angle of K such that

γ∗,1 hK ≤ ε∗1 ≤ γ∗1 hK, (43)

where, here and in all the sequel, hK denotes the diameter of K.

Case 2: The inflow boundary is made of one edge of K.
Referring to Fig. 2, let e1 be the inflow edge. In this case we determine the position of
P along the mediane from V1 by annihilating the contribution of V1 to P , that is, by
imposing

aK (ϕ1, bP ) = 0, (44)

where ϕ1 is still given in (33). With the notation of the previous case, since e3+z2−z1 = 0,
e2 + z1 − z3 = 0, equation (44) gives

aK (ϕ1, bP ) = ε
((e3, z2)

4|K3|
− (e2, z3)

4|K2|
)
− (β, ν1)

6

= ε
((e3, z1 − e3)

4|K3|
− (e2, z1 + e2)

4|K2|
)
− (β, ν1)

6

= ε
(
− |e2|2 + |e3|2

2|K|t +
(e3 − e2, m)

2|K|
)
− (β, ν1)

6
= 0.

(45)
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Solving equation (45) for t gives:

t∗2 =
ε(|e2|2 + |e3|2)

ε|e2 − e3|2/2− |K|(β, ν1)/3
. (46)

As we did in Case 1, however, we do not take t = t∗2 for every value of ε, but only for
convection dominated problems. In particular we take here





t = t∗2, if ε ≤ ε∗2 ≡
2|K|(−β, ν1)/3

3(|e2|2 + |e3|2)− |e2 − e3|2
t = 2/3 otherwise.

(47)

Notice that for ε = ε∗2 we have exactly t = t∗2 = 2/3, so that (47) actually gives a
continuous dependence of t upon ε. Moreover for 0 < ε < ε∗2 we have 0 < t∗2 < 2/3 so
that, for every ε > 0, we have

0 < t ≤ 2

3
. (48)

We also point out explicitly that there exist two constants γ∗,2 and γ∗2 , depending only
on β and the minimum angle of K such that

γ∗,2 hK ≤ ε∗2 ≤ γ∗2 hK. (49)

In the next section we are going to show that our choice of the subgrid provides
“optimal” error bounds (that is, the same of SUPG and RFB) for all values of ε > 0.

As we have seen, however, the choice of the subgrid can also be interpreted as a mean
to solve (24) in an approximate way, in order to compute a reasonable approximation of
the stabilizing parameter τ̂K . We approximate the solution b∗K of (24) with the function
b∗P = αbP (x), unique solution of

aK (b∗P , bP ) =

∫

K

bP ∀bP . (50)

Since βK is constant, an easy computation gives

α(P ) =

∫
K
bP

ε
∫

K
|∇bP |2

, (51)

and notice that α does not depend on the convection coefficient. Recalling that
∫

K

bP (x) = |K|/3, (52)

and ∫

K

|∇bP |2 =
∑

i

∫

Ki

|∇bP |2 dx =
∑

i

∫

Ki

|ei|2
4|Ki|2

=
∑

i

|ei|2
4|Ki|

, (53)

the corresponding stabilization parameter τ̃K approximating τ̂K given by (26), becomes

τ̃K =
1

|K|

∫

K

b∗P =
1

|K|
(
∫

K
bP )2

ε
∫

K
|∇bP |2

=
4|K|

9ε
∑

i |ei|2/|Ki|
. (54)
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The dependence of τ̃K on P is in the denominator, and it is worth performing an asymp-
totic analysis for ε→ 0. From formulae (37) we have

ε

|K1|
=

ε

|K|(1− t)
,

ε

|K2|
=

ε

|K3|
=

2ε

|K|t ,

with t = t∗ given by (40) or (46). It is then easy to see that

lim
ε→0

ε

t
=





0 for t given by (40)

− |K|β · ν1

3(|e2|2 + |e3|2)
for t given by (46)

(55)

lim
ε→0

ε

1− t
=





2

3

|K|β · ν1

|e1|2
for t given by (40)

0 for t given by (46)

Hence,

lim
ε→0

τ̃K =
2

3

|K|
|β · ν1| =

hβ
K

3|β| = lim
ε→0

τ̂K , (56)

where τ̂K is the stabilization coefficient given by the residual-free bubble – see (26). If
instead diffusion dominates, that is, ε > ε∗1 for Case 1, or ε > ε∗2 for Case 2, then t = 2/3,
and |Ki| = |K|/3 (i = 1, 2, 3), so that from (54) we easily have

τ̃K =
4|K|2

9ε
∑

i |ei|2
≈ Ch2

K/ε, (57)

where C depends on K but can be uniformly bounded from above and from below if we
have a regular family of triangulations. For instance, if θ =minimum angle of K, we have

sin2(θ)
h2

K

4ε
≤ 81 τ̃K ≤ h2

K

ε
. (58)

Case 3: One edge of the triangle is parallel to β.
As it will be clear in the next Section, from the error estimates point of view in this
case we can define the point P either by following the recipe of Case 1, or the recipe of
Case 2. The solution of course will change, but not very much, as we will see with some
numerical experiments.

4 Error Estimates

In this section we shall prove that the present choice of the subgrid satisfies the abstract
Assumptions made in [8] in order to keep the same error estimates that we have for the
exact Residual Free Bubble, as given for instance in [10].

Before recalling the results of [10] we need to introduce some further notation. For
this, to every function ϕ we associate the function vL(ϕ) defined as the unique function
of the form vL(ϕ) = ϕ+ µbP that satisfies

aK (vL(ϕ), bP ) = 0 (59)

12



(which actually determines µ in a unique way). We are now ready to recall the following
result, that can easily be deduced from the more general results in [8] as a particular
case.

Theorem 1 Assume that, in each element K, the subgrid is made by a single internal
node P = P (K), and let bP be the bubble defined in (32). Assume further that the bubble
space satisfies the following two assumptions

∃C1 : ∀K ∈ Th, ||bP ||0,K ≤ h
1/2

K ε1/2|bP |1,K (60)

and

∃C2 : ∀K ∈ Th, ∀ϕ ∈ P1, ||β · ∇ϕ||0,K ≤ C2h
−1/2

K ε1/2||∇vL(ϕ)||0,K, (61)

where vL(ϕ) has been defined in (59). Let u and uh be the solutions of (5) and (31)
respectively, and assume that u ∈ Hs(Ω) for some s with 1 < s ≤ 2. Then there exists a
constant C, independent of h, such that

ε1/2||u−uh||1,Ω+
( ∑

K∈Th

hK ||β ·∇(u−uh)||20,K

)1/2

≤ C (hs−1ε1/2||u||s,Ω+hs−1/2||u||s,Ω). (62)

The proof follows immediately combining Theorem 2 and Theorem 3 of [8], plus
standard approximation results. Indeed, (60) is the sufficient condition [[8]: (4.28)] that
ensures Assumption 1 of [8] in the case of a subgrid consisting only of one bubble, and
(61) is precisely Assumption 2 of [8], upon abserving that the function vS used in [8]
coincides with ϕ whenever ϕ is a polynomial of degree 1.

Before proving that our choice of P guarantees that conditions (60) and (61) are
satisfied, we are going to prove two lemmata that give us the values of bP (P ) in the cases
when ε ≤ ε∗1 or ε ≤ ε∗2 (respectively in Case 1 and Case 2).

Lemma 1 Assume that, in Case 1, ε ≤ ε∗1. Then there exist two constants C∗
1 and C∗,1,

depending only on β and on the minimum angle in K, such that

C∗,1 hK ≤ b∗P (P ) ≤ C∗
1 hK. (63)

Proof. Remember that in Case 1 we have two inflow boundary edges, V1 is their common
vertex and the edge opposite to V1 has midpoint M and outward normal proportional to
ν1. Consider the function

ψ1 :=
ν1 · (x− V1)

ν1 · β . (64)

It is clear that
−ε∆ψ1 + β · ∇ψ1 = 1, (65)

that easily implies
aK (ψ1, b) = (1, b) ∀b ∈ H1

0 (K). (66)
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Being linear everywhere, ψ1 is, in particular, piecewise linear on the subgrid of K. Hence
ψ1 can be seen as the unique function, piecewise linear on the subgrid of K, that verifies

aK (ψ1, bP ) = (1, bP ) ψ1(V1) = 0, ψ1(V2) = ψ1(V3) =
ν1 · (V2 − V1)

ν1 · β , (67)

having used the fact that ν1 · (V2−V3) = 0 since ν1 is orthogonal to the edge e1, opposite
to V1. We consider now, for every real number ξ, the problem of finding a function ϕξ

such that
aK (ϕξ, bP ) = (1, bP ) ϕξ(V1) = 0, ϕξ(V2) = ϕξ(V3) = ξ. (68)

Writing ϕξ in terms of the basis (33)-(32) we have ϕξ = 0 · ϕ1 + ξ (ϕ2 + ϕ3) + ϕξ(P ) bP ,
and the equation in (68) gives easily

ϕξ(P )aK (bP , bP ) + ξ(aK (ϕ2, bP ) + aK (ϕ3, bP )) = (1, bP ) (69)

that, surprisingly enough, gives

ϕξ(P ) =
(1, bP )

aK (bP , bP )
(70)

for every real number ξ, since the coefficient of ξ vanishes due to (35). Hence, the value
ϕξ(P ) does not depend on ξ. Comparing (67) and (68) for ξ = ν1 · (V2 − V1)/ν

1 · β, we
see that ϕξ coincides with ψ1. Hence

ϕξ(P ) =
ν1 · (P − V1)

ν1 · β (71)

for all ξ. However, if we take ξ = 0 in (68) we get that its solution is exactly b∗P . We
conclude that

b∗P (P ) = ψ1(P ) =
ν1 · (P − V1)

ν1 · β , (72)

and (63) follows immediately since, as we have seen, P −V1 = t(M −V1) and t ≥ 2/3.

The next lemma is the counterpart of the previous one for Case 2.

Lemma 2 Assume that, in Case 2, ε ≤ ε∗2. Then there exist two constants C∗
2 and C∗,2,

depending only on β and on the minimum angle in K, such that

C∗,2 hK ≤ b∗P (P ) ≤ C∗
2 hK. (73)

Proof. Remember that in Case 2 we have one inflow boundary edge e1, with midpoint M
and outward normal proportional to ν1, and that V1 is the vertex opposite to it. Consider
the function

ψ2 :=
ν1 · (x−M)

ν1 · β . (74)
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Notice that ψ2 ≥ 0 as the numerator is ≤ 0 and the denominator negative. It is clear
that

−ε∆ψ2 + β · ∇ψ2 = 1, ψ2(V2) = ψ2(V3) = 0, ψ2(V1) =
ν1 · (V1 −M)

ν1 · β . (75)

Hence ψ2 is the unique function, piecewise linear on the subgrid of K, that verifies

aK (ψ2, bP ) = (1, bP ) ψ2(V2) = ψ2(V3) = 0, ψ2(V1) =
ν1 · (V1 −M)

ν1 · β . (76)

However the condition (44), valid for ε ≤ ε∗2, implies that the value in P of the solution
of (67) will coincide with the value in P of any other piecewise linear function ϕξ that
verifies

aK (ϕξ, bP ) = (1, bP ) ϕξ(V2) = ϕξ(V3) = 0, ϕξ(V1) = ξ (77)

for every real number ξ (by the same argument used in the previous lemma). In particular,
if we take ξ = 0 in (77) we get that its solution is exactly b∗P . We conclude that

b∗P (P ) = ψ2(P ) =
ν1 · (P −M)

ν1 · β , (78)

and (73) follows immediately since, as we have seen, V1 − P = t(V1 − M), so that
P −M = P − V1 + V1 −M = (1− t)(V1 −M) and t ≤ 2/3.

The next lemma ensures that, both in Case 1 and in Case 2, the upper bound in (63)
and (73) are satisfied for every value of ε > 0.

Lemma 3 With the choice of P made in the previous section, we always have

∃C3 : ∀K ∈ Th b∗P (P ) ≤ C3 hK , (79)

with C3 depending only on the minimum angle in Th and the maximum value of |β|.

Proof. The result follows immediately, in both Case 1 and Case 2, if ε ≤ ε∗1 and ε ≤ ε∗2
respectively. Otherwise, from equation (50) we deduce

ε

∫

K

|∇b∗P |2 =

∫

K

b∗P . (80)

We consider Case 1, as the analysis of Case 2 is practically identical. For ε ≥ ε∗1 we
have t = 2/3, and P is the barycenter of K. Hence, from (53) we see that |b∗P |21,K =
b∗P (P )2|bP |21,K ≥ C b∗P (P )2, where C depends only on the minimum angle of K. On the
other hand, the integral of b∗P over K is b∗P (P ) |K|/3, so that (80) yields

b∗P (P ) =
|K|/3

ε
∫

K
|∇bP |2

≤ |K|/3
ε∗1C

, (81)

whenever ε ≥ ε∗1. Since estimate (43) implies that ε∗1 ≥ γ∗,1 hK, (79) follows from (81).
For Case 2 we just change ε∗1 into ε∗2 and use (49).

We can now prove that conditions (60) and (61) are satisfied with our choice for P .
We start with (60).
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Proposition 1 Assume that, for every element K ∈ Th, the position of the internal node
P is such that the function b∗P , solution of (50), satisfies (79), as in the thesis of Lemma
3. Then the condition (60) holds true, with constant C1 independent of h and K.

Proof. We start by noticing that, since bP is linear in each triangle Ki, we can use the
midpoints of the edges integration formula for computing the integral of its square:

∫

K

b2P =

3∑

i=1

|Ki|
3

2
(1

2

)2

=
|K|
6
, (82)

so that, comparing with (52), we deduce

||bP ||20,K =
1

2

∫

K

bP . (83)

On the other hand, equation (50) implies

b∗P (P )ε |bP |21,K =

∫

K

bP , (84)

and (60) follows immediately from (79) and (83)-(84).

We deal now with (61).

Proposition 2 Assume that, for every K ∈ Th the position of the internal node P is
chosen according with (41) (in Case 1) or (47) (in Case 2). Then (61) is satisfied.

Proof. As we did before, we deal first in detail with Case 1, as the proof for Case 2 is
almost identical. From the definition (59) of vL(ϕ) we obtain

ε

∫

K

∇vL(ϕ) · ∇bP = −
∫

K

β · ∇vL(ϕ) bP = −
∫

K

(β · ∇ϕ) bP . (85)

Consider first the subcase ε ≤ ε∗1, and observe that (85) holds for every bP , so that we
can take it for bP = b∗P . As ∇ϕ is constant in K we easily deduce that

||β · ∇ϕ||0,K = |K|1/2
|ε

∫
K
∇vL(ϕ) · ∇b∗P |∫

K
b∗P

. (86)

Using Cauchy-Schwarz inequality and then (84) in (86) we deduce

||β · ∇ϕ||0,K ≤ |K|1/2ε1/2|vL(ϕ)|1,K
ε1/2||∇b∗P ||0,K∫

K
b∗P

= |K|1/2
ε1/2|vL(ϕ)|1,K

(
∫

K
b∗P )1/2

=
√

3
ε1/2|vL(ϕ)|1,K

(b∗P (P ))1/2
.

(87)

16



Since we are in the subcase ε ≤ ε∗1 we can apply inequality (63) of Lemma 1 to obtain

ε1/2|vL(ϕ)|1,K
1

(
b∗P (P )

)1/2
≤ ε1/2(C∗,1 hK)−1/2|vL(ϕ)|1,K, (88)

and the result follows (for ε ≤ ε∗1) by inserting (88) in (87). For ε ≥ ε∗1, instead, we
restart from (85) with bP = b∗P and use, this time, equality

β · ∇ϕ|K =

∫
K
β · ∇vL(ϕ) b∗P∫

K
b∗P

, (89)

thus obtaining

||β · ∇ϕ||0,K = |K|1/2
|
∫

K
β · ∇vL(ϕ) b∗P |∫

K
b∗P

≤ |K|1/2 |βK|||∇vL(ϕ)||0,K ||b∗P ||0,K∫
K
b∗P

(90)

after using the Cauchy-Schwarz inequality. We go back now to (83) to recover that
||b∗P ||0,K||/

∫
K
b∗P = ||bP ||0,K||/

∫
K
bP =

√
3/2|K|−1/2. By inserting this into (90), and using

(43), for ε ≥ ε∗1 we finally get:

||β · ∇ϕ||0,K ≤
√

3/2 |βK| ||∇vL(ϕ)||0,K =
√

3/2 |βK| ε−1/2ε1/2||∇vL(ϕ)||0,K

≤ (γ∗,2hK)−1/2
√

3/2 |βK| ε1/2||∇vL(ϕ)||0,K,
(91)

and the result follows. The proof for Case 2, as we said, is almost identical, just replacing
ε∗1 with ε∗2.

5 Numerical results

In this Section we present some numerical experiments to validate our method. We
consider the test case shown in Figure 3 for which the exact solution exhibits an internal
and a boundary layer. We compare our method with the classical SUPG method; for
completeness, we also show the solutions obtained with the plain Galerkin method.

The basic mesh is made of 762 triangles, and finer meshes are obtained by iterative
refinements, dividing each triagle into four triangles. As exact solution we take the
solution of the plain Galerkin method on the grid generated by four refinements, thus
made of 762× 44 = 195072 triangles.

Figures 4, 5, and 6 plot the solutions obtained with the plain Galerkin Method, SUPG,
and our method, respectively. The left column corresponds to the initial coarse grid (762
elements) and the right column corresponds to a grid of 762×4 = 3048 elements obtained
with the first refinement. We report the L2 errors in each case. We see that the L2 error
is slightly smaller for our method despite the fact that oscillations are a little bigger. We
remark that the error estimates are the same for both methods. We also computed the
error in L1 and the results are qualitatively the same.

We point out that in the presence of a boundary layer only, the results are similar.
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Figure 4

Plain Galerkin Method

The situation is different if we consider a case with an internal layer only; indeed, for
the value of ε used so far no stabilization is necessary, and with a smaller ε our method
coincides with the RFB method. In this last case, there is no difference with the SUPG
method.

In Fig. 7 (left) we show the complete solution computed with the Standard Galerkin
on the Augmented Grid, i.e., the linear part (which lives on the original mesh) plus the
bubble part (which lives on the subgrid). We see that the complete solution is very close
to the linear part only shown in Fig. 6, despite the fact that in the layers the bubble part
shown in Fig. 7 (right) is not negligeable.

Finally, we want to check that in the case of a grid aligned with β, there is essentially
no difference in defining the point P as in Case 1 (i.e. by considering the parallel edge
as inflow) or in Case 2 (parallel edge is considered outflow). We study a very particular
case where all the triangles are equal and have an edge parallel to β. The domain is the
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SUPG Method
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Our Method

unit square and the grid is uniform, with each side divided in 20 parts. For the sake of
simplicity, we identify the sides of the square with the four cardinal points (N, S, E, W);
the oblique edge of the triangles goes from N-W to S-E.

Experiment 1. In this case we take β = (1, 0), f = 0, homogenous Neumann condition
at N and S, u = 1 at W, u = 0 at E. The continuos problem is one-dimensional, while
the discrete one is not because of the different orientations of triangles.

Experiment 2. We take β = (1,−1), f = 0, u = 0 at N and E, u = 1 at S and W.

We start by plotting in Figures 8 and 9 the two values of the stabilization parameter τ̃K

given by (54): the solid line represent the recipe of Case 1 (parallel = inflow), while the
dotted line is Case 2 (parallel = outflow). The value is of course the same for all triangles.
For Experiment 1, the “worst” value for ε (i.e. the value for which the difference is the
largest) is about 1.58e-03, while for Experiment 2 the worst value for ε is 1.26e-03.
Figures 10 and 11 show the solutions corresponding to these two values of ε obtained
with τ̃K given by the Case 1 recipe (parallel = inflow). In Figures 12 and 13 we plot
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Experiment 1: τ̃K vs ε

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

PSfrag replacements

V1

V2

V3

K1

K2

K3

e1
e2
e3
z1
z2
z3
M
P
Kδ

Kδ
reg

β

P ∗

M1

S
Σ
N
S
E

W
u = 0
u = 1

u
=

1
u

=
0

β = (1, 3)

boundary layer

internal layer

Figure 9

Experiment 2: τ̃K vs ε

the difference between the two solutions obtained in correspondence of the two values
of the stabilization parameter τ̃K . We see that in the presence of an internal layer only,
the difference is negligible, while if there is a boundary layer the choice of P makes
a difference. However, we point out that we have chosen the worst possible case: all
triangles are aligned with β, and the value of ε maximizes the difference between the
stabilization parameters.
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Experiment 1: ε = 1.58e-03, τ̃K given by Case 1
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Experiment 2: ε = 1.26e-03, τ̃K given by Case 1
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Experiment 1: Difference of the solutions
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Experiment 2: Difference of the solutions
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[19] C. Johnson, U. Nävert, and J. Pitkäranta. Finite element methods for linear hyper-
bolic problem. Comput. Methods Appl. Mech. Engrg., 45:285–312, 1984.

[20] C. Johnson, A. H. Schatz, and L. B. Wahlbin. Crosswind smear and pointwise error
estimates in streamline diffusion finite element method. Math. Comp., 49:25–38,
1987.

[21] K. Niijima. Pointwise error estimates for a streamline diffusion finite element scheme.
Numer. Math., 56:707–719, 1990.

[22] H.-G. Roos, M Stynes, and L. Tobiska. Numerical methods for singularly perturbed
differential equations: convection diffusion and flow problems. Springer-Verlag, 1996.

[23] A. Russo. Bubble stabilization of finite element methods for the linearized incom-
pressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg., 132:335–
343, 1996.

[24] G. Sangalli. Global and local error analysis for the residual-free bubbles method
applied to advection-dominated problems. SIAM J. Numer. Anal., 38:1496–1522,
2000.

[25] G. Sangalli. A robust a posteriori estimate for the Residual-free Bubbles method
applied to advection-diffusion problems. Numer. Math., 89:379–399, 2001.

[26] G. Zhou. How accurate is the streamline diffusion finite element method? Math.
Comp., 66:31–44, 1997.

[27] Guohui Zhou and R. Rannacher. Pointwise superconvergence of the streamline dif-
fusion FEM. Num. Meth. for PDE, 12:123–145, 1996.

23


