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Abstract. In this paper we recall a few basic definitions and results concerning the
use of DG methods for elliptic problems. As examples we consider the Poisson problem
and the linear elasticity problem. A hint on the nearly incompressible case is given, just
to show one of the possible advantages of DG methods over continuous ones. At the
end of the paper we recall some physical principles for linear elasticity problems, just to
open the door towards possible new developments.
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1. Introduction. The main purpose of this paper is to present the
basic features of Discontinuous Galerkin Methods for elliptic problems.
We will give some hints on the basic mathematical tools typically used to
study and analyze them, and on their capability to avoid some common
troubles (as the discretization of nearly incompressible materials). We will
state approximation properties and show how to derive a-priori estimates.
We will also present some possible variants and relationships with other
approaches (as mixed or hybrid methods for linear elasticity) that possibly
deserve a deeper analysis.

The paper is addressed to readers with a more engineering oriented
background, and an interest in continuum mechanics, with the idea to
help them in getting more familiar with the basic concepts and features of
DG methods, that indeed, according to the latest developments, show an
interesting potential also in structural problems.

Actually, applications of DG methods to other problems, and in partic-
ular to hyperbolic problems, conservation laws and the like, started already
forty years ago, and are fully developed nowadays (see e.g. [19], [36]). In
this book these applications are discussed at a much higher level, (starting
from the ”parallel” contribution of Chi Wang Shu [37]); this is quite nat-
ural, since the interested people are (in general) already acquainted with
all the basic instruments and with the applications to the more common
problems.

Instead, most practitioners in structural engineering and continuum
mechanics, so far, are not yet familiar with the use of DG methods, that
have been pushed forward mainly by applied mathematicians and more
”mathematically oriented” engineers. Hence the idea of addressing people
that are less familiar with the DG machinery but are interested in trying
them on their problems.
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We will not discuss issues related to a-posteriori estimates and mesh-
adaptivity, a very interesting subject that however goes beyond the scope
of this paper. For this we refer, for instance, to [31, 33, 32]. For the same
reason, we will not discuss matters related to the solution of the final linear
systems, such as the construction of efficient solvers and preconditioners
(see, e.g., [9, 25]).

The paper is organized as follows. In Sect. 2 we recall some basic in-
struments, such as Poincaré, trace, and inverse inequalities, that will be
useful in the sequel. In Sect. 3 typical tools for dealing with discontinuous
functions are introduced: jumps and averages, norms and bounds for the
edge contributions. Sect. 4 is devoted to the treatment of the Poisson prob-
lem; the most common DG schemes are derived and proved to be stable
and consistent. Error estimates are also recalled. In Sect. 5 linear elasticity
problems are treated, including the nearly incompressible case where the
use of DG approximations proves to be particularly well suited for dealing
with the so-called locking phenomenon. Finally, in Sect. 6 we recall some
basic physical principles that are at the basis of alternative variational for-
mulations (always for linear elasticity). The use of DG discretizations for
many of these formulations is still at the beginning, and their potential is,
in our opinion, still to be fully assessed.

Throughout the paper we shall follow the usual notation for Sobolev
norms and seminorms, as for instance in [18]. Hence, for a geometric object
O (as an edge, or an element, or a general domain) and a smooth-enough
function v defined on O, we will denote by

‖v‖20,O ≡ |v|20,O ≡
∫
O
v2 dO

the (square) norm of v in L2(O). On the other hand the notation |v|2k,O
will indicate, for k integer ≥ 1, the square of the seminorm of v obtained
summing all the squares of the L2 norms of all the derivatives of order k.
Hence, in 2 dimensions,

|v|21,O ≡
∣∣∣ ∂v
∂x1

∣∣∣2
0,O

+
∣∣∣ ∂v
∂x2

∣∣∣2
0,O

|v|22,O ≡
∣∣∣∂2v

∂x2
1

∣∣∣2
0,O

+
∣∣∣ ∂2v

∂x1∂x2

∣∣∣2
0,O

+
∣∣∣∂2v

∂x2
2

∣∣∣2
0,O

,

and so on.

2. Some basic mathematical instruments. We start with a few
very basic inequalities. We will give a rather detailed proof in one dimen-
sion, and often only a general idea on the case of several dimensions.
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2.1. Poincaré inequality. Let v ∈ C1([0, T ]) with v = 0 at t0 ∈
[0, T ]. Then, using the fundamental theorem of calculus we get

v(t) =

∫ t

t0

v′(τ) dτ, then, taking the absolute values,

|v(t)| ≤
∫ T

0

|v′(τ)| dτ then squaring both sides and using C-S

|v(t)|2 ≤
∫ T

0

|v′(τ)| dτ2 ≤ T
∫ T

0

|v′(τ)|2 dτ and integrating from 0 to T

∫ T

0

|v(t)|2 dt ≤ T 2

∫ T

0

|v′(τ)|2 dτ. (2.1)

2.2. Trace inequalities. Let v ∈ C1([0, T ]) Then, using the funda-
mental theorem of calculus on the function v2:

v2(0) = v2(t)−
∫ t

0

(v2(τ))′ dτ and then taking the absolute value

v2(0) ≤ v2(t) +

∫ T

0

|2v(τ)v′(τ)| dτ then multiplying and dividing by
√
T

v2(0) ≤ v2(t) +

∫ T

0

2
|v(τ)|√
T

√
T |v′(τ)| dτ and using 2ab ≤ a2 + b2

v2(0) ≤ v2(t) +

∫ T

0

( |v(τ)|2

T
+ T |v′(τ)|2

)
dτ ; integrating from 0 to T

T v2(0) ≤
∫ T

0

v2(t) dt+T

∫ T

0

(v2(τ)

T
+T (v′(τ))2

)
dτ ; and dividing by T

v2(0) ≤
∫ T

0

( 2

T
v2(τ) + T (v′(τ))2

)
dτ ≤ 2

T
‖v‖20 + T |v|21. (2.2)
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2.3. Comments on the above inequalities. Note that both in
(2.1) and in (2.2) the physical dimensions of the two terms coincide. In
particular in (2.1) we have[ ∫

v2 dt
]
≡ [v]2[t] ≡ [v]2[t]

[ [t]2

[t]2

]
≡ [t]2

[ [v]2[t]

[t]2

]
≡ [t]2

[ [v]

[t]

]2
[t] ≡ [t]2

[ ∫
|v′|2 dt

]
.

Similarly, considering (2.2) we easily check that

[v]2 ≡
[1

t

]
[v]2[t] ≡ 1

[t]

[ ∫
v2 dt

]
and

[v]2 ≡ [t]
[v
t

]2
[t] ≡ [t]

[ ∫
|v′|2 dt

]
A rough interpretation of the trace inequality could be: if the value at

one point is big, then either the function has a big integral (and you can
use the first piece in the right-hand side of (2.2)) or it has a big derivative
(and you can use the second piece in the right-hand side of (2.2)). See
Figure 1.

1
Big  | v |Big  | v |

2 2

0 

Fig. 1. Trace inequality

If you are big at one point (say, at zero), either you go down quickly
(and have a big | · |1 norm), or you stay up, and have a big | · |0 norm. See
Figure 1.

2.4. 2-d Versions. We summarize here the two-dimensional versions
of the above inequalities, with some picture that indicates a possible proof
(using the one-dimensional results) in some particular geometries.

In Figure 2 we illustrate Poincaré inequality for functions v vanishing
on the edge of ∂Ω contained in the x axis.
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v=0
0 

T

0 L

x

Fig. 2. Poincaré inequality in 2 dimensions

From the 1-d case

‖v(x, ·)‖20, ]0,T [ ≤ T
2|v(x, ·)|21, ]0,T [

we deduce

‖v‖20,Ω ≤ T 2‖∂v
∂t
‖20,Ω.

At a more general level, we already saw that in the estimate (2.1) the
physical dimensions match. It is easy to see that, in a more general bounded
domain K ⊂ IRd with characteristic length ` we have[

‖v‖20,K
]

= [v]2 [`]d and
[
|v|21,K

]
= [v]2 [`]d−2

so that a natural guess is

‖v‖20,K ≤ (d(K))2|v|21,K (2.3)

where d(K) is the diameter of K, and where we have to assume, for in-
stance, that v has zero mean value on K (or some other condition that
allows to take care of constant functions).

Possibly this is a good moment to point out that the widely used
definition

‖v‖21,K := ‖v‖20,K + |v|21,K

doesn’t make any sense, unless everything has been adimensionalized:
a practice rather unhealthy from the engineering point of view.

Concerning instead the trace inequality, from the one-dimensional case
we have, again for the rectangle K ≡]0, L[×]0, T [

|v2(x, 0)| ≤ 2

T
‖v(x, t)‖20, ]0,T [ + T‖∂v

∂t
(x, t)‖20, ]0,T [ ∀x ∈]0, L[.
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0 

0 L

x

T

0 

0 L

x

T

Fig. 3. Trace inequality in 2 dimensions

Here, and in what follows, ]a, b[ denotes the open interval (a, b). By inte-
grating in x from 0 to L we have:

‖v(·, 0)‖20, ]0,L[ ≤
2

T
‖v‖20,K + T |∂v

∂t
|20, K

from which we reasonably guess the more general version

‖v‖20,∂K ≤ C
(
`−1‖v‖20,K + `|v|21,K

)
(2.4)

where both the constant C and the characteristic length ` can depend on
several geometric features (see Figure 3 for a simple example where the
bound on the L2 norm of the trace on the lower edge of the rectangle
depends on the height T of the rectangle), but the constant C does not
depend on the size of K.

2.5. Inverse Inequalities. In a finite dimensional space, all norms
are equivalent, in the sense that for any two norms ‖ · ‖@ and ‖ · ‖# there

exist two positive constants c and C such that

c ‖v‖@ ≤ ‖v‖# ≤ C ‖v‖@ for every v in the space.

However if the norms are, say, ‖v‖0,K and ‖v‖1,K the constants c and C
might depend on the size of K. Indeed we already saw in (2.3) that in
the inequality

‖v‖20,K ≤ C|v|21,K (2.5)

the constant C should have physical dimension[
C
]

= [`]2
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and actually behave as the square of the diameter of K.
On the other hand it is natural to ask the question whether one could

have (in one dimension, to start with) an inequality of the type

h2|v|21, ]0,h[ ≤ C‖v‖
2
0, ]0,h[

for some constant C. But taking

v = sin(
2πkx

h
) k ∈ N, (2.6)

we have

‖v‖20, ]0,h[ =
h

2
h2|v|21, ]0,h[ = 4π2k2h

2

and our dreams dissolve.
However....we cannot fit all the functions (2.6), for all the possible

integers k, in a single finite dimensional space! Hence the inequality

h2|v|21, ]0,h[ ≤ C‖v‖
2
0, ]0,h[

has still some possibilities, if we are ready to accept a constant C that
depends on the finite dimensional subspace I am using. For instance for
v = (x/h)r (with r integer ≥ 1) we have

h2|v|21, ]0,h[ =
h r2

2r − 1
and ‖v‖20, ]0,h[ =

h

2r + 1
(2.7)

and we might get away with a constant C that depends on the degree of
the polynomials (and actually this is the case). For instance in the case of
(2.7) we have

h2|v|21, ]0,h[ ≤
r2(2r + 1)

2r − 1
‖v‖20, ]0,h[ ≤ 3r2 ‖v‖20, ]0,h[.

More generally, for a family of homothetic elements (see Figure 4) and
an integer r there exists a C = C(r) such that

|v|21,K ≤ Ch−2‖v‖20,K

where h = diameter of K, and the inequality holds for every v polynomial
of degree ≤ r, and even more generally (see e.g. [18])

|v|2s,K ≤ Ch−2(s−k)‖v‖2k,K for s, k integers with s ≥ k (2.8)

For a much wider and deeper review of the basic mathematical instru-
ments for dealing with Finite Elements we refer for instance to [13].
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Fig. 4. Homothetic elements

3. Some inequalities for DG elements. As we want to deal with
spaces of piecewise polynomials that can be discontinuous from one element
to the neighboring one, it is natural to begin by considering the simplest
case of two triangles (as in the next figure) and functions that are poly-
nomials separately in each triangle (and possibly discontinuous from one
triangle to the other).

3.1. Definition of averages and jumps. If K+ and K− are two
elements with an edge e in common, we denote by n+ and n− the outward
unit normal at e of K+ and K−, respectively.

_

K

K+

nn+

_

Then for every pair (v+, v−) of smooth functions on K+ and K−,
respectively, and for every pair (τ+, τ−) of smooth vector valued functions
on K+ and K−, respectively, we set

{{v}} :=
1

2
(v+ + v−, ) [[v]] := v+n+ + v−n−

{{τ}} :=
1

2
(τ+ + τ−), [[τ ]] := τ+ ⊗ n+ + τ− ⊗ n−

where a⊗ b := 1
2 (abT + baT ). We will also use the so called scalar jump:

[[τ ]]s ≡ [[τ ]]nn = τ+ · n+ + τ− · n−
On a boundary edge, instead, for every smooth function v and for

every smooth vector valued function τ we set

{{v}} := v [[v]] := vn

{{τ}} := τ , [[τ ]] := τ ⊗ n, [[τ ]]s := τ · n



A QUICK TUTORIAL ON DG METHODS 9

K

n

Ω

3.2. Piecewise integrals. Given a decomposition (that for simplic-
ity we assume compatible) of our computational domain Ω we denote:

• the set of all elements by Th,
• the set of all edges by Eh,
• the set of all internal edges by E0

h,
• the set of all boundary edges by E∂h .

For the sake of simplicity we also assume Th to be quasi-uniform,
meaning that there exists a positive constant γ such that

hmin ≥ γ hmax, (3.1)

where hmin and hmax are the minimum and maximum diameter of the
elements of Th, respectively. This will allow us to simplify notation, and
use h to denote the characteristic length of all the elements of Th. Moreover
we set:

(f, g)Th :=
∑
K∈Th

∫
K

f g dx < f, g >Eh :=
∑
e∈Eh

∫
e

f g ds

< f, g >E0h :=
∑
e∈E0h

∫
e

f g ds < f, g >E∂h :=
∑
e∈E∂h

∫
e

f g ds

3.3. The Magic formula. For any piecewise smooth scalar function
v, and for any piecewise smooth vector valued function τ we have now∑

K∈Th

∫
∂K

v τ · nK ds =< [[v]], {{τ}} >Eh + < {{v}}, [[τ ]]s >E0h . (3.2)

The (elementary) proof is based on the algebraic equality:

a1b1 − a2b2 =
1

2
(a1 + a2)(b1 − b2) +

1

2
(b1 + b2)(a1 − a2)

3.4. Continuity of edge contributions. For piecewise smooth sca-
lar functions u and v, using on each edge

|{{∇u}}| ≤ (|∇u+|+ |∇u−|)/2, (3.3)
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and the trace inequality (2.4) we have

< [[v]], {{∇u}} >Eh≤
∑
e∈Eh

∣∣∣ ∫
e

[[v]] · {{∇u}} ds
∣∣∣

≤ C
( ∑
e∈Eh

1

h
‖[[v]]‖20,e

)1/2 ( ∑
K∈Th

(‖∇u‖20,K + h2|∇u|21,K)
)1/2

. (3.4)

If u is a piecewise polynomial of degree ≤ r, (3.4) becomes, thanks to the
inverse inequality (2.8),

< [[v]], {{∇u}} >Eh≤ Cr
(∑
e∈E

1

h
‖[[v]]‖20,e

)1/2( ∑
K∈Th

‖∇u‖20,K
)1/2

. (3.5)

We define now, for v piecewise smooth and k ∈ N:

‖v‖2jump :=
∑
e∈Eh

1

h
‖[[v]]‖20,e, |∇v|2k,h :=

∑
K∈Th

|∇v|2k,K , |v|2k+1,h := |∇v|2k,h.

Often we will write ‖ · ‖j instead of ‖ · ‖jump. We also set:

‖v‖2DG := ‖v‖2jump + |∇v|20,h + h2|∇v|21,h (3.6)

that, using (2.8), for piecewise polynomials of degree less than or equal to
a given degree r is equivalent to

‖v‖2DG ' ‖v‖2jump + |∇v|20,h. (3.7)

Then our continuity equations (3.4) and (3.5) become, respectively,

< [[v]], {{∇u}} >Eh≤ C‖v‖j(|u|1,h + h2|u|2,h) ≤ C‖u‖DG‖v‖DG (3.8)

and

< [[v]], {{∇u}} >Eh≤ Cr‖v‖j |u|1,h ≤ Cr‖u‖DG‖v‖DG. (3.9)

In a quite similar way, using on each edge

{{v}} ≤ (|v+|+ |v−|)/2 |[[∇u]]| ≤ (|∇u+|+ |∇u−|)/2 (3.10)

one proves the inequalities

< {{v}}, [[∇u]]s >Eh≤ C‖u‖DG‖v‖DG (3.11)

and

< {{v}}, [[∇u]]s >Eh≤ Cr‖u‖DG‖v‖DG. (3.12)

Finally, for v piecewise smooth on a domain O, the trace inequality
gives

‖v‖2jump ≤ C (h−2‖v‖20,O + |v|21,h). (3.13)
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4. DG for the Poisson problem. We consider now one of the sim-
plest possible elliptic problems, in order to understand the behavior of DG
methods. We will deal only with the more popular variants (SIPG, NIPG,
IIPG). For a more detailed analysis of the numerous other variants of DG
methods for the Poisson problem we refer for instance to [5].

Given a 2-dimensional domain Ω and f ∈ L2(Ω) we look for u such
that

−∆u = f in Ω and u = 0 on ∂Ω (4.1)

Given a decomposition of Ω into triangles (for simplicity) we want to
use a DG method. We fix, once and for all, the degree r of the local poly-
nomials, and we define Vh as the space of functions vh that are piecewise
polynomials of degree ≤ r on Ω and can be discontinuous from one triangle
to another. For a vh ∈ Vh we have∫

Ω

−∆u vhdx =
∑
T∈Th

(∫
T

∇u · ∇vhdx−
∫
∂T

vh∇u · nTds
)
.

For u = exact solution and vh ∈ Vh we have∫
Ω

−∆u vhdx =
∑
T∈Th

(∫
T

∇u · ∇vhdx−
∫
∂T

vh∇u · nTds
)

that using (3.2) becomes

= (∇u,∇vh)Th− < {{∇u}}, [[vh]] >Eh − < [[∇u]]s, {{vh}} >E0h

= (∇u,∇vh)Th− < {{∇u}}, [[vh]] >Eh . since [[∇u]] = 0

4.1. The three main variants. We recall that if u is the solution of
problem (4.1), then for every piecewise polynomial vh we have

(−∆u , vh)Th = (∇u,∇vh)Th− < {{∇u}}, [[vh]] >Eh .

For δ = −1, 1, 0 (three variants) and αstab > 0 we define the discrete
problem as: Find uh ∈ Vh such that

(f, vh)Th = (∇uh,∇vh)Th− < {{∇u}}, [[vh]] >Eh

+ δ < {{∇vh}}, [[uh]] >Eh +
αstab
h

< [[uh]], [[vh]] >Eh .

We point out that the terms in the last line are zero for uh = u.
We now set

aδ(uh, vh) := (∇uh,∇vh)Th− < {{∇uh}}, [[vh]] >Eh

+ δ < {{∇vh}}, [[uh]] >Eh +
αstab
h

< [[uh]], [[vh]] >Eh
(4.2)

so that the discrete problem becomes

aδ(uh, vh) = (f, vh)Th ∀vh ∈ Vh.

We have now to check consistency and stability of all the variants, in
order to prove optimal error bounds
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4.2. Consistency. We note first that, for every δ and for every
αstab, when u is the exact solution we have, for all vh ∈ Vh:

aδ(u, vh) = (∇u,∇vh)Th− < {{∇u}}, [[vh]] >Eh= (f, vh).

Hence, if uh solves aδ(uh, vh) = (f, vh)Th for all vh ∈ Vh we have the
Galerkin Orthogonality

aδ(u− uh, vh) = 0 ∀vh ∈ Vh. (4.3)

Recalling that, for piecewise smooth u and v,

aδ(u, v) := (∇u,∇v)Th− < {{∇u}}, [[v]] >Eh

+ δ < {{∇v}}, [[u]] >Eh +
αstab
h

< [[u]], [[v]] >Eh ,

and using the definition of the jump-norm together with (3.8) and (3.11)
we gather easily that for all piecewise smooth u and v we have

aδ(u, v) ≤ C ‖u‖DG ‖v‖DG
with a constant C independent of the mesh-size.

4.3. Stability. We first recall that, in the subspace Vh, from the
inverse inequality (2.8)

‖vh‖2DG = ‖vh‖2j + ‖∇vh‖20,h + h2‖∇vh‖1,h ' ‖vh‖2j + ‖∇vh‖20,h.

Therefore, from the definition (4.2) we have:

aδ(vh, vh) := |vh|21,h + αstab‖vh‖2j + (δ − 1)<{{∇vh}}, [[vh]]>Eh

so that

aδ(vh, vh) ≥ |vh|21,h + αstab‖vh‖2j−|δ − 1|C|vh|1,h ‖vh‖j (4.4)

with a constant C independent of the mesh size. At this point it is conve-
nient to recall that, given a quadratic form x2 +αsy

2−2βxy, the associated
matrix ( 1 −β

−β αs

)
is positive definite if and only if αs > β2. In other words, for β fixed, we
will always have

x2 + αsy
2 − βxy ≥ α∗(x2 + y2)

for some constant α∗ > 0, whenever αs is big enough. Going back to (4.4)
we deduce that, for every δ,

aδ(vh, vh) ≥ |vh|21,h + αstab‖vh‖2j−|δ − 1|C|vh|1,h ‖vh‖j
≥ α∗‖vh‖2DG ∀vh ∈ Vh

(4.5)

for some constant α∗ > 0, whenever αstab is big enough.
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4.4. The corresponding methods and some variants. At this
point we recall that we had three choices for δ, namely δ = −1, 1, 0, in the
discrete bilinear form

aδ(uh, vh) := (∇uh,∇vh)Th− < {{∇uh}}, [[vh]] >Eh

+ δ < {{∇vh}}, [[uh]] >Eh +
αstab
h

< [[uh]], [[vh]] >Eh .

We can now comment that for all the three methods we have consistency
(actually: Galerkin orthogonality) and stability (in the subspace) with a
constant independent of the mesh size. We can further comment that, in
particular

• for δ = −1 (SIPG, [3, 39]) we have a symmetric method
• for δ = 1 (NIPG, [10, 35]) we have stability for all αstab
• for δ = 0 (IIPG, [24, 38]) we have a simpler expression.

We can also consider other variants. Always for δ = −1, 1, 0 we denote
by Πe

r−1 the L2(e) projection onto the polynomials of degree ≤ r− 1 on e.
We consider the following variants

aδ(uh, vh) := (∇uh,∇vh)Th− < {{∇uh}}, [[vh]] >Eh

+ δ < {{∇vh}}, [[uh]] >Eh +
αstab
h

< Πe
r−1[[uh]],Πe

r−1[[vh]] >Eh .

For r = 1, these variants are denoted, respectively, SIPG-0, NIPG-0, and
IIPG-0. In particular, IIPG-0 has several nice features that allow an easier
construction of solvers and/or pre-conditioners ([9, 8]).

Other variants include the possibility of adding, on top of the stabiliz-
ing term

αstabh
−1 < [[uh]], [[vh]] >Eh , (4.6)

an additional stabilizing term of the type

βstabh < [[∇uh]]s, [[∇vh]]s >Eh

(see e.g.[16]).
Finally we point out that, for δ = 1, and piecewise linear elements

(r = 1) we can eliminate the jump-penalty term (4.6), and obtain stability
by inserting a bubble function into the local space ([15, 1, 2, 17]).

4.5. Convergence. Let uI be an approximation of u in Vh. Setting
δh := uh − uI we have

α∗‖δh‖2DG ≤ aδ(δh, δh) (use the definition of δh)

= aδ(uh − uI , δh) (use (4.3))

= aδ(u− uI , δh) (use (3.8))

≤M ‖u− uI‖DG ‖δh‖DG
(4.7)
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so that

‖u− uh‖DG ≤ ‖u− uI‖DG + ‖δh‖DG ≤ (1 +
M

α∗
)‖u− uI‖DG. (4.8)

4.6. Approximation. We assume that uI is an approximation of u
in Vh with the following property: There exists an integer r (the degree of
the local polynomials) and a constant C such that

|uI − u|s,K ≤ Chr+1−s|u|r+1,K (4.9)

for all integers s with 0 ≤ s ≤ r, for all h and for all element K ∈ Th.
Using (4.9) we bound first the jump norm:

‖uI − u‖2j =
∑
e∈Eh

1

h
‖[[uI − u]]‖20,e ≤ 2

∑
K∈Th

∑
e∈∂K

1

h
‖uI − u‖20,e

≤ C
∑
K∈Th

(
h−2‖uI − u‖20,K + |uI − u|21,K

)
≤ C h2r|u|2r+1,K .

Now, always using (4.9) we bound the second part of the DG norm:∑
K∈Th

(
|∇(uI − u)|20,K + h2 |∇(uI − u)|21,K

)
≤
∑
K∈Th

(
|uI − u|21,K + h2 |uI − u|22,K

)
≤ C h2r|u|2r+1,K .

We conclude that under the assumption (4.9) we have

‖uI − u‖2DG = ‖[[uI − u]]‖2j +
∑
K∈Th

(
|∇(uI − u)|20,K + h2|∇(uI − u)|21,K

)
≤ C h2r|u|2r+1,K .

5. Linear Elasticity.

5.1. The problem. Given a domain Ω and a distributed load f , we
define

Aµu := −divε(u) Aλ := −∇divu A := 2µAµ + λAλ

where µ and λ are the Lamé coefficients, depending on the material, and
ε(v) := (1/2)(∇v+ (∇v)T ) is the usual symmetric gradient. Then we look
for u such that

Au = f in Ω and u = 0 on ∂Ω (5.1)

The bilinear forms associated to the operators Aµ, Aλ, and A are given by

aµ(u,v) :=

∫
Ω

ε(u) : ε(v)dx, (5.2)
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aλ(u,v) :=

∫
Ω

divudivvdx, (5.3)

and

a(u,v) := 2µaµ(u,v) + λaλ(u,v), (5.4)

respectively. Hence, setting V := (H1
0 (Ω))2, the variational formulation of

(5.1) reads: find u ∈ such that

a(u,v) := 2µaµ(u,v) + λaλ(u,v) = (f ,v) ∀v ∈ V. (5.5)

Remark 5.1. We point out that from the variational formulation
(5.5), taking as usual v = u and using the Korn inequality

CKorn‖v‖2V ≤ aµ(v,v) ∀v ∈ V (5.6)

we easily have

2µCKorn‖u‖2V + λ‖divu‖20,Ω ≤ 2µaµ(u,u) + λ‖divu‖20,Ω = (f ,u) (5.7)

and therefore

√
µ‖u‖V +

√
λ‖divu‖0,Ω ≤ C ‖f‖|V′ (5.8)

with a constant C independent of µ and λ. On the other hand, we also
have easily

2µaµ(u,v) + λaλ(u,v) ≤ C (2µ+ λ)‖u‖V ‖v‖V (5.9)

with a constant C independent of µ and λ.

5.2. Discretization. Assume now that we have again a decomposi-
tion Th of Ω into elements K. On every element K we set

aK(u,v) = 2µ

∫
K

ε(u) : ε(v)dx+ λ

∫
K

divudivvdx.

and we recall the Green formula:

aK(u,v) = −2µ

∫
K

(Aµu) · vdx− λ
∫
K

(∇divu) · vdx

+

∫
∂K

(
2µMµ

nK
(u) + λMλ

nK
(u)
)
· vds

where Mµ
nK

(u) := ε(u) · nK and Mλ
nK

(u) := (divu)nK . We also recall
that the stress field σ is given by

σ := 2µε(u) + λdivuI . In short σ = Cε(u),
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where I is the identity matrix. We rewrite

aK(u,v) = (Cε(u), ε(v))K , MnK
(u) = (2µMµ

nK
+ λMλ

nK
)(u).

The Green formula can then be written as

(Cε(u), ε(v))K = (Au,v)K+ < MnK
(u),v >∂K .

We now introduce, in the spirit of the previous sections, the space Vh of
piecewise polynomial (possibly discontinuous) vectors, concentrating our
attention, for simplicity, on the piecewise linear case. For u and v piecewise
smooth, summing over K and then applying the correspondent (for this
case) of the ”magic trick”, we have∑

K

(Cε(u), ε(v)K = (Au,v)Th

+ < {{MnK
(u)}}, [[v]] · n >Eh +< [[MnK

(u)]] · n, {{v}} >Eh .

When u is the exact solution and v = vh is an element of Vh we obviously
have [[MnK

(u)]] · n = 0. Hence

(Cε(u), ε(vh)Th− < {{MnK
(u)}}, [[vh]] · n >Eh= (f ,vh)Th . (5.10)

5.3. The discretized problem. As before, from (5.10) we take inspi-
ration in order to write the discretized problem. Taking again into account
that the regularity of the exact solution implies [[MnK

(u)]] · n = 0 as well
as [[u]] = 0, we introduce the bilinear form

Bh(u,v) :=(Cε(u), ε(v)Th− < {{MnK
(u)}}, [[v]] · n >Eh

+ δ < {{MnK
(v)}}, [[u]] · n >Eh +

αstab
h

< [[u]], [[v]] >Eh ,

(5.11)
where again we can take δ = −1, 1, 0 (three methods) and αstab > 0 is a
stabilization parameter. We consider then the discretized problem

Find uh ∈ Vh such that: Bh(uh,vh) = (f ,vh)Th ∀vh ∈ Vh. (5.12)

It is immediate to see, from (5.10) and (5.12), that Galerkin orthogonality
holds:

Bh(u− uh,vh) = 0 ∀vh ∈ Vh. (5.13)

Moreover, defining, as in (3.6),

‖v‖2DG := |v|21,h +
∑
K

h2
K |v|22,K +

∑
e

1

he
‖[[v]]‖20,e,
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we have, with arguments quite similar to the ones of the previous section
and using the DG version of (5.6) (see [12]), that for αstab big enough we
have stability:

∃κs > 0 such that κsµ‖vh‖2DG ≤ Bh(vh,vh) ∀vh ∈ Vh, (5.14)

with a κs independent of µ, λ and h. Similarly, using (5.9) in every element
and following again the same arguments used for Poisson problem in the
previous section, we can also prove continuity

∃M > 0 s. t. Bh(u,v) ≤M (µ+ λ) ‖u‖DG‖v‖DG ∀u, v ∈ H2(Th),
(5.15)

with an M independent of µ, λ and h.

5.4. The nearly incompressible case. As we saw, for every λ and µ
positive we have stability (see(5.14)) and continuity (see(5.15)). However,
for λ >> µ we have a mismatch between the stability and the continuity
constant.

Let us see the effects of this on the classical error estimate. Let uI be
an approximation of the solution u in Vh. Setting ηh := uh−uI we have,
as in (4.7) and (4.8),

κsµ‖ηh‖2DG ≤ Bh(ηh,ηh) = Bh(uh − uI ,ηh)

= Bh(u− uI ,ηh) ≤M(µ+ λ) ‖u− uI‖DG ‖ηh‖DG
(5.16)

so that

‖u− uh‖DG ≤ ‖u− uI‖DG + ‖ηh‖DG ≤ (1 +
M (µ+ λ)

µκs
)‖u− uI‖DG

and for λ >> µ we are in deep trouble. Actually, if instead of DG methods
we were using traditional H1-conforming methods we would face the so-
called locking phenomenon, and the solution uh of our discretized problem
would be bounded, but would not converge to the exact solution u.

With DG methods, instead, we have good results: let us see why. As
a first step, we recall the so-called inf-sup condition for the continuous
problem (5.5)

∃β > 0 such that inf
q∈Q

sup
v∈V

(divv, q)

‖q‖Q ‖v‖V
≥ β > 0, (5.17)

where Q := L2(Ω)/R is the subspace of L2(Ω) made of functions with zero
mean value.

5.5. Solving Troubles with DG . We can now start proving error
bounds for the discretized problem (5.12). We restart as in (5.16), setting
now δh := uh − uI , and stop at

κsµ‖δh‖2DG ≤ Bh(δh, δh) = Bh(uh − uI , δh) = Bh(u− uI , δh). (5.18)
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Instead of bounding brutally the last term, we now observe that

Bh(u−uI , δh) ≤ 2µC‖u−uI‖DG ‖δh‖DG+
αstab
h

∣∣∣< [[u− uI ]]s, [[δh]]s>Eh

∣∣∣
+ λ
∣∣∣(div(u− uI ,divδh)Th+ <{div(u− uI)}, [[δh]] · n>Eh

+ δ <{divδh}, [[u− uI ]] · n>Eh
∣∣∣. (5.19)

The only way to bound this with a constant that does not depend on λ
would be to find a uI , in the subspace Vh, such that:

a)

∫
K

div(u− uI)dx = 0 ∀K;

b)

∫
e

(u− uI) · nds = 0 ∀e;

c) ‖u− uI‖r,K ≤ C h2−r‖u‖2 ∀K, r = 0, 1.

Property a) would cancel the term (div(u−uI ,divδh)Th , since divδh
(for our piecewise linear elements) is constant in each element. Moreover,
(since divuI is piecewise constant) it will also imply

‖λdiv(u− uI)‖0,K ≤ C hK‖λdivu‖1,K

on every element K.

Property b) would cancel the term < {divδh}, [[u− uI ]] · n >Eh since,
again, divδh is constant in each element (and therefore its trace is constant
on each edge).

Property c) takes care of the the jump terms. Indeed, combined with
(3.13) it will provide

‖u− uI‖2j ≤ C (h−2‖u− uI‖20,O + |u− uI |21,h) ≤ C h2‖u‖22,O.

Recalling the H(div)-conforming Finite Elements (as for instance the
BDM1 spaces [14]), we see that such a uI can be easily constructed, and
our work is concluded.

We note that the BDM1 is not a subspace of V, so that the above con-
struction could not be used to prove convergence for traditional continuous
Galerkin approximations.

Remark 5.2. The use of uI in the above construction was instru-
mental to derive error bounds for fully discontinuous approximations. The
idea, however, can be used to construct semi-discontinuous approximations,
that is, with Vh ⊂ H(div) only, thus guaranteeing continuity of the normal
component but not of the tangential component. This approach was used,
for instance, in [23] for the Stokes problem.
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6. Alternative formulations. In this Section we recall some ba-
sic physical principles that are the basis for several numerical methods.
For convenience and simplicity we restrict our attention to linear elasticity
problems, although the range of applications (of the physical principles and
of the related numerical methods) is much wider.

6.1. Minimum potential energy. The primal formulation of the
linear elasticity problem (say, with homogeneous Dirichlet boundary con-
ditions all over ∂Ω) that we saw already in the previous section is based on
the minimum potential energy principle:

1

2
(Cε(u), ε(v))− (f ,v) = minimum, (6.1)

that is equivalent to our variational equation (5.5), that we repeat here for
convenience of the reader

a(u,v) ≡ (Cε(u), ε(v)) = (f ,v) ∀v ∈ V = (H1
0 (Ω))d.

6.2. Complementary Energy. We introduce the following nota-
tion

Σ := (L2(Ω))d×dsym

∀g we set Σg := {τ ∈ Σ with div τ + g = 0}

that we are going to use mainly for g = f or g = 0. The dual formulation

of elasticity problems is based on the complementary energy principle:

1

2
(C−1σ,σ) = minimum over Σf , (6.2)

giving rise to the variational equation

σ ∈ Σf and (C−1σ, τ ) = 0 ∀τ ∈ Σ0.

6.3. The Hellinger-Reissner principle. The Hellinger - Reissner
principle is at the basis of the two more common mixed formulations. The
principle reads:

1

2
(C−1σ,σ)− (ε(u),σ) + (f ,u) = stationary. (6.3)

The (Euler-Lagrange) equations of (6.3) are:{
(C−1σ, τ )− (ε(u), τ ) = 0 ∀ τ ∈ Σ

(ε(v),σ) = (f ,v) ∀v ∈ V
(6.4)
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This is the primal mixed formulation for elasticity.
On the other hand, the Euler-Lagrange equations (6.4) become, upon

integration by parts,{
(C−1σ, τ ) + (u,div τ ) = 0 ∀ τ ∈ Σ with divτ ∈ (L2(Ω))d

(v,divσ) = −(f ,v) ∀v ∈ (L2(Ω))d
(6.5)

This is the dual mixed formulation for elasticity.

6.4. Discontinuous approximations. In the discretization of (6.3)
one clearly chooses either −(ε(u), τ ) or (u,div τ ) depending on whether
one takes continuous displacements or continuous (normal) stresses, and
this, as we have seen, corresponds to using primal mixed or dual mixed
methods, respectively.

Clearly, if both displacements (v) and stresses (τ ) are approximated
by discontinuous piecewise polynomials, the two above terms are no
longer equal. Indeed one has

(ε(v), τ )h + (v,div τ )h = < {{τ}}, [[v]] > + < [[τ ]], {{v}} > (6.6)

in the best tradition of DG methods. Here, and in what follows, for func-
tions v, w piecewise smooth, (v, w)h will indicate the scalar product:

(v, w)h =
∑
K∈Th

(v, w)0,K .

6.5. Towards Hybrid Methods. Formula (6.6) opens the door to-
wards Hybrid methods. Assume that your discretization allows you to
know the displacements only at the interelement boundaries (to fix the
ideas, because the displacement trial and test functions are defined, inside
each element, to be the solution of some PDE). On the other hand, in this
case you can reasonably take them (that is, the displacements) to be single
valued on the skeleton, so that [[v]] = 0 in (6.6). Then, if divh τ = 0 in
each element K, (6.6) becomes

(ε(v), τ )h = < [[τ ]], {{v}} >, (6.7)

so that in (6.4) you can write < [[τ ]], {{v}} > instead of (ε(v), τ )h. Similarly,
when divh σ + f = 0 equation (6.6) gives

(ε(v),σ)h − (f ,v) = < [[σ]], {{v}} >, (6.8)

that can be used in the second equation of (6.4).
Using both (6.7) and (6.8) (always for divhτ = 0 and divhσ + f = 0,

respectively) in (6.4), we have then{
(C−1σ, τ )− < [[τ ]], {{u}} >= 0 ∀ τ ∈ Σ0

< [[σ]], {{v}} >= 0 ∀v ∈ V
(6.9)
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6.6. Dual Hybrid Methods. The general strategy for constructing
a dual hybrid method is as follows.

Pick up a particular solution σf (such that divhσ+ f = 0), and write
σ = σf + σ0 with σ0 to be found. Then look for σ0 and u such that{

(C−1(σ0 + σf ), τ 0)− < [[τ 0]], {{u}} > = 0 ∀ τ 0 ∈ Σ0

< [[σ0 + σf ]], {{v}} > = 0 ∀v ∈ V.
(6.10)

Note that the values of u and v are used only at the interelement bound-
aries. Separating σf , and considering σ0 as the true stress unknown, we
have then the final formulation: Find σ0 ∈ Σ0 and u on the skeleton such
that{

(C−1σ0, τ 0)− < [[τ 0]], {{u}} > = −(C−1σf , τ 0) ∀ τ 0 ∈ Σ0

< [[σ0]], {{v}} > = −< [[σf ]], {{v}} > ∀v ∈ V.
(6.11)

Note: When you discretize (6.11) you will need sufficiently many τ 0 to
control {{u}}....

6.7. Primal Hybrid. Assume now that, in the primal formulation
(6.1), we start with discontinuous u and v. One possibility to do this would
be to proceed as in the previous section. Another possibility, however, is to
consider that we are actually dealing with a minimization problem, and to
consider the interelement continuity (here [[u]] = 0) as a constraint. Then
we could introduce a Lagrange multiplier (that will turn out to be the
normal component of the stress field σ at the interelement boundaries),
obtaining the two equations

{
(Cε(u), ε(v))h+ < {{σ}}, [[v]] > = (f ,v) ∀v
< {{τ}}, [[u]] >= 0 ∀ τ .

(6.12)

where u and v are (a priori) discontinuous from one element to the other
while σ and τ are defined only at the interelement boundaries.

Equations (6.12) are the basis for the Primal Hybrid Methods.
Note that, in this case, you will need sufficiently many v’s to control {{σ}}
.

6.8. Nonconforming methods. In discretizing (6.12) you will re-
strict yourself to consider displacement fields u and v in some subspace
(of discontinuous p.w. polynomials) Vh. To fix the ideas, assume that the
elements of Vh are, piecewise, polynomials of degree k for some k ≥ 1. In a
similar way, you will assume that you have, at the interelement boundaries,
a space Σh to discretize the normal components of the stress field, made of
piecewise (actually: ”egdewise”) polynomials of degree m. We can assume,
for the sake of simplicity, that m < k (otherwise, in general, the inf-sup
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condition would fail, since you will not have sufficiently many v’s to con-
trol {{σ}}). At this point you might restrict your attention to displacements
that belong to the space Vnc defined by

Vnc := {v ∈ Vh such that < {{τ}}, [[v]] >= 0 ∀ τ ∈ Σh}.

Then you will just look for u ∈ Vnc such that

(Cε(u), ε(v))h = (f ,v) ∀v ∈ Vnc.

This could obviously be seen as using a Nonconforming Finite Element
Method.

In a quite similar way you could instead start from (6.11), and in-
troduce a discretized space Σh (made of piecewise polynomial symmetric
tensors) and a discretized space V made of edgewise polynomial vectors
on the skeleton. Then you could think of using an H(div)-nonconforming
space of the form

Σnc := {τ ∈ Σh such that < {{v}}, [[τ ]] >= 0 ∀v ∈ Vh}.

6.9. Hybridizing dual mixed methods. Let us recall the Hellinger
-Reissner principle for dual mixed elements (6.5), that uses ”continuous
stresses” (i.e. ”H(div)-conforming”) and discontinuous displacements. As-
sume now that you want to use, a priori, discontinuous stresses σ, and
enforce back their continuity by means of a Lagrange multiplier.

Then you will consider spaces Vh and Σh made of discontinuous piece-
wise polynomials, and a space of edge-wise polynomials Mh, and look for
σ ∈ Σ, u ∈ Vh, and U ∈Mh such that

(C−1σ, τ ) + (u,div τ )h− < {{U}}, [[τ ]] >= 0 ∀ τ ∈ Σh (6.13)

−(v,divσ)h = (f ,v) ∀v ∈ Vh (6.14)

< {{V}}, [[σ]] >= 0 ∀V ∈M (6.15)

Noting that in (6.13)-(6.15) Vh and Σh are ”bubbles-spaces” (meaning
that you can easily have a basis made of vectors and tensors (respectively)
having support in a single element), we can eliminate σ and u by static
condensation, and end up with a system of the type

Λ({{U}}, {{V}}) =< F, {{V}} > ∀V

whose matrix is, in general, symmetric and positive definite. Remember
however that you will still need some sort of inf-sup condition. Indeed, re-
calling the hybridized formulation (6.13)-(6.15), if you are interested only
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in the U variable (eliminating the others by static condensation), you can-
not avoid an inf-sup condition: you need sufficiently many τ ’s to control
{{U}} (that appears only in the first equation (6.13)).

This procedure, originally introduced by Fraeijs de Veubeke ([26]) has
been first analyzed for Poisson problem in [4] and is used in a rather sys-
tematic way when dealing with mixed finite element methods for scalar
elliptic problems. Apart from the paramount advantage of going back to a
single elliptic problem, the procedure has many additional advantages:

• The Lagrange multiplier U is a good approximation of u at the
interfaces. You can postprocess U and get an approximation of
u one order better than the original one coming from the mixed
formulation (see e.g.[4]).

• In many cases, U can be computed directly using suitable noncon-
forming discretizations of the primal formulation (see e.g.[34])

• In many problems, U can be identified with the flux variable of
Finite Volumes and DG Methods, with many interesting features
to be exploited (see, e.g., [20]-[21]).

However, the application to linear elasticity problems is less spectacular,
since the combined need to work with symmetric stress fields, to have an
inf-sup condition and to have H(div) compatibility is a considerable source
of troubles. See for instance [6], [11],[22], [29] for some recent attempts
using reduced symmetry (and the references therein for earlier attempts),
and see as well [7] and [28] for an attempt to use nonconforming elements.
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