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Abstract. We consider, as a simple model problem, the application of Virtual Element Methods
(VEM) to the linear Magnetostatic three-dimensional problem in the classical Vector Potential formu-
lation. The Vector Potential is treated as a triplet of 0−forms, approximated by nodal VEM spaces.
However this is not done using three classical H1-conforming nodal Virtual Elements, and instead we
use the Stokes Elements introduced originally in the paper Divergence free Virtual Elements for the
Stokes problem on polygonal meshes (ESAIM Math. Model. Numer. Anal. 51 (2017), 509–535) for the
treatment of incompressible fluids.
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1. Introduction

In recent times, for the discretization of PDEs, there has been a considerable interest in the use of
decompositions of the computational domain in polytopes. See for instance [5, 9, 26, 27, 45, 46, 51,
52, 55, 60, 62, 69, 70] and the refereences therein.

Virtual Elements were introduced a few years ago [11, 15] for the discretization of H1-conforming
spaces to be used in the numerical approximation of PDEs on very general decompositions into poly-
gons or polyhedra, and had a wide diffusion in the last years. On one hand they were extended to
the discretization of more general spaces, as H1-nonconforming (e.g. [8]), H(div)-conforming, and
H(curl)-conforming (e.g, [16, 18]). On the other hand they had other theoretical extensions through
the Serendipity approach (see for instance [17]), and moreover their use has been extended to a wide
variety of problems (see e.g. [1, 21, 43, 72] and the references therein). Also, the study of the possible
usable decomposition and of the related interpolation errors made significant progresses in the last
couple of years (see e.g. [19, 33, 35, 41, 65]).

The list of VEM contributions in the literature is nowadays quite large; we mention, e.g., [2, 6, 20,
22, 23, 36, 38, 39, 40, 49, 56, 57, 66, 67, 68, 71, 72, 73, 74] and the references therein.

Here we deal, as a simple model problem in electromagnetism, with the classical magnetostatic
problem in a smooth-enough bounded domain Ω in R3, simply connected with a connected boundary:
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given j ∈ H(div; Ω) with divj = 0 in Ω, and given µ = µ(x) with 0 < M0 ≤ µ ≤M1,
find H ∈ H(curl; Ω) and B ∈ H(div; Ω) such that:

curlH = j and divB = 0, with B = µH in Ω,

with the boundary conditions B · n = 0 (or H ∧ n = 0) on ∂Ω.

(1.1)

Clearly the formulation needs the usual adjustments if Ω is not simply connected (or does not have a
simply connected boundary) in order to have uniqueness of the solution, regardless of the numerical
method that one has in mind to solve it numerically. We will not deal with these issues here.

In some previous papers [12, 13] we dealt with two-dimensional and three-dimensional approxima-
tions of the above magneto-static problems using the variational formulation of Kikuchi [61]. Here,
instead, we tackle the discretization of the problem in the (more classical) Vector Potential formulation
(see e.g. [25] and the references therein). Other important contributions to the numerical approxima-
tion of Magnetostatic problems can be found, for instance, in [4, 50, 64, 25] and the references therein.

As far as we know, the vector potential formulation has not yet been tackled with Virtual Elements,
and the possible benefits due to the great freedom in the element shapes have not yet been investigated
in practice. Here, in particular, we also take advantage from the use of the Virtual Element spaces
introduced in [20] for dealing with Stokes problems (that however are used here in a slightly different
way). This choice allows the use (for test and trial functions) of vector-valued fields that have a constant
divergence in each element. We think that, together with the generality in the element geometry, this
could represent a nice feature (in particular for higher order approximations) when compared to more
classical Finite Element formulations. We also point out that here the computed vector potential will
have a divergence that is exactly zero.

It has to be pointed out from the very beginning that the major interest of applying VEMs (as
presented here) to the vector-potential formulation is, in practice, restricted to cases in which the
solution is expected to be reasonably smooth, and hence where higher order methods could be more
profitable. In particular, they cannot be applied (in the present form) to situations where the com-
putational domain has re-entrant corner, since in that case (see e.g. [47, 30]) one cannot approximate
the solution with vectors belonging to (H1)3 (as is the case for the VEMs proposed here). The same
problem could occur for discontinuous coefficients (see, e.g., [48, 29]). Needless to say, it would be very
interesting to extend to VEMs the tricks that have been developed for FEMs in order to use nodal
elements (as for instance in [30, 32, 59, 37, 10], and the references therein). Similarly, it would also be
interesting to extend to VEMs some of the ideas used in FEMs to deal with unbounded domains, as
for instance in [24, 31, 63, 58]. All these issues, however, escape the aims of the present paper, where
for simplicity we prove error estimates in the case where the solution is regular. For simplicity, we
assume that Ω is a convex polyhedron and µ is constant.

A layout of the paper is as follows: in Section 2 we will introduce some basic notation, and recall
some well known properties of polynomial spaces. Nothing is new there. In Section 3 we will first
recall, in Subsection 3.1, the Vector Potential approach to (1.1) and its variational formulation. Then,
in Subsections 3.2 and 3.3 we present the local two-dimensional Virtual Element spaces (of nodal type)
to be used on the inter-element boundaries. Here we use a simpler (although less powerful) version of
the Serendipity spaces of [17], corresponding, roughly, to the approach that is called lazy choice there.

Note that, instead, always with the aim of keeping the presentation as simple as possible, we do
not use three-dimensional Serendipity elements to reduce the number of degrees of freedom inside
the polyhedrons. Actually, as is well known, in a three-dimensional problem it is more important to
reduce the number of degrees of freedom on faces (where static condensation is quite cumbersome
to perform), than to reduce the number of degrees of freedom internal to polyhedrons (that can be
tackled by static condensation, which is practically done in an almost automatic way by several recent
direct solvers).

2



VEM FOR VECTOR POTENTIAL

In Subsection 3.4 we then discuss the Virtual Element spaces to be used inside each polyhedron.
As we said, on each face of the boundary we use a simplified version of the Serendipity elements of
[17], and inside the polyhedron we use spaces inspired by [20], avoiding 3D Serendipity versions. Note
that, however, from the use of a constant divergence we still have some gain in the number of internal
degrees of freedom. Then in Subsection 3.5 we discuss which quantities (in our discrete spaces) are
actually computable, out of the degrees of freedom.

In Section 4 we introduce the global Virtual Element spaces. We discuss their most important prop-
erties, and then we use them to define the discretised problem and to show existence and uniqueness
of its solution.

In Section 5 we prove the a priori error bounds. First we bound the error between exact and
approximate solutions in terms of the approximation errors (of the exact solution within the Virtual
Element Spaces). Then we recall some (already classic) assumptions on the decompositions that allow
to estimate the approximation errors, and we use them to derive the final error estimates. This is the
part of the paper in which the regularity of the solution is used.

2. Notation and well known properties of Polynomial spaces

In two dimensions, we will denote by x the independent variable, using x = (x, y) or (more often)
x = (x1, x2) following the circumstances. We will also use x⊥ := (−x2, x1), and in general, for a vector
v ≡ (v1, v2): v⊥ := (−v2, v1). Moreover, for a vector v and a scalar q we will write

rotv :=
∂v2

∂x
− ∂v1

∂y
, rot q :=

(∂q
∂y
,−∂q

∂x

)T
. (2.1)

In three dimensions we will denote again by x the independent variable when no confusion is likely to
occur, using also x = (x, y, z) or x = (x1, x2, x3), still following the circumstances.

We recall some commonly used functional spaces. On a domain O ⊆ R3 we have

H(div;O) = {v ∈ [L2(O)]3 with divv ∈ L2(O)},
H0(div;O) = {ϕ ∈ H(div;O) with ϕ · n = 0 on ∂O},
H(curl;O) = {v ∈ [L2(O)]3 with curlv ∈ [L2(O)]3},
H0(curl;O) = {v ∈ H(curl;O) with v ∧ n = 0 on ∂O},
H1(O) = {q ∈ L2(O) with grad q ∈ (L2(O))3},
H1

0 (O) = {q ∈ H1(O) with q = 0 on ∂O}.

For an integer s ≥ −1 we will denote by Ps the space of polynomials of degree ≤ s. Following a
common convention, P−1 ≡ {0} and P0 ≡ R. Moreover, for s ≥ 0

Phs := {homogeneous polynomials of degree s}, and P0
s(O) := {q ∈ Ps s. t.

∫
O
q dO = 0}. (2.2)

For d = 1, 2, 3 we denote the dimension of the space Ps in d space dimensions by πd,s:

π1,s = s+ 1, π2,s =
(s+ 1)(s+ 2)

2
, π3,s =

(s+ 1)(s+ 2)(s+ 3)

6
. (2.3)

Obviously, in d space dimensions, the (common) value of the dimension of P 0
s and of the space ∇(Ps)

will be equal to πd,s − 1. The following decompositions of polynomial vector spaces are well known
and will be useful in what follows.

(Ps)3 = curl((Ps+1)3)⊕ xPs−1, and (Ps)3 = grad(Ps+1)⊕ x ∧ (Ps−1)3. (2.4)
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Taking the curl of the second of (2.4) we also get :

curl(Ps)3 = curl(x ∧ (Ps−1)3) (2.5)

which used in the first of (2.4) gives:

(Ps)3 = curl(x ∧ (Ps)3)⊕ xPs−1. (2.6)

In what follows, when dealing with the faces of a polyhedron (or of a polyhedral decomposition) we
shall use two-dimensional differential operators that act on the restrictions to faces of scalar functions
that are defined on a three-dimensional domain. Similarly, for vector valued functions we will use two-
dimensional differential operators that act on the restrictions to faces of the tangential components.
In many cases, no confusion will be likely to occur; however, to stay on the safe side, we will often use
a superscript τ to denote the tangential components of a three-dimensional vector, and a subscript f
to indicate the two-dimensional differential operator. Hence, to fix ideas, if a face has equation x3 = 0
then xτ := (x1, x2) and, say, divfv

τ := ∂v1
∂x1

+ ∂v2
∂x2

.

3. The problem and the local spaces

3.1. The Vector Potential formulation

We recall the classical Vector Potential Formulation. The idea is to present the magnetic induction
field B (= µH) as the curl of a vector potential A:

B = curlA. (3.1)

Then the solenoidal property divB = 0 will be automatically satisfied, and the Ampère law becomes

curlH ≡ curl(µ−1curlA) = j. (3.2)

In turn the boundary condition B ·n = 0 on ∂Ω will be satisfied if we require that A∧n = 0 on ∂Ω.
Hence we define the space

A := H0(curl; Ω) ∩H(div; Ω). (3.3)

It is easy to check that

‖v‖2A := ‖µ−1/2curlv‖20,Ω + ‖divv‖20,Ω (3.4)

is a (Hilbert) norm on A. In our simplified assumptions (Ω convex and µ constant) we immediately
have

c1‖v‖1,Ω ≤ ‖v‖A ≤ c2‖v‖1,Ω ∀v ∈ A (3.5)

with c1 and c2 depending on Ω and µ. We point out that this would hold under much milder assump-
tions (see e.g. [42] and, mostly, the references therein), but, as we said, we are not going to discuss
regularity properties here.

We will use one of the most classical variational formulations of the vector-potential equations (see
for instance [25]). We consider the problem

find A ∈ A such that:

a(A,v) :=

∫
Ω
µ−1curlA · curlv dΩ +

∫
Ω

divA divv dΩ =

∫
Ω
j · v dΩ ∀v ∈ A.

(3.6)

It is clear that
a(v,v) = ‖v‖2A (3.7)

so that (3.6) has a unique solution in A. Then we check that the solution of (3.6) verifies divA = 0.
For this we take ϕ ∈ H1

0 (Ω) such that ∆ϕ = divA, and then we take v = gradϕ (that clearly
belongs to A). Then curlv = 0 and

∫
Ω j · v dΩ = 0 as well (since divj = 0). Hence from (3.6) we

have divA = 0. It also follows immediately that for B := curlA one gets divB = 0. Moreover from
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(3.6), using divA = 0 and integrating by parts, we have now that curl(µ−1curlA) = j. Hence setting
H := µ−1B we have curlH = curl(µ−1B) = curl(µ−1curlA) = j. Finally, on the boundary ∂Ω we
have B · n = rot(A ∧ n) = 0.

Remark 3.1. The extension of the formulation to the case where B ·n = 0 only on a subset Γ of the
boundary (and H ∧ n = 0 on the remaining part) is immediate by substituting the space (3.3) with

A := {v ∈ H(curl; Ω) ∩H(div; Ω) with v ∧ n = 0 on Γ}.
In the following, in order to keep the notation simpler, we stick to (3.3), the extension to the more
general case being trivial.

3.2. The local spaces on faces

We assume that we are given a sequence of decompositions {Th}h of the computational domain Ω into
polyhedrons P. For every polyhedron P we define

hP := diameter of P (3.8)

and for every decomposition Th we set
|h| := sup

P∈Th
hP. (3.9)

We also assume that each P is simply connected and convex, with all its faces also simply connected
and convex. (For the treatment of non-convex faces we refer to [17]).

We note that the construction of the local spaces and of the whole discrete problem can be carried
out in the case where µ is just piecewise constant (and not necessarily constant all over Ω). We will
go back to the stricter assumptions in Section 5.

For the treatment of Virtual Element discretizations of problems with variable coefficients we refer,
for instance, to [14] and references therein.

We will now design the Virtual Element approximation of (3.6) of order k ≥ 1 on Th. We begin
with the definition of the local spaces, and in particular we start by defining suitable VEM spaces on
the faces. We are going to use, essentially, a particular choice of Serendipity nodal Virtual Element
spaces of [17]. For this, for every integer k ≥ 1 and for every face f we consider the Virtual Element
space

Ṽk(f) := {v ∈ C0(f) such that v|e ∈ Pk(e) ∀ edge e, and ∆fv ∈ Pk(f)}. (3.10)

In Ṽk(f) we have the natural degrees of freedom

• value of v(ν), for every vertex ν of f, (3.11)

• (for k ≥ 2) value of

∫
e
v qk−2 de, ∀qk−2 ∈ Pk−2(e), for every edge e of f, (3.12)

• value of

∫
f
v qk df, ∀qk ∈ Pk(f). (3.13)

In Ṽk(f) we want to identify a subspace that contains all polynomials of degree ≤ k but uses less
degrees of freedom. For this, we will use a simplified version of the Serendipity elements of [17]. We
consider first the space of Pk-bubbles on f

Bk(f) := {q ∈ Pk(f) such that q|∂f ≡ 0}. (3.14)

Note that Bk ≡ {0} for k ≤ 2, regardless of the number of edges of f (that, obviously, will always
be ≥ 3), so that the first non-trivial bubble appears on a triangular face for k = 3. In general, the
dimension of Bk(f) will always verify

dimension of Bk(f) =: βk(f) ≤ π2,k−3 (3.15)
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where π2,k−3 is the number of Pk bubbles on a triangle. We recall that we assumed, for the sake of

simplicity, that f is convex, and we define a projector v → Πk,fv from Ṽk(f) to Pk as the least squares
solution of the system:

•
∫
∂f

(v −Πk,fv) qk ds = 0 ∀qk ∈ Pk(f) (3.16)

• (for k ≥ 3)

∫
f
(v −Πk,fv) qk−3 df = 0 ∀qk−3 ∈ Pk−3(f). (3.17)

Proposition 3.2. For a triangular face f the system (3.16)-(3.17) has a unique solution. In the other
cases, the system (3.16)-(3.17) is over-determined (i.e. it has more equations than unknowns) but its
least square solution is unique.

Proof. We note that the number of nontrivial equations in (3.16) is equal to the dimension of Pk
minus the dimension of Bk(f). For a triangular f , the dimension of Bk(f) is equal to the dimension of
Pk−3, so that (3.16)-(3.17) is a square system, and it is immediate to check that the associated matrix
is non-singular. For a non triangular face f the dimension of Bk(f), according to (3.15), is smaller than
π2,k−3, and the number of equations of the system (3.16)-(3.17) is equal to [π2,k − βk(f)] + [π2,k−3],
that is bigger than π2,k (the number of unknowns). To see that the least-squares solution is uniquely
determined we have to check that for v = 0 the only solution is given by Πk,fv = 0. For this, observe
that if p, in Pk(f), vanishes on ∂f then either p ≡ 0, or p must have the form

p = bηq
∗
k−η (3.18)

where:

• η (> 3) is the minimum number of straight lines necessary to cover ∂f ,

• bη is a polynomial in Pη(f) that vanishes on ∂f and is positive inside (remember, f is convex)

• q∗k−η ∈ Pk−η(f) ⊂ Pk−3(f).

For v = 0 (3.17) would then imply (taking qk−3 = q∗k−η) that

0 =

∫
f
p q∗k−η df =

∫
f
bη(q

∗
k−η)

2 df, (3.19)

and finally p = 0.

Once the projection operator Πk,f has been defined, we can introduce for every face f the Serendip-
ity VEM space VS,k(f).

Definition 3.3. The Serendipity VEM space VS,k(f) is defined as the subspace of Ṽk(f) made of
elements v such that∫

f
(v −Πk,fv) qhs df = 0 ∀ qhs ∈ Phs (f), ∀ non-negative integer s ∈ [k − 2, k]. (3.20)

It is easy to see that a uni-solvent set of degrees of freedom for VS,k(f) is given by

• value of v(ν), for every vertex ν of f, (3.21)

• (for k ≥ 2) value of

∫
e
v qk−2 de, ∀qk−2 ∈ Pk−2(e), for every edge e of f, (3.22)

• (for k ≥ 3) value of

∫
f
v qk−3 df, ∀qk−3 ∈ Pk−3(f), (3.23)
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and consequently its dimension is given by (kNν(f) + π2,k−3) where Nν(f) is the number of vertices
of the face f and π2,k−3 = 0 for k ≤ 2.

We point out that every v ∈ VS,k is still an element of Ṽk(f), and from its degrees of freedom

(3.21)-(3.23) we are able to compute (through Πk,f and (3.20)) all its degrees of freedom in Ṽk(f), and
in particular the quantities∫

f
v qk df ∀qk ∈ Pk(f) are computable for v ∈ VS,k(f). (3.24)

Remark 3.4. It is easy to see that: if the face f has more than 3 edges (and η > 3, meaning that
the boundary of f cannot be covered using only three straight lines), then the projection operator
Πk,f could be defined using in (3.17) only the polynomials of degree k − 4, as it would be the case
in FEMs (see e.g. [3, 44]). But, in VEMs (see e.g. [17]), for a bigger and bigger η we could use fewer
and fewer polynomials in (3.17). In other words: the Serendipity reduction for VEMs (as presented in
[17]) becomes more and more powerful when the number of edges increases. Our present choice instead
(reminiscent of what is called the lazy choice in [17]), ensures only a limited reduction of the number of
internal degrees of freedom, but has the advantage of working in general. It also avoids the necessity
to detect more delicate situations as, for instance, the case of a nearly degenerate quadrilateral
with an internal angle very close to π radiants. This is a case that could be a considerable source
of problems with classical Serendipity FEMs or other types of Serendipity VEMs, but that with the
present choice is perfectly acceptable without any additional work, including the case of an angle
exactly equal to π. Needless to say, if the same mesh is going to be used for many resolutions, and
it contains many elements with more than 3 edges, then it would be worth to spend some additional
effort on every element, and use the elements of [15] (that, in general, would be much slimmer) instead.
All these choices will not affect in a significant way the theoretical treatment that follows in the present
paper. �

3.3. Traces of the local spaces on ∂P

Having defined our spaces on every face f , for a given polyhedron P we can define the space of traces

Bk(∂P) := {v ∈ (C0(∂P))3 such that v|f ∈ (VS,k(f))3 ∀ face f in ∂P}. (3.25)

Proposition 3.5. A unisolvent set of degrees of freedom for Bk(f) is given by

• value of v(ν), for every vertex ν of P, (3.26)

• (for k ≥ 2) value of

∫
e
v · qk−2 de, ∀qk−2 ∈ (Pk−2(e))3, for every edge e of P, (3.27)

• (for k ≥ 3) value of

∫
f
v · qk−3 df, ∀qk−3 ∈ (Pk−3(f))3, for every face f of P. (3.28)

Proof. The result follows immediately from the information on the degrees of freedom, taking into
account the continuity requirements on edges and vertexes.

Remark 3.6. The degrees of freedom (3.12) and (3.27) could be replaced by the value of v at k − 1
distinct points in each edge. �

3.4. Local spaces on a polyhedron

In order to define the spaces inside P we follow the basic ideas of [20], and we set

Ak(P) := {v ∈ (C0(P))3 such that v|∂P∈Bk(∂P), curl(∆v)∈(Pk−3(P))3, divv∈P0(P)}. (3.29)
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Following [20], we have the following properties.

Proposition 3.7. A unisolvent set of degrees of freedom for Ak(P) is given by

• value of v(ν), for every vertex ν of P, (3.30)

• (for k ≥ 2) value of

∫
e
v · qk−2 de, ∀qk−2 ∈ (Pk−2(e))3, for every edge e of P, (3.31)

• (for k ≥ 3) value of

∫
f
v · qk−3 df, ∀qk−3 ∈ (Pk−3(f))3, for every face f of P, (3.32)

• (for k ≥ 3) value of

∫
P
v · (x ∧ qk−3) dP, ∀qk−3 ∈ (Pk−3(P))3. (3.33)

Proof. First we recall that the values (3.30)-(3.32) determine uniquely the boundary values of a v
in Ak(P). Consequently, the (constant) value of the divergence of v is also determined uniquely, using
the mean value of v ·n on ∂P. Hence we just need to show that adding the degrees of freedom (3.33)
we can determine uniquely v ∈ Ak(P). For that it would be enough to restrict our attention to the
elements of Ak(P) that belong to the subspace

AUX := {v ∈ (H1
0 (P))3 such that divv = 0} (3.34)

(meaning that their values in (3.30)-(3.32) are all zero), and show that the values of (3.33) would
determine uniquely a v among them.
For this we check first that the number of conditions in (3.33) matches the dimension of Ak(P)∩AUX.
We observe that an element v of AUX belongs to Ak(P) if and only if curl∆v is in (Pk−3)3, and this
amounts to 3π3,k−3−π3,k−4 conditions: indeed, remember that a vector valued polynomial q of degree
k − 3, in order to be a curl, must have a zero divergence, which amounts to π3,k−4 conditions. On
the other hand, (3.33) amounts to 3π3,k−3− π3,k−4 conditions as well, since for all vectors qk−3 of the
form qk−3 = xqk−4 (with qk−4 ∈ Pk−4) the product x ∧ qk−3 ≡ x ∧ xqk−4 is identically zero.
Hence, we are reduced to prove that if v ∈ AK∩AUX has the values (3.33) all equal to zero then we
must have v = 0. We observe that curl(∆v) is in (Pk−3(P))3, and, being a curl, has zero divergence;
we deduce that curl(∆v) is equal to the curl of some polynomial vector in (Pk−2(P))3. Using then
(2.5) we have that there exists a q∗k−3 ∈ (Pk−3(P))3 such that

curl(∆v) = curl(x ∧ q∗k−3), (3.35)

implying, since P is simply connected, that

∆v = x ∧ q∗k−3 +∇ s (3.36)

for some s ∈ H1(P). Next, we note that for v ∈ AUX we have v = 0 on ∂P and divv = 0 in P.
Integrating by parts and using (3.36) and (3.33) we have then∫

P
|∇v|2 dP = −

∫
P
v ·∆v dP = −

∫
P
v · (∇s+ x ∧ q∗k−3) dP = 0 + 0 = 0 (3.37)

and the proof is completed.

Remark 3.8. Clearly, another (conceptually simpler) option would be to take as Ak the space of
triplets of C0 VEMs as in [14], similarly to what is done for these problems when using FEMs. The
advantage with the present choice is in the use of a constant divergence, that will allow to have a
truly divergence-free solution, as well as a reduction of the number of degrees of freedom in P (that
has nothing to do with the possible use of 3D Serendipity elements). �
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3.5. Quantities that are computable in Ak(P)

Assume now that we are given a polyhedron P and, for an integer k ≥ 1, the VEM nodal space
Ak(P) as defined in (3.29). Assume moreover that we are given the degrees of freedom (3.30)-(3.33)
of an element v ∈ Ak(P). The question is: what are the quantities, related to v, that we can actually
calculate on a computer, without solving a (system of) PDE’s in P? As a general set-up of the problem,
we assume that we can compute: the integral over edges, faces, and P of all polynomials of degree ≤ k.
But the elements of Ak(P) are not polynomials, in general, apart from very special cases (e.g., if P is
a tetrahedron and k ≤ 2). Or, to be more precise, all polynomials of (Pk)3 with constant divergence
will belong to Ak(P), that however will contain other, non polynomial, functions.

To start with, using (3.30) and (3.31) we see that:

• The values of each component of v on every edge of P are computable. (3.38)

Then, on each face f we can use (3.24) to see that:

• For every face f,∀q ∈ (Pk(f))3 the moments

∫
f
v · q df are computable. (3.39)

In particular, on every face f we will be able to compute∫
f
v · nP df, (3.40)

where, on each f , nP is the (3-dimensional) unit vector normal to the face f . As the divergence of v
is constant in P (see (3.29)), from (3.40) we immediately see that:

• The value of divv in P is computable. (3.41)

We can also compute the moments of v against all (vector valued) polynomials of degree ≤ k − 2 in
P. Indeed, given a pk−2 ∈ (Pk−2(P))3 we can use (2.4) and write it as

pk−2 = ∇qk−1 + x ∧ qk−3

with qk−1 ∈ Pk−1(P) and qk−3 ∈ (Pk−3(P))3. Hence:∫
P
v · pk−2 dP =

∫
P
v · (∇qk−1 + x ∧ qk−3) dP =

∫
P
v · ∇qk−1 dP +

∫
P
v · x ∧ qk−3 dP

= −
∫

P
divv qk−1 dP +

∫
∂P
v · nP qk−1 dS +

∫
P
v · (x ∧ qk−3) dP (3.42)

and all the three terms of the last line are computable (the third using (3.33)). Hence:

• The values of

∫
P
v · qk−2 dP ∀qk−2 ∈ (Pk−2(P))3 are computable. (3.43)

For k = 1, using p0 = ∇q1 and proceeding as in (3.42) we obtain that

•
∫

P
v · q0 dP is computable. (3.44)

The moments of gradv against all tensor valued polynomials of degree ≤ k − 1 are also computable.
To see this, let τ k−1 ∈ (Pk−1(P))3×3 and consider∫

P
(gradv) : τ k−1 dP = −

∫
P
v · (div(τ k−1)) dP +

∫
∂P
v · (τ k−1 · nP) dS. (3.45)
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In (3.45) div(τ k−1) is a vector in (Pk−2(P))3, so that the first term is computable from (3.42). Similarly,
τ k−1 ·nP is in (Pk−1(f))3 on each face, so that recalling (3.39) the second term is computable as well.
Hence:

• The value of

∫
P

gradv : τ k−1 dP is computable ∀τ k−1 ∈ (Pk−1(P))3×3. (3.46)

Note that (3.46) implies that for every v ∈ Ak, for every component vi, (i = 1, 2, 3) and for every
index j, (j = 1, 2, 3):

• the L2(P)-projection of
∂vi
∂xj

onto Pk−1(P) is computable. (3.47)

Hence we can also compute, for v ∈ Ak(P) and q ∈ (Pk(P))3, the quantities∫
∂P

(v ∧ n) · (q ∧ n) dS, (3.48)

∫
P

(divv) (divq) dP, (3.49)∫
P

curlv · curlq dP. (3.50)

Introducing the restriction of the bilinear form a to P, as natural

aP(u,v) :=

∫
P
µ−1curlu · curlv dP +

∫
P

divudivv dP u,v ∈ Ak(P), (3.51)

we also have as an immediate consequence that:

• ∀v ∈ Ak(P) and ∀q ∈ (Pk(P))3 : aP(v, q) is computable. (3.52)

All this will allow us to compute a projection operator ΠA
k from smooth-enough vector valued functions

onto (Pk(P))3 . For this we first introduce the space

Hk := {qk ∈ (Pk(P))3 such that ∃ϕ ∈ Pk+1(P) with ∆ϕ = 0 and qk = ∇ϕ} (3.53)

of the gradients of the harmonic polynomials in Pk+1(P). We note that, as it can be easily checked:

Hk ≡ {qk ∈ (Pk(P))3 such that aP(qk, qk) = 0}. (3.54)

We also note that:

∀q ∈ Hk : {q ∧ nP = 0 on ∂P} ⇔ {q ≡ 0}. (3.55)

Then we can introduce the following definition.

Definition 3.9. Given v, for instance, in (H1(P))3 we define its projection ΠA
k v onto (Pk(P))3 as

follows:

aP(ΠA
k v − v, qk) = 0 ∀qk ∈ (Pk(P))3, (3.56)∫

∂P
[(ΠA

k v − v) ∧ n] · [qk ∧ n] dS = 0 ∀qk ∈ Hk. (3.57)

Note that, due to (3.54) and (3.55), the solution of (3.56) -(3.57) is unique in (Pk(P))3. �

Remark 3.10. Clearly, the projection operator ΠA
k is not (L2(P))3-orthogonal, but, in some sense, is

aP-orthogonal. This, however, will not be a problem in what follows. �
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Remark 3.11. The space Ak(P), as presented in (3.29), does not contain all polynomials in (Pk)3,
but only the subspace made of those with constant divergence. In order to keep all polynomials of
(Pk)3 inside, we should (obviously) take instead

Ãk(P) := {v ∈ (C0(P))3 s. t. v|∂P∈Bk(∂P), curl(∆v)∈(Pk−3(P))3, divv∈Pk−1(P)}, (3.58)

and, as degrees of freedom, add to (3.30)-(3.33) the natural ones

• (for k ≥ 2) value of

∫
P

divv q0
k−1 ∀q0

k−1 ∈ P0
k−1(P) (3.59)

as in [20]. �

At this point we are able to re-enter the more classical path of VEMs. In particular, we can define
the contribution of the element P to the global approximated bilinear form: for u and v smooth enough
(for instance to have each component in H1(Ω) ∩ C0(Ω) would be sufficient) we set

aP
h (u,v) := aP(ΠA

k u,Π
A
k v) + SP

h ((I−ΠA
k )u, (I−ΠA

k )v), (3.60)

where SP
h (· , ·), as usual, is a symmetric bilinear form such that there exist two constants α∗ and α∗,

independent of P, with

α∗a
P(v,v) ≤ aP

h (v,v) ≤ α∗|v|21,P ∀v ∈ Ak(P). (3.61)

Needless to say, (3.56) and (3.60) easily imply that

aP
h (u,v) ≡ aP(u,v) whenever either u or v is in (Pk(P))3. (3.62)

Remark 3.12. As typical in the VEM framework (see e.g. [11, 15]) we can take

SP
h (u,v) :=

∑
i

σiδi(u)δi(v). (3.63)

where the δi(v) are the degrees of freedom of v in P, and the weights σi are suitable scaling factors.
To fix ideas, let φi be the element in Ak such that δi(φi) = 1 and δj(φi) = 0 for j 6= i. Then σi should
be of the order (in terms of powers of hP) of aP(φi, φi). For instance, if δi(ϕ) is the value of ϕ at a
given node Ni, then aP(φi, φi) will be of the order of hP (taking into account that the volume of P
scales like (hP)3 and the gradient of φi scales like h−1

P ). Hence one could take σi ' hP. Note that,
with the choice (3.63), the regularity required on u and v in order to give sense to (3.60) is just the
regularity needed to compute ΠA

k and the degrees of freedom δi. �

4. The global spaces and the discretized problem

4.1. The global spaces

From the local Virtual Element spaces, defined in each P ∈ Th, we can now construct easily the global
spaces in Ω. We set

Ah ≡ Ah(Ω) := {v ∈ A such that v ∈ Ak(P) for all element P ∈ Th}. (4.1)

On Ah we can define the global bilinear form ah simply setting

ah(u,v) :=
∑

P∈Th

aP
h (u,v). (4.2)

Finally, we also define, in each element P(
jh

)
|P

:=

 (L2(P))3-orthogonal projection of j onto (P0(P))3 for k = 1

(L2(P))3-orthogonal projection of j onto (Pk−2(P))3 for k ≥ 2,
(4.3)
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and we note that the integral ∫
Ω
jh · v dΩ

is computable for every v ∈ Ah (due to (3.43) and (3.44)).

4.2. The discretized problem

The discretized version of (3.6) will now read
find Ah ∈ Ah such that:

ah(Ah,v) =

∫
Ω
jh · v dΩ. ∀v ∈ Ah.

(4.4)

It is very easy to see that ah is symmetric, and satisfies the two fundamental properties of VEM
approximations of linear elliptic problems, namely:

a(v, q) = ah(v, q) for all v ∈ Ah, and for all q piecewise in (Pk)3 (4.5)

and

∃α∗ and α∗ in R such that: α∗a(v,v) ≤ ah(v,v) ≤ α∗a(v,v) ∀v ∈ Ah. (4.6)

Note that the constants α∗ and α∗ will also depend on µ. We point out that in deriving (4.6) from
the local (3.61) we are now able to use (3.5) (that needs the boundary conditions on ∂Ω but not on
∂P) and use a(v,v) on the right-hand side instead of |v|21 as we had in (3.61). Indeed using (3.61) and
(3.5) we have

ah(v,v) =
∑

P

aP
h (v,v) ≤ α∗

∑
P

|v|21,P = α∗‖v‖21,Ω ≤ α∗ c2
2 ‖v‖2A. (4.7)

We also note that the symmetry of ah and (4.6) easily imply the continuity of ah with

ah(u,v) ≤
(
ah(u,u)

)1/2 (
ah(v,v)

)1/2

≤ α∗
(
a(u,u)

)1/2 (
a(v,v)

)1/2
≤ α∗ ‖u‖A ‖v‖A

(4.8)

for all u and v in Ah.

5. Error Estimates

In the two previous sections we allowed µ to be piecewise constant in Ω. This was more than enough
in order to let us construct the VEM spaces and to design the discretised problem. In this Section,
however, we also have to deal with the exact solution of the vector potential problem (3.6), and in
particular with its regularity. We recall that one typical difficulty of magnetostatic problems is the
possible lack of regularity of its solution. Note that this does not depend on the use of the Vector
Potential formulation, and even less on the fact that we use a VEM discretisation. The (unavoidable)
problem is related to the fact that (1.1) is a so-called div-curl system, and that for it there are several
occurrences where the solution (let it be B, or H, or the Vector Potential A) is not too regular. Many
of these occur as well for simpler problems as div(c(x)∇u) = f for a discontinuous coefficient c, but
for div-curl systems worse cases can occur, since the solution of the magneto-static problem might fail
to be in (H1)3. Much worse: for non-convex polyhedra (H1)3 could be a closed subspace of A, and
hence H1-conforming approximations cannot be used.

We point out that, in practice, the method proposed here, and described so far, will still make sense
and be applicable in a certain number of more general cases. The troubles arrive when one wants to

12
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prove error estimates, expressed (as usual) in terms of powers of |h| and norms of A in spaces with a
certain regularity.

To make a long story short, for the sake of simplicity when proving error estimates we just assume
here that the solution A is at least in (H1)3 and point out that, after all, for the same accuracy, we
do not require more regularity than other methods.

It will surely be very interesting to make further investigations in order to be able to circumvent
this or that difficulty, as it has been done for Finite Element Methods in the last 25 years, starting
from [47], and then (among others) with [7, 32, 29, 59, 37, 10, 53, 28], down to the present times (as
in [54]). It would also be interesting to investigate the case of unbounded domains: either mimicking
the Infinite Elements (as e.g.[63, 58]), or creating an artificial boundary at a certain distance from the
region of interest, as done in Finite Elements with the Perfectly Matching Layer technique (see e.g.
[24, 31]).

Here however, since this (as far as we know) is the first VEM approach to Vector Potential formu-
lations, we decided to Keep It Simple, and stick with the most elementary cases.

5.1. The convergence theorem

We start our discussion with an abstract convergence result, that bounds the error |A−Ah| in terms
of suitable interpolation errors for A and in terms of the error |j − jh| in the right-hand side.

Theorem 5.1. The discrete problem (4.4) has a unique solution Ah. Moreover, for every approxima-
tion AI of A in Ah and for every approximation Aπ of A that is piecewise in (Pk)3, we have

‖A−Ah‖A ≤ C
(
‖A−AI‖1,h + ‖A−Aπ‖1,h + ‖j − jh‖A′

h

)
, (5.1)

where:

• C is a constant depending only on α∗, α
∗, µ,

• ‖v‖1,h :=
(∑
P∈Th

‖v‖21,P
)1/2

• ‖j − jh‖A′
h

is defined as the smallest constant C such that

(j,v) − (jh,v) ≤ C |v|A ∀v ∈ Ah. (5.2)

Proof. The proof follows exactly the same lines as the original one in [11]. Existence and uniqueness
of the solution of (4.4) are a consequence of (4.6) and (3.7). Next, setting δh := Ah−AI and starting
from (4.6) we have:

α∗‖δh‖2A = α∗ a(δh, δh ) ≤ ah(δh, δh) = ah(Ah, δh)− ah(AI , δh)

[use (4.4) and (4.2))] = (jh, δh)−
∑

P a
P
h (AI , δh)

[use ±Aπ] = (jh, δh)−
∑

P

(
aP
h (AI −Aπ, δh) + aP

h (Aπ, δh)
)

[use (3.62)] = (jh, δh)−
∑

P

(
aP
h (AI −Aπ, δh) + aP(Aπ, δh)

)
[use ± a(A, δh)] = (jh, δh)−

∑
P

(
aP
h (AI −Aπ, δh) + aP(Aπ −A, δh)

)
− a(A, δh)

[use (3.6)] = (jh, δh)−
∑

P

(
aP
h (AI −Aπ, δh) + aP(Aπ −A, δh)

)
− (j, δh)

[re-order] = (jh, δh)− (j, δh)−
∑

P

(
aP
h (AI −Aπ, δh) + aP(Aπ −A, δh)

)
.

Now use (5.2), (4.8), and the continuity of each aP to obtain

‖δh‖2A ≤ C
(
‖j − jh‖A′

h
+ ‖AI −Aπ‖1,h + ‖A−Aπ‖1,h

)
‖δh‖A (5.3)
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for some constant C depending only on α∗, α
∗ and µ. Then the result follows easily by the triangle

inequality.

From the estimate (5.1), given the sequence of decompositions {Th}h one can then deduce an error
estimate in terms of powers of |h| (as defined in (3.9)), of some regularity constant for the polyhedrons,
and of the regularity of the solution A. For this we need suitable interpolation estimates.

5.2. Interpolation estimates

Theorem 5.2. Assume that the sequence of decompositions {Th}h satisfies the following assumptions
(that are quite standard in the VEM literature). There exists a positive constant γ, independent of h,
such that for every h all polyhedrons P of Th satisfy:

• D1) P is star-shaped with respect to a sphere of radius bigger than γhP;

• D2) every face f ∈ ∂P is star-shaped with respect to a disk of radius bigger than γhP , and
every edge of P has length bigger than γhP.

Then if the spaces Ah are defined as in (4.1) for some integer k ≥ 1 we have

‖A−AI‖1,h + ‖A−Aπ‖1,h ≤ C1 |h|s‖A‖s+1,Ω, 0 ≤ s ≤ k (5.4)

and
‖j − jh‖A′

h
≤ C2 |h|s‖j‖s−1,Ω, 1 ≤ s ≤ k (5.5)

where C1 and C2 are constants that depend only on γ, α∗, α
∗, µ and on the regularity of A and j,

respectively.

Proof. From known results on polynomial approximation (see e.g. [34]), one can first get easily

‖A−Aπ‖1,h ≤ cext , |h|s‖A‖s+1,Ω, 0 ≤ s ≤ k (5.6)

and,
(j − jh,v) ≤ cext |h|s‖j‖s−1,Ω‖v‖1,Ω, 1 ≤ s ≤ k (5.7)

for some constant cext depending on k and on the maximum (over the polygons P) of the constants
that bound the extension of a function ϕ from P to a sphere of diameter 2hP containing P. Note
that these constants, themselves, can also be uniformly bounded in terms of the γ appearing in D1

and D2. Then we define AI as the interpolant of A, locally, in Ãk(P) as defined in (3.58). At first
sight, such an AI might fail to belong to Ak(P): indeed, Ak(P), being made of vectors with constant

divergence, is smaller than Ãk(P) which is made of vectors having divergence in Pk−1. But we recall

that A has zero divergence, and it is easy to see that the degrees of freedom of Ãk(P) are such that

the interpolant of a solenoidal vector is itself solenoidal. Now we make profit of the fact that Ãk(P)
contains all vector polynomials of degree ≤ k, and with the (nowadays) classical instruments of Virtual
Element approximation theory (see e.g. [19, 21, 33, 35, 41, 65]) it is not difficult to see that we also
have

‖A−AI‖1,h ≤ c |h|s‖A‖s+1,Ω, 0 ≤ s ≤ k (5.8)

for some constant c that depends on k and on the constant γ in D1 and D2.

Then we have the final convergence Theorem.

Theorem 5.3. Under the assumptions of Theorem 5.2 we have:

‖H −Hh‖0,Ω + ‖B −Bh‖0,Ω ≤ C |h|s(‖A‖s+1,Ω + ‖j‖max{0,s−1},Ω), 0 ≤ s ≤ k (5.9)

for a constant C that depends only on γ, α∗, α
∗, µ and k.
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Proof. Setting Bh := curlAh and Hh := µ−1Bh, the result follows by inserting estimates (5.4) and
(5.5) into (5.1).
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