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Abstract

Using the weighted residual formulation we derive a-posteriori
estimates for Discontinuous Galerkin approximations of second order
elliptic problems in mixed form. We show that our approach allows
to include in a unified way all the methods presented so far in the
literature.
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1 Introduction

In this paper we study a-posteriori error estimates for the Discontinuous
Galerkin (DG) approximations of the problem





K
−1σ + ∇u = 0 in Ω,

div σ = f in Ω,

u = 0 on Γ = ∂Ω.

(1)

Above, K is a given permeability symmetric positive-definite tensor, f is a
given source term, and Ω ⊂ R

2 is a simply connected polygon. Problem (1)
is the mixed form of the second order problem

−div (K∇u) = f in Ω, u = 0 on Γ = ∂Ω. (2)
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In recent times a-posteriori analysis for DG approximations of second order
elliptic problems has received an increasing attention. For L∞ estimates
we refer to [23], and for energy norm estimations to, e.g., [7], [21], [24], [31].
For questions concerning convergence of adaptive schemes we refer to [25],
[20], [8]. All the above papers deal with second order elliptic problems of the
type (2), and they concentrate on one or two DG formulations, mostly on
interior penalty type methods, symmetric or nonsymmetric. Results based
on the mixed formulation (1) can be found, e.g., in [14] and [13] for the LDG

method, in [22] for a method similar to the Bassi-Rebay formulation, and,
more recently, in [26] for the classical RT and BDM mixed formulations
and for the method by Hughes-Masud [27].

In the present paper, starting from the mixed problem (1), we apply
the weighted residual approach of [9] and we carry out the a posteriori
analysis in an abstract framework, without specifying the choice of the
weighting operators. In such a way we identify the minimal approximation
properties required on the operators to guarantee lower and upper bounds
for the energy norm. We then show that our analysis applies to all the DG
formulations presented so far in the literature.

The paper is organized as follows. In Section 2, after having briefly pre-
sented a suitable mixed variational formulation of the continuous problem,
we introduce the DG discretizations using the approach of [9]. We remark
that, under some assumptions on the mesh, we allow for the occurrence
of hanging nodes. Section 3 deals with a unified a-posteriori error anal-
ysis. More precisely, we introduce the error estimator, and we prove, in
an abstract setting, its effciency (section 3.1) and reliability (section 3.2).
Finally, in Section 4 we detail how our analysis applies to most of the DG
methods, so far presented in the literature.

Throughout the paper, we shall follow the usual notation for Sobolev
spaces (see e.g. Ciarlet [16]). In particular, for any domain D ⊂ R

2 we
will denote by || · ||s,D (resp. | · |s,D) the usual norm (resp. seminorm) in
Hs(D). When D = Ω, we will simply write || · ||s (resp. | · |s). Moreover,
we shall use the following classical result [28]:

Theorem 1 Let f ∈ L2(Ω), and let K ∈ L∞(Ω)4s satisfying

0 < c1||ξ||2 ≤ ξTK(x)ξ ≤ c2||ξ||2 ∀ξ ∈ R
2 ∀x ∈ Ω. (3)

Then problem (1) has a unique (σ, u) in H(div ; Ω) × H1
0 (Ω). Moreover,

there exists P > 2, depending only on c1 and c2, such that

u ∈ W 1,p(Ω) ∀ p ∈ [2, P ].
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2 Mixed formulations and discretization

Let {Th}h>0 be a family of decompositions of Ω into triangular elements T ;
let hT denote the diameter of T , and h = maxT∈Th

hT . Let Eh be the set
of edges of Th; given e ∈ Eh, we denote by he its length. Nonconforming

meshes are allowed (i.e., Th may contain hanging nodes), provided they
are nested refinements of an initial conforming triangulation. Therefore,
by removing the hanging nodes, it is possible to identify an underlying
conforming triangulation, as shown in Fig. 1. Instead, Fig. 2 displays an
instance violating our assumption. Indeed, removing the hanging node
does not result in a coarser triangular subdivision: a quadrilateral element
arises.

If hanging nodes occur, we notice that the corresponding set Eh is
formed by line segments e which may be part of an edge triangle. For
example, in Fig. 1 the line segment e4 is only a part of an edge for triangle
T 1 (although it is a whole edge for triangle T 2). However, with a little
abuse of terminology, in the sequel we shall call “edge” any element e ∈ Eh.
On Th we make the following assumptions:

H1- Th verifies the minimum angle condition: ∃θ0 > 0 such that hT /ρT ≥
θ0 ∀T ∈ Th, where ρT denotes the diameter of the inscribed circle to
T ;

H2- Th is locally quasi-uniform, that is, there exists a constant C∗ > 0,
independent of h, such that, for any pair of adjacent elements T 1 and
T 2, that is, such that the length |∂T 1 ∩ ∂T 2| > 0, it holds

C−1
∗ hT 1 ≤ hT 2 ≤ C∗hT 1 , i.e., hT 1 ≈ hT 2 .

We remark that our assumptions on Th implies that (referring for instance
to Fig. 1):

hei ≈ hT 1 ≈ hT 2 ≈ hT 3 i = 1, . . . , 7. (4)

Finally, we define

for T ∈ Th, ωT =
⋃
T ′ with T ′ ∈ Th adjacent to T ; (5)

for e ∈ Eh, ωe =
⋃
T with T ∈ Th and e ⊂ ∂T. (6)

For an internal edge, ωe will always be the union of two elements, while it
will be reduced to one element for a boundary edge. For the sake of simplic-
ity, we will only consider here the case of piecewise constant K. However,
we point out that in the case of a more general permeability coefficient we
can always approximate it by means of a piecewise constant, substituting K
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Figure 1

A hanging node (left) originated from a conforming triangular mesh (right).

Figure 2

A hanging node (left) which is not originated from a conforming triangular mesh
(right).
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by its average in each element. Analogously, we shall suppose f piecewise
polynomial.

In order to write a discontinuous finite element approximation of prob-
lem (1) we first introduce the usual tools such as jumps and averages of
scalar and vector valued functions across the edges of Th. Following the
notation of [11], [12], [3], let e be an interior edge shared by elements T 1

and T 2. Define the unit normal vectors n1 and n2 on e pointing exterior
to T 1 and T 2, respectively. For a function ϕ, piecewise smooth on Th, with
ϕi := ϕ|T i we set

{ϕ} =
1

2
(ϕ1 + ϕ2), [[ϕ ]] = ϕ1n1 + ϕ2n2 on e ∈ E◦

h , (7)

where E◦
h is the set of interior edges e. For a vector valued function τ ,

piecewise smooth on Th, we define τ 1 and τ 2 analogously, and set

{τ} =
1

2
(τ 1 + τ 2), [[ τ ]] = τ 1 · n1 + τ 2 · n2 on e ∈ E◦

h . (8)

For e ∈ E∂h , the set of boundary edges, we set

[[ τ ]] = τ · n, {τ} = τ , [[ϕ ]] = ϕn, {ϕ} = ϕ on e ∈ E∂h . (9)

Throughout the paper we shall make extensive use of the following identity
(see [3]):

∑

T∈Th

∫

∂T

τ · nϕ =
∑

e∈Eh

∫

e

{τ} · [[ϕ ]] +
∑

e∈E◦

h

∫

e

[[ τ ]]{ϕ}, (10)

and of the trace inequality (see, e.g., equation (2.4) of [2])

‖v‖2
0,e ≤ C(h−1

e ‖v‖2
0,T + he|v|21,T ) ∀v ∈ H1(T ), ∀e ⊂ ∂T. (11)

With the previous definitions, problem (1) is equivalent to





K
−1σ + ∇u =0 in each T ∈ Th,

div σ =f in each T ∈ Th,
[[u ]] =0 on each e ∈ Eh,
[[ σ ]] =0 on each e ∈ E◦

h .

(12)

Following the weighted residual approach of [9], we shall introduce a vari-
ational formulation of (12) in which each of the equations above has the
same relevance, and is therefore treated in the same fashion. To do so, we
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introduce the spaces

Ṽ (Th) := {v ∈ L2(Ω) such that v|T ∈ H2(T ) ∀T ∈ Th} ≡ H2(Th),

Σ̃(Th) := {τ ∈ L2(Ω) such that τ |T ∈ H1(T ) ∀T ∈ Th} ≡ H1(Th),
(13)

and, for p ∈ [2, P ] (see Theorem 1):

V (Th) := {v ∈ Lp(Ω) such that v|T ∈ W 1,p(T ) ∀T ∈ Th},

Σ(Th) := {τ ∈ Lp(Ω) such that (div τ )|T ∈ L2(T ) ∀T ∈ Th}.
(14)

We then introduce three linear operators B00, B01, B02 from Σ̃(Th) to
L2(Th), L2(Eh), L2(E◦

h) respectively, and three linear operators B10, B11,

B12 from Ṽ (Th) to L2(Th), L2(Eh), L2(E◦
h) respectively, and we consider

the variational problem:





Find (σ, u) ∈ Σ(Th) × V (Th) such that :

(K−1σ + ∇hu,B00τ )Th
+ < [[u ]],B01τ >Eh

+ < [[ σ ]], B02τ >E◦

h
= 0 ∀τ ∈ Σ̃(Th)

(div σ − f,B10v)Th
+ < [[u ]],B11v >Eh

+ < [[ σ ]], B12v >E◦

h
= 0 ∀v ∈ Ṽ (Th).

(15)

In (15) ∇h denotes the gradient operator element by element. Moreover,
we set:

(v, w)Th
:=

∑

T∈Th

∫

T

vw dx, < v, w >Eh
:=
∑

e∈Eh

∫

e

vw ds,

for both scalar and vector valued functions; analogously, < v,w >E◦

h
de-

notes the L2−scalar product on internal edges. The operators B must be
properly chosen. Here we assume that the operators verify the conditions
stated in Theorem 3 of [9]. Those assumptions, together with the regular-
ity result of Theorem 1, are sufficient to ensure that problem (15) has a
unique solution which coincides with the solution of (12). As shown in [9]
(see also [17]), all the methods appeared so far in the literature correspond
to take B00 = s Id, with s > 0, and B10 = Id. Accordingly, in the sequel
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we shall make this choice. Therefore, problem (15) becomes




Find (σ, u) ∈ Σ(Th) × V (Th) such that :

s(K−1σ + ∇hu, τ )Th
+ < [[u ]],B01τ >Eh

+ < [[ σ ]], B02τ >E◦

h
= 0 ∀τ ∈ Σ̃(Th)

− (σ,∇hv)Th
+ < [[u ]],B11v >Eh

+ < [[ σ ]], B12v + {v} >E◦

h

+ < {σ}, [[ v ]] >Eh
= (f, v) ∀v ∈ Ṽ (Th),

(16)

where an integration by parts and (10) have been used in the second equa-
tion.

Next, for k ≥ 1, we define the finite element spaces:

V kh = {v ∈ L2(Ω) : v|T ∈ Pk(T ) ∀T ∈ Th},

Σk
h = {τ ∈ L2(Ω) : τ |T ∈ [Pk(T )]2 ∀T ∈ Th},

(17)

and the norm

|||(τ , v)|||2 := |||v|||2 + ||K−1τ ||20 v ∈ V (Th), τ ∈ Σ(Th), (18)

with |||v||| defined by

|||v||| :=

(
∑

T∈Th

||∇v||20,T +
∑

e∈Eh

h−1/2
e ||[[ v ]]||20,e

)1/2

. (19)

In (18) we used ||K−1τ ||20 in order to match the physical dimensions of |||v|||2.
However, due to assumption (3), we have

||K−1τ ||20 ≈ ||K−1/2τ ||20 ≈ ||τ ||20 ≈ ||K1/2τ ||20 ≈ ||Kτ ||20. (20)

We also notice that (cf. (13) and (14))

V kh ⊂ Ṽ (Th) ⊂ V (Th); Σk
h ⊂ Σ̃(Th) ⊂ Σ(Th). (21)

The discrete problem is




Find (σh, uh) ∈ Σk
h × V kh such that ∀(τ , v) ∈ Σk

h × V kh :

s(K−1σh + ∇huh, τ )Th
+ < [[uh ]],B01τ >Eh

+ < [[ σh ]], B02τ >E◦

h
= 0 ∀τ ∈ Σk

h

− (σh,∇hv)Th
+ < [[uh ]],B11v >Eh

+ < [[ σh ]], B12v + {v} >E◦

h

+ < {σh}, [[ v ]] >Eh
= (f, v) ∀v ∈ V kh ,

(22)

which, in view of (21), turns out to be a conforming approximation of the
variational problem (16).
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3 A-posteriori error bounds

Given T ∈ Th and ǫ ∈ Eh, we introduce the following error indicators:

ηue := h−1/2
e ||[[uh ]]||0,e ∀e ∈ Eh, ησe := h1/2

e ||[[ σh ]]||0,e ∀e ∈ E◦
h ,

ησT,0 := ||K−1σh + ∇uh||0,T , ησT,1 := hT ||div σh − f ||0,T ∀T ∈ Th.
(23)

Then, for every T ∈ Th we set

ηT := ησT,0 + ησT,1 +
∑

e⊂∂T

ηue +
∑

e⊂(∂T\∂Ω)

ησe . (24)

3.1 Lower bounds

As far as the efficiency of the error indicator ηT is concerned, we have the
following main result.

Theorem 2 Let (σ, u) ((σh, uh) resp.) be the solution of (15) ((22) resp.).
For every T ∈ Th the following estimate holds:

ηT ≤ C
(
||K−1(σh − σ)||20,ωT

+ ||∇(uh − u)||20,T

+
∑

e⊂∂T

h−1
e ||[[uh − u ]]||20,e

)1/2

,
(25)

where ηT and ωT are defined in (24) and (5), respectively, and C is a
positive constant independent of hT .

We postpone the proof of Theorem 2 after some useful intermediate Lem-
mata.

Lemma 1 Let T ∈ Th, and let p ∈ Pk(T ). The following inverse inequality
holds:

hT ||p||0,T ≤ C1||p||−1,T , (26)

with C1 > 0 independent of hT . Moreover, for e ∈ Eh with e ⊂ ∂T , defining
the space

S = H
1/2
00 (e) = {v ∈ H1/2(∂T ) such that v ≡ 0 on ∂T \e} (27)

it holds:
h1/2
e ||p||0,e ≤ C2||p||S′ , (28)

with C2 > 0 independent of hT , and S′ being the dual space of S.
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Proof. Using a scaling argument and the definition of the norm in H−1(T )
we have:

hT ||p||0,T = h2
T ||p̂||0,T̂ ≤ ĉh2

T ||p̂||−1,T̂ = ĉh2
T sup
ϕ̂∈H1

0
(T̂ )

∫
T̂
p̂ϕ̂dx̂

|ϕ̂|1,T̂

= ĉh2
T sup
ϕ∈H1

0
(T )

h−2
T

∫
T
pϕdx

|ϕ|1,T
= ĉ||p||−1,T .

(29)

To prove (28) we first observe that, denoting by ϕ̃ the harmonic extension
of ϕ ∈ S to T we have

||ϕ||S := ||ϕ||1/2,∂T ≈ |ϕ̃|1,T . (30)

Using again a scaling argument, and the definition of the norm in S′ we
obtain

h1/2
e ||p||0,e = he||p̂||0,ê ≤ ĉhe||p̂||Ŝ′ = ĉhe sup

ϕ̂∈Ŝ

∫
ê
p̂ϕ̂dŝ

||ϕ̂||Ŝ

= ĉhe sup
ϕ∈S

h−1
e

∫
e
pϕds

||ϕ||S
= ĉ||p||S′ .

(31)

�

Corollary 1 As a consequence of (26) we immediately deduce that

hT ||div v||0,T ≤ C1||v||0,T ∀v ∈ H(div ;T ) with div v polynomial. (32)

Indeed, the definition of norm in H−1 and integration by parts give

||div v||−1,T = sup
ψ∈H1

0
(T )

∫
T

div vψ dx

|ψ|1,T
= sup

ψ∈H1

0
(T )

∫
T

v · ∇ψ dx

|ψ|1,T
≤ ||v||0,T .

(33)

�

The following result can also be found in [26] (Lemma 3.1).

Lemma 2 Let v ∈ H(div ;T ), and let e ∈ Eh with e ⊂ ∂T . Then

||v · n||S′ ≤ C(||v||0,T + hT ||div v||0,T ), (34)

with C > 0 independent of hT .

Proof. We first note that, if ϕ̃ is the harmonic extension to T of ϕ ∈ S we
have:

∫

e

(v · n)ϕds ≡
∫

∂T

(v · n)ϕ̃ds =

∫

T

(v · ∇ϕ̃+ div v ϕ̃) dx. (35)
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By Poincaré inequality ||ϕ̃||0,T ≤ ChT |ϕ̃|1,T we then obtain

∫

e

(v · n)ϕds ≤ C (||v||0,T + hT ||div v||0,T ) |ϕ̃|1,T . (36)

Using this in the definition of the norm in S′, and recalling (30), we obtain:

||v · n||S′ = sup
ϕ∈S

∫
e
(v · n)ϕds

||ϕ||S
≤ C (||v||0,T + hT ||div v||0,T ) . (37)

�

We are now ready to prove Theorem 2.

Proof of Theorem 2. Fix T ∈ Th and recall that we assumed f(=
div σ) polynomial in T . Using (32) with v = σh − σ we have:

hT ||div σh − f ||0,T = hT ||div (σh − σ)||0,T ≤ C1||σh − σ||0,T . (38)

Since K
−1σ + ∇u = 0 in T , we have

||K−1σh + ∇uh||0,T = ||K−1(σh − σ) + ∇(uh − u)||0,T
≤ ||K−1(σh − σ)||0,T + ||∇(uh − u)||0,T .

(39)

Let e ⊂ ∂T . Since [[u ]]|e = 0, it holds

h−1/2
e ||[[uh ]]||0,e = h−1/2

e ||[[uh − u ]]||0,e. (40)

Let now e ⊂ (∂T \ ∂Ω). Use first (28) with p = [[ σh ]]|e, then [[ σ ]]|e = 0,
then (34) with v = (σ − σh)|T (T ⊆ ωe, see (6)), to get:

h1/2
e ||[[ σh ]]||0,e ≤ C2||[[ σh ]]||S′ = C2||[[ σh − σ ]]||S′

≤ C


||σ − σh||0,ωe

+
∑

T⊆ωe

hT ||div (σ − σh)||0,T


 .

(41)

Noting that div (σ −σh) = f − div σh is a polynomial, from (41) and (32)
we obtain, recalling (20):

h1/2
e ||[[ σh ]]||0,e ≤ C ||σ − σh||0,ωe

≤ C ||K−1(σ − σh)||0,ωe
. (42)

Joining estimates (38), (39), (40), and (42) we easily get (25). �
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3.2 Upper bounds

We make use of the Helmholtz-type decomposition of σh:

σh = −K∇ϕ+ curl p. (43)

Above, ϕ ∈ H1
0 (Ω) is the solution of the elliptic problem:

{
div (K∇ϕ) = −div σh in Ω,

ϕ|∂Ω = 0,
(44)

which has to be understood in the sense of distributions, since div σh ∈
H−1(Ω), and p ∈ H1(Ω) is determined, up to a constant, by solving

curl p = σh + K∇ϕ, with curl p :=
(∂p
∂y
,− ∂p

∂x

)t
. (45)

We notice that such an equation is solvable since Ω is simply connected
and div (σh + K∇ϕ) = 0 (see (44)). Recalling that σ = −K∇u we have

σ − σh = K∇w − curl p where w := ϕ− u. (46)

From (46) we get

K
−1/2(σ − σh) = K

1/2∇w − K
−1/2curl p, (47)

and therefore

||K−1/2(σ − σh)||20 = ||K1/2∇w − K
−1/2curl p||20

= ||K1/2∇w||20 + ||K−1/2curl p||20,
(48)

since (K being symmetric) (K1/2∇w,K−1/2curl p) ≡ (∇w, curl p) = 0.
We shall estimate the terms ||K1/2∇w||0 and ||K−1/2curl p||0 sepa-

rately. In the sequel, given the mesh Th which possibly contains hanging
nodes, we denote by T c

h the finest conforming mesh such that T c
h ⊆ Th.

For any T ∈ T c
h , we set

T ∈ T c
h −→ π(T ) = {T ′ ∈ Th : T ′ ⊆ T } . (49)

We shall need to introduce suitable interpolants for w and p. Hence, let
wI (resp. pI) be the usual piecewise linear Clément interpolant of w (resp.
p), defined on the conforming mesh T c

h . It is well-known that it holds:




∑

T∈T c

h

h2r−2
T |w − wI |2r,T




1/2

≤ C|w|1 r = 0, 1



∑

T∈T c

h

h2r−2
T |p− pI |2r,T




1/2

≤ C|p|1 r = 0, 1.

(50)
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We will use the following Lemma, which somehow establishes a connec-
tion between the mesh Th (through Eh) and the corresponding conforming

mesh T c
h .

Lemma 3 Given the mesh Th with edge set Eh, let T c
h the finest conform-

ing mesh such that T c
h ⊆ Th. Let ϕ ∈ H1(Ω). Then, it holds

(
∑

e∈Eh

h−1
e ||ϕ||20,e)1/2 ≤ C




∑

T∈T c

h

(h−2
T ||ϕ||20,T + |ϕ|21,T )




1/2

. (51)

Proof. Fix e ∈ Eh. Using (11), and h−2
e ≤ Ch−2

T ∀T ⊆ ωe (see (4)
and (6)), we get

h−1
e ||ϕ||20,e ≤ C(

∑

T⊆ωe

h−2
T ||ϕ||20,T + |ϕ|21,T ). (52)

Therefore, we have

(
∑

e∈Eh

h−1
e ||ϕ||20,e)1/2 ≤ C

(
∑

T∈Th

(h−2
T ||ϕ||20,T + |ϕ|21,T )

)1/2

. (53)

Rearranging the terms in the right-hand side of (53), and recalling that
h−2
T ′ ≤ C∗h

−2
T , ∀T ′ ∈ π(T ), we obtain

(
∑

T∈Th

(h−2
T ||ϕ||20,T + |ϕ|21,T )

)1/2

=



∑

T∈T c

h

∑

T ′∈π(T )

(h−2
T ′ ||ϕ||20,T ′ + |ϕ|21,T ′)




1/2

≤ C



∑

T∈T c

h

(h−2
T ||ϕ||20,T + |ϕ|21,T )




1/2

.

(54)

From (53) and (54) we have (51). �

Theorem 3 Let (σ, u) ((σh, uh) resp.) be the solution of (15) ((22) resp.).
Let w ∈ H1

0 (Ω) and p ∈ H1(Ω) as in (43)–(46), with piecewise linear
Clément interpolants wI and pI , respectively, defined on T c

h . Then it holds:

||K−1(σ −σh)||0 ≤ C

(
∑

T∈Th

η2
T

)1/2

+ T0(uh,σh; p) + T1(uh,σh;w), (55)
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where ηT is defined in (24), and T0(uh,σh; p) and T1(uh,σh;w) are given
by

T0(uh,σh; p) := −< [[uh ]], s−1B01(curl pI) + {curl pI} >Eh

|p|1

−
< [[ σh ]], s−1B02(curl pI) >E◦

h

|p|1
(56)

T1(uh,σh;w) := −< [[uh ]],B11wI >Eh

|w|1
−
< [[ σh ]], B12wI + {wI} >E◦

h

|w|1
.

Moreover, it holds:

|||u − uh||| ≤
√

2

(
||K−1(σ − σh)||20 +

∑

T∈Th

(ησT,0)
2 +

∑

e∈Eh

(ηue )2

)1/2

, (57)

where ||| · |||, ηue and ησT,0 are defined in (19) and (23).

Proof. We proceed in three steps.
First Step – Estimate for ||K−1/2curl p||0.
Testing the first equation of (22) with τ = curl pI ∈ Σk

h, we have

s(K−1σh + ∇huh, curl pI)Th
= − < [[uh ]],B01(curl pI) >Eh

− < [[ σh ]], B02(curl pI) >E◦

h
.

(58)

Integrating by parts the term (∇huh, curl pI)Th
, using (10), and noting

that div curl pI = 0 and [[ curl pI ]]|e = 0 ∀e ∈ E◦
h, we get

(K−1σh, curl pI)Th
=− < [[uh ]], s−1B01(curl pI) + {curl pI} >Eh

− < [[ σh ]], s−1B02(curl pI) >E◦

h
.

(59)

On the other hand, we also have from (43)

(K−1σh, curl p)Th
= (−∇ϕ+ K

−1curl p, curl p)Th

= (K−1curl p, curl p)Th
= ||K−1/2curl p||20.

(60)

Hence, from (60), adding and subtracting first (K−1σh, curl pI)Th
, then

(∇huh, curl (p− pI))Th
, and using (59), we get

||K−1/2curl p||20 = (K−1σh, curl (p− pI))Th
+ (K−1σh, curl pI)Th

= (K−1σh + ∇huh, curl (p− pI))Th
− (∇huh, curl (p− pI))Th

− < [[uh ]], s−1B01(curl pI) + {curl pI} >Eh

− < [[ σh ]], s−1B02(curl pI) >E◦

h
.

(61)



A-POSTERIORI ESTIMATES FOR DG APPROXIMATIONS 14

Using the second estimate in (50) with r = 1, we easily get

(K−1σh + ∇huh, curl (p− pI))Th

≤ C
( ∑

T∈Th

||K−1σh + ∇huh||20,T
)1/2

|p|1.
(62)

After integrating by parts the term (∇huh, curl (p− pI))Th
, recalling that

∇huh · tT = curl uh · nT , using (10), [[ p − pI ]]|e = 0 ∀e ∈ E◦
h, and (9) we

obtain:

(∇huh,curl (p− pI))Th
= −

∑

T∈Th

∫

∂T

(∇huh · tT )(p− pI) ds

= −
∑

T∈Th

∫

∂T

(curl uh · nT )(p− pI) ds

= − < [[ curl uh ]], {p− pI} >E◦

h

−
∑

e∈E∂

h

∫

e

(curl uh · nT )(p− pI) ds

= − < [[ curl uh ]], {p− pI} >Eh

≤ C(
∑

e∈Eh

he||[[ curl uh ]]||20,e)1/2(
∑

e∈Eh

h−1
e ||{p− pI}||20,e)1/2.

(63)

An inverse inequality gives:

(
∑

e∈Eh

he||[[ curl uh ]]||20,e)1/2 ≤ C(
∑

e∈Eh

h−1
e ||[[uh ]]||20,e)1/2. (64)

Furthermore, from Lemma 3 with ϕ = p− pI , and (50) we get:

∑

e∈Eh

h−1
e ||{p−pI}||20,e ≤ C

∑

T∈T c

h

(h−2
T ||p−pI ||20,T+|p−pI|21,T ) ≤ C|p|21. (65)

Inserting (64) and (65) in estimate (63) we deduce:

(∇huh, curl (p− pI))Th
≤ C(

∑

e∈Eh

h−1
e ||[[uh ]]||20,e)1/2|p|1. (66)
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Hence, combining (62) with (66) we infer in (61)

||K−1/2curl p||20

≤ C
( ∑

T∈Th

||K−1σh + ∇huh||20,T +
∑

e∈Eh

h−1
e ||[[uh ]]||20,e

)1/2

|p|1

− < [[uh ]], s−1B01(curl pI) + {curl pI} >Eh

− < [[ σh ]], s−1B02(curl pI) >E◦

h
.

(67)

Recalling (56), and noting that |p|1 ≈ ||K−1/2curl p||0 (see (20)), we get:

||K−1/2curl p||0 ≤ C
( ∑

T∈Th

||K−1σh + ∇huh||20,T +
∑

e∈Eh

h−1
e ||[[uh ]]||20,e

)1/2

+ T0(uh,σh; p).
(68)

Second Step – Estimate for ||K1/2∇w||20.
From the second equations of (16) and (22) we obtain the error equation,
that we test with vh = wI :

(σ−σh,∇wI)Th
=< [[u− uh ]],B11wI >Eh

+ < [[ σ − σh ]], B12wI + {wI} >E◦

h
+ < {σ − σh}, [[wI ]] >Eh

.
(69)

Since [[u ]]|e = [[wI ]]|e = 0 ∀e ∈ Eh, and [[σ ]]|e = 0 ∀e ∈ E◦
h , we obtain

(σ − σh,∇wI)Th
= − < [[uh ]],B11wI >Eh

− < [[ σh ]], B12wI + {wI} >E◦

h
.

(70)
On the other hand, we have (cf. (46)):

(σ − σh,∇w)Th
= (K∇w − curl p,∇w)Th

= ||K1/2∇w||20. (71)

Hence, from (71), adding and subtracting ∇wI , and using (70), it holds

||K1/2∇w||20 = (σ − σh,∇(w − wI))Th
+ (σ − σh,∇wI)Th

= (σ − σh,∇(w − wI))Th
− < [[uh ]],B11wI >Eh

− < [[ σh ]], B12wI + {wI} >E◦

h
.

(72)

An integration by parts, (10) and the equations [[σ ]]|e = 0 ∀e ∈ E◦
h, and

[[w − wI ]]|e = 0 ∀e ∈ Eh give

||K1/2∇w||20 = −(divh(σ − σh), w − wI)Th
− < [[uh ]],B11wI >Eh

− < [[ σh ]], B12wI + {wI} >E◦

h
− < [[ σh ]], {w − wI} >E◦

h

= (divhσh − f, w − wI)Th
− < [[uh ]],B11wI >Eh

− < [[ σh ]], B12wI + {wI} >E◦

h
− < [[ σh ]], {w − wI} >E◦

h
.

(73)
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Above and in the sequel, divh denotes the divergence operator element by
element. We have

(divhσh−f, w−wI)Th
≤ (

∑

T∈Th

h2
T ||div σh−f ||20,T )1/2(

∑

T∈Th

h−2
T ||w−wI ||20,T )1/2.

(74)
A rearrangement gives (see (49))

∑

T∈Th

h−2
T ||w − wI ||20,T =

∑

T∈T c

h

∑

T ′∈π(T )

h−2
T ′ ||w − wI ||20,T ′ . (75)

Since h−2
T ′ ≤ Ch−2

T (cf. (4)), using (50), from (75) we obtain:

(
∑

T∈Th

h−2
T ||w − wI ||20,T )1/2 ≤ C|w|1. (76)

Therefore, from (74) and (76) we get

(divhσh − f, w − wI)Th
≤ C(

∑

T∈Th

h2
T ||div σh − f ||20,T )1/2|w|1. (77)

Next, we have

< [[ σh ]], {w − wI} >E◦

h
≤ (

∑

e∈E◦

h

he||[[ σh ]]||20,e)1/2(
∑

e∈E◦

h

h−1
e ||{w − wI}||20,e)1/2.

(78)
Lemma 3 with ϕ = w − wI , and estimates (50) yield:

(
∑

e∈E◦

h

h−1
e ||{w − wI}||20,e)1/2 ≤ C|w|1. (79)

Hence,

< [[ σh ]], {w − wI} >E◦

h
≤ C(

∑

e∈E◦

h

he||[[ σh ]]||20,e)1/2|w|1. (80)

Therefore, from (73), (77), and (80) we get

||K1/2∇w||20 ≤ C(
∑

T∈Th

h2
T ||div σh − f ||20,T +

∑

e∈E◦

h

he||[[ σh ]]||20,e)1/2|w|1

− < [[uh ]],B11wI >Eh
− < [[ σh ]], B12wI + {wI} >E◦

h
,

by which we obtain (see also (56), and use |w|1 ≈ ||K1/2∇w||0, cf. (20)):

||K1/2∇w||0 ≤ C




∑

T∈Th

h2
T ||div σh − f ||20,T +

∑

e∈E◦

h

he||[[ σh ]]||20,e




1/2

+ T1(uh,σh;w).

(81)
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Recalling (48), a combination of (68) and (81) gives

||K−1(σ − σh)||0 ≤ C||K−1/2(σ − σh)||0

≤ C

(
∑

T∈Th

ηT

)1/2

+ T0(uhσh; p) + T1(uhσh;w),
(82)

i.e. estimate (55).
Third Step

Since K
−1σ = −∇u in T ∀T ∈ Th, it holds

∑

T∈Th

||∇(uh − u)||20,T =
∑

T∈Th

||∇uh + K
−1σ||20,T

≤ 2
∑

T∈Th

(
||∇uh + K

−1σh||20,T + ||K−1(σ − σh)||20,T
)

= 2
∑

T∈Th

(
(ησT,0)

2 + ||K−1(σ − σh)||20,T
)
.

(83)
Furthermore, we have

∑

e∈Eh

h−1
e ||[[uh − u ]]||20,e =

∑

e∈Eh

h−1
e ||[[uh ]]||20,e =

∑

e∈Eh

(ηue )2. (84)

Summing (83) with (84), and taking the square root, we infer (cf. (19))

|||u − uh||| ≤
√

2

(
||K−1(σ − σh)||20 +

∑

T∈Th

(ησT,0)
2 +

∑

e∈Eh

(ηue )2

)1/2

, (85)

i.e. estimate (57). The proof is complete. �

Immediate consequences of Theorem 3 are the following.

Corollary 2 With the notation of Theorem 3, one has (cf. also (18)–(19)):

|||(σ−σh, u−uh)||| ≤ C

(
∑

T∈Th

η2
T

)1/2

+T0(uh,σh; p)+T1(uh,σh;w). (86)
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Corollary 3 Suppose that:

( ∑

e∈Eh

he||s−1B01(curl pI) + {curl pI}||20,e

+
∑

e∈E◦

h

h−1
e ||s−1B02(curl pI)||20,e

)1/2

≤ C|p|1

( ∑

e∈Eh

he||B11wI ||20,e +
∑

e∈E◦

h

h−1
e ||B12wI + {wI}||20,e

)1/2

≤ C|w|1.

(87)

Then it holds

|||(σ − σh, u− uh)||| ≤ C

(
∑

T∈Th

η2
T

)1/2

. (88)

4 Various methods

We first notice that the lower bounds of Theorem 2 in Section 3.1 do not
depend on the B operators. As a consequence, they hold true for any
scheme one selects. Therefore, in the following we focus on the upper
bounds for the various methods.

Let us introduce, for each piecewise smooth function v, the lifting of its
jumps, L([[ v ]]) ∈ Σk

h, as the unique solution in Σk
h of

(L([[ v ]]), τ )Th
=< [[ v ]],B01τ >Eh

∀τ ∈ Σk
h. (89)

We will also use the lift of the jumps on each edge, ℓe([[ v ]]) ∈ Σk
h, defined

as

(ℓe([[ v ]]), τ )Th
=< [[ v ]],B01τ >e ∀τ ∈ Σk

h =⇒ L([[ v ]]) =
∑

e∈Eh

ℓe([[ v ]]).

(90)
Using the above definitions, we set

SL(u, v) := (L([[u ]]),KL([[ v ]]))Th
,

SJ(u, v) :=
∑

e∈Eh

h−1
e < [[u ]], {K[[ v ]]} >Eh

,

Sℓ(u, v) :=
∑

e∈Eh

(ℓe([[u ]]),Kℓe([[ v ]]))Th
.

(91)

As we shall see, these terms are associated with different choices of the
operators B, and give rise to different stabilizing terms.
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4.1 First set of methods

The first set of methods we present is characterized by the following choice

B00τ = τ , B01τ = −{τ}, B02τ = 0, B12v = −{v}. (92)

In particular, we notice that s = 1. We also recall that B10v = v, as we
have assumed from the beginning. With the choice (92) for B01, the lifting
operator (89) is given by

(L([[ v ]]), τ )Th
= − < [[ v ]], {τ} >Eh

∀τ ∈ Σk
h, (93)

and the following estimate holds (see, e.g.,[10]):

C1||L([[ v ]])||20 ≤
∑

e∈Eh

h−1
e ||[[ v ]]||20,e ≤ C2(||L([[ v ]])||20 + |v|21,h). (94)

In particular, (94) shows that all the terms (91) are equivalent. According
with (92), different schemes are obtained by varying B11 only. We show
the correspondence between the choice of B11 and the resulting method in
Table 1. In the table, s1 : Eh → R is a function defined by

s1|e =
ηe
he

∀ e ∈ Eh, (95)

where the ηe’s are suitable positive constants, uniformly bounded and
bounded away from zero (see [3]).

Table 1

The operator B11 for some DG methods, with the corresponding stability term and
references

B11v Stab. Method

B11v = 0 – Original BR [5]
B11v = {KL([[ v ]])} − {Kℓe([[ v ]])} Sℓ(u, v) BR1 [6]
B11v = −{Kℓe([[ v ]])} Sℓ(u, v) Brezzi et al [12]
B11v = s1{K[[ v ]]} + {KL([[ v ]])} SJ(u, v) IP [4, 33, 2]
B11v = 2{K∇hv} + {KL([[ v ]])} – BO [29]
B11v = 2{K∇hv} + {KL([[ v ]])} + s1{K[[ v ]]} SJ(u, v) NIPG [30]
B11v = {K∇hv} + {KL([[ v ]])} + s1{K[[ v ]]} SJ(u, v) IIP [19, 32]

We remark that the original format of the various methods can be
recovered by performing the following two steps.

1. Use (89) (or (90)) in the first equation of (22). Recalling that one has
B02τ = 0, K is piecewise constant, and ∇h(V

k
h ) ⊆ Σk

h, one obtains
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σh = −K (∇huh + L([[uh ]])) . (96)

2. Substitute the above expression in the second equation of (22) to get
a variational formulation involving only the unknown uh.

Proposition 1 Suppose to choose B00, B01, B02, B10, and B12 as in (92).
For all the choices detailed Table 1 it holds

|||(σ − σh, u− uh)||| ≤ C

(
∑

T∈Th

η2
T

)1/2

. (97)

Proof. We simply apply Corollary 3. We first notice that (92) implies

s−1B01(curl pI) + {curl pI} = 0 ; s−1B02(curl pI) = 0

B12wI + {wI} = 0.
(98)

Therefore, we only need to estimate the term
∑

e∈Eh
he||B11wI ||20,e in (87).

Since [[wI ]]|e = 0 ∀e ∈ Eh, for the first four choices in Table 1 we have
B11wI ≡ 0, and estimate (97) follows, while for the last three choices in
Table 1 we have B11wI = α{K∇hwI} (α = 1, 2). Then:

∑

e∈Eh

he||B11wI ||20,e = α2
∑

e∈Eh

he||{K∇hwI}||20,e. (99)

Using the trace inequality (11), the equivalence of norms (20), |∇wI |1,T =
0 ∀T ∈ Th, the summation properties of norms, and finally estimates (50)
we deduce:
∑

e∈Eh

he||B11wI ||20,e = α2
∑

e∈Eh

he||{K∇hwI}||20,e ≤ C
∑

T∈Th

||∇wI ||20,T

= C
∑

T∈T c

h

||∇wI ||20,T ≤ C|w|21,
(100)

which leads to (87). Then, estimate (97) follows by invoking Corollary 3.
�

4.2 LDG methods

Another example arises from the following choices:

B00τ = τ , B01τ = −{τ} + β[[ τ ]], B02τ = 0

B11v = s1{K[[ v ]]}, B12v = −{v} − β · [[ v ]],
(101)
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with β a suitable vector, and s1 as in (95). Still, we have s = 1 and
B10v = v. The definition of the lifting operator (89) is now

(L([[ v ]]), τ )Th
= − < [[ v ]], {τ} >Eh

+ < β · [[ v ]], [[ τ ]] >E◦

h
∀τ ∈ Σk

h, (102)

and estimate (94) still holds. These choices lead to the so-called LDG
method of Cockburn and Shu (see [18]), for which we prove the following
Proposition.

Proposition 2 With the choice (101) it holds

|||(σ − σh, u− uh)||| ≤ C

(
∑

T∈Th

η2
T

)1/2

. (103)

Proof. Again, we apply Corollary 3. To do so, we simply note that we
have

s−1B01(curl pI) + {curl pI} = β[[ curl pI ]] = 0

s−1B02(curl pI) = 0

B12wI + {wI} = −β · [[wI ]] = 0

B11wI = s1{K[[wI ]]} = 0.

(104)

Therefore, Corollary 3 straightforwardly applies. �

We now detail a variant of the methods above, which accounts for choos-
ing all the operators as in (101), but

B02τ = s2[[ K
−1τ ]]. (105)

Above, s2 : Eh → R is a function defined by

s2|e = τehe ∀ e ∈ Eh, (106)

where the τe’s are suitable positive constants, uniformly bounded and
bounded away from zero (see [15]). We remark that in this case the elimi-
nation of σh cannot be done as in (96). However, (105)-(106) imply

∑

e∈Eh

h−1
e ||s−1B02(curl pI)||20,e =

∑

e∈Eh

h−1
e s22||[[ K−1curl pI ]]||20,e

≤ C
( ∑

e∈Eh

he||[[ K−1curl pI ]]||20,e
)
.

(107)

With the same arguments used for proving (100), the trace inequality (11),
the equivalence of norms (20), |curl pI |1,T = 0 ∀T ∈ Th, the summation
properties of norms, and finally estimates (50) lead to:

∑

e∈Eh

he||[[ K−1curl pI ]]||20,e ≤ C
( ∑

T∈T c

h

||curl pI ||20,T
)
≤ C|p|21. (108)

Therefore, Corollary 3 applies (cf. also (104)).
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4.3 Hughes-Masud methods

With this terminology we indicate a collection of methods introduced and
analyzed in [10], based on the original method proposed by Hughes and
Masud in [27]. (See also [1] for numerical results on all the formulations).
These methods are obtained with the following choice:

B00τ = sτ , B01τ = −{τ}, B02τ = 0

B10v = v, B12v = −{v} (109)

with s a positive parameter to be chosen to get stability. Varying B11

produces various schemes, as detailed in Table 2. In the table, the first
choice is stable and robust for s ∈ [s0, s1], with [s0, s1] ⊂]0, 1[; the second
and the third ones are so for s ∈ [s0, s1], with s0 > 0. Finally, the fourth
choice is stable and robust for s ∈ [s0, s1], with [s0, s1] ⊂]0, 4[.

Table 2

The operator B11 for the Hughes-Masud methods and related references.

B11v Method Refs.

B11v =
1 − s

s
{K∇hv} IP +

1

s
SL(u, v) [33, 2, 10]

B11v = −
1 − s

s
{K∇hv}

1

s
BR −

1 − s

s
BO [10]

B11v =
1 + s

s
{K∇hv} BO +

1

s
SL(u, v) [10, 29]

B11v = 1

s
{K∇hv} IIP +

1

s
SL(u, v) [19, 1]

We remark that the original format of the various methods can be
recovered by performing the two steps detailed in section 4.1. The only
difference is that equation (96) now becomes

σh = −K
(
∇huh + s−1L([[uh ]])

)
(see first equation of (22)). (110)

We now prove the following result.

Proposition 3 It holds

|||(σ − σh, u− uh)||| ≤ C

(
∑

T∈Th

η2
T

)1/2

. (111)
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Proof. We notice that we have

s−1B01(curl pI) + {curl pI} = (1 − s−1){curl pI}

s−1B02(curl pI) = 0

B12wI + {wI} = 0

B11wI = c(s){K∇hwI},

(112)

where c(s) is a constant, which is defined accordingly with the above choices
of 2. Notice that the two nonzero terms are of the same type as (108) and
(99), and can be estimated exactly in the same way. Thus:

(
∑

e∈Eh

he||s−1B01(curl pI) + {curl pI}||20,e

)1/2

≤ C|p|1

(
∑

e∈Eh

he||B11wI ||20,e

)1/2

≤ C|w|1.

(113)

Estimate (111) now follows from Corollary 3. �
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