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Abstract The Dirichlet problem with Lagrange multipliers is a common ingredient in
domain decomposition methods with non-matching grids. We propose a new way of
stabilizing it by means of bubble functions on the boundary. Static condensation allows
the elimination of both bubbles and Lagrange multipliers, leading to a simple variant of
Nitsche’s scheme.

1. INTRODUCTION

The use of domain decomposition methods with non-matching grids is becoming increas-
ingly popular. In particular, its use is recommended when the splitting into subdomains
is dictated by physical and/or geometrical reasons rather than merely by computational
ones. Without underestimating the relevance of this latter group of applications (which
can be extremely important and even crucial in a number of practical cases), we shall
concentrate on the former one. To fix ideas, let us consider a “toy-problem” which will
show well enough what we have in mind without using too heavy notation. Suppose

therefore that we have a domain Q =] — 1, 1[x]0, 1] split into €; =] — 1,0[x]0, 1[ and
Qy =]0,1[x]0, 1[. In order to solve the problem, say,
—Au = f in €, u =0 on OS2, (1.1)

we decompose separately ; and €, by means of two finite element grids 7,' and 7,2
respectively, and we want to approximate (for i = 1,2) u® (restriction of u to €;) by ui,
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continuous and piecewise linear on the grid 7. Clearly, on the interface I' = {0} x]0, 1]
we have two 1-d decompositions, induced by 7;! and 7%, which, in general, do not match.
A typical solution to this (as in the mortar method [6]) is to choose one of the two, say

»*» and require that uj, match uj only in some weak sense, with the use of suitable
Lagrange multipliers. (In the mortar method terminology, the nodes of 7712‘F will be
“masters” and the nodes of E1|F, “slaves”.)

However, in certain cases, it can be useful to choose a third 1-d decomposition on
[, (say T;(I') or simply 7") and have both the 7;' . and 7 nodes as “slaves”. An
example where this approach can be convenient is when both ﬁl\r and 7;1,2‘1—‘ are non
uniform (being dictated by approximation problems that might occur in €; and €, or
by self-adaptive procedures that have been used in both subdomains), but a uniform
grid on I' is recommended in order to apply a better preconditioner on the final interface
problem. This suggests the use of two different Lagrange multipliers, one for matching
up with u}, and the other one for matching u2 with u}, where, obviously, we denoted by
uy, the discretization of wr. As it is well known, this requires suitable inf-sup conditions
(see e.g. [7]) to be fulfilled, one on each side of I". Recently, an intensive study has
been carried out in order to avoid this type of inf-sup conditions by adding of suitable
stabilizing terms, thus allowing more freedom in the choice of grids and multipliers (see
e.g. (3, 4]). In turn, in different contexts, these techniques have been reinterpreted and/or
improved as the addition-elimination of suitable bubble functions to the finite element
spaces in use (see e.g. [2, 8]).

In this paper, we present a new way for stabilizing Dirichlet problems with Lagrange
multipliers for the particular case where u is approximated by a piecewise linear con-
tinuous function, and the Lagrange multipliers are approximated by piecewise constant
functions on a nonmatching grid. Our stabilization is made by adding suitable bubble
functions only on the triangles having an edge on the boundary. It is interesting to note
that elimination of the bubbles by static condensation leads to a scheme very similar to
that introduced a long time ago by Nitsche [11] and recently reproposed and analyzed in
[13].

For the sake of simplicity, we shall only discuss a single-domain problem. The ex-
tension to many subdomains can then be carried out by means of the usual coupling
procedures (Dirichlet-Dirichlet or Neumann-Neumann or something else).

The organization of the paper is the following. In Sect. 2 we present the single-domain
problem, where the Dirichlet condition is imposed via Lagrange multipliers. In Sect. 3 we
discuss its discretization with nonmatching grids and the bubble stabilization. In Sect.
4 we show that it is possible to eliminate both bubbles and Lagrange multipliers, thus
obtaining a scheme that is easy to implementation and that strongly resembles the one
discussed in [11, 13]. If needed, the Lagrange multipliers can be recovered by a simple and
economical post-processing. This will be useful in a true domain decomposition situation,
in order to carry out the iterative procedure.



2. THE SINGLE DOMAIN PROBLEM

In order to introduce our stabilization technique we shall consider a problem on a single
domain, thinking of it as one of the subdomains. Always referring for simplicity to the
global problem (1.1), at each step of the domain decomposition procedure we have to
solve, in each subdomain, a problem of the type

—Au = f in €, u =g on Q) =:T, (2.1)

where € is now the subdomain under consideration (that we assume to be a polygon), and
g denotes any continuous function which, eventually, should be the value of the solution
of (1.1) on 09 = interface between subdomains. By enforcing the boundary conditions
in (2.1) with Lagrange multipliers [1], the variational formulation of (2.1) reads

Find uw € V, A € M such that
JoVu-Vodr — [ Avds = [, fvde Yo eV, (2.2)
Jrupds = [rgpds  Vp € M,

where A is the multiplier, and V' and M are the spaces
V = H'(Q), M = H VYD)

with their usual norms (see [10]). With this choice for V' and M, the abstract theory
applies (see [7]) so that problem (2.2) has a unique solution (u, A), verifying

—Au = f in ()
A o onT (2.3)
u = g on I

The usual finite element approximation of (2.2) would be to choose a decomposition T
of  for discretizing the u variable, and take as a decomposition of [' for the A variable
the restriction of 7" to I'. Next, finite element spaces verifying the Inf-Sup condition can
easily be constructed in many ways. This cannot be done in our case. Actually, in order
that the discretization of (2.2) mimic the situation occurring in the domain decomposition
procedure, we have to assume that the decompositions for u and g are given by 7" and
T9, which do not match. Consequently, we have to introduce another decomposition of
I', say T, for dealing with the multipliers A and p. This decomposition cannot be chosen
arbitrarily, since it has to guarantee some Inf-Sup condition between the A's and the ¢'s,
and therefore either has to coincide with 79 or depend on it strongly. More precisely, 7>
can be chosen finer than 79 without violating the Inf-Sup condition between the variables
1 and the interface variables g, but it can never be coarser. In the next section we shall
deal with this problem.



3. DISCRETIZATION AND STABILIZATION

Let us turn to the discretization of (2.2). Let then T} be a decomposition of Q into
triangles {T'}, H being the mesh size, and let 7, be a decomposition of I" into intervals
I, h being the mesh size. We define

Ve = {ve H'(Q): vp e P(T) VT € T, (3.1)

M, = {peL*): wr € Py(I) VI € T} (3.2)

We now look for an approximate solution (ug, As) of (2.2), with ug € Vi, and A, € M,
As already pointed out, the two decompositions 7% and 7» are not compatible, that is,
the decomposition 7;} generates a decomposition of I" which is, in general, different from
the decomposition 7;* of I'. Our first step will then be to relate the two decompositions
of T', the second step will consist in the introduction of the bubble functions, and the
final step will be to analyze the stabilized problem.

15t step - Generation of a new decomposition.

We create a new decomposition of [, say 7?{\ by merging the two decompositions 7, and
T, ie., we add to T} the nodes of T;% belonging to I'. In doing this, it may occur that
some of the nodes of 7?‘ get too close to each other, thus complicating the analysis of
our procedure. To avoid this we may proceed as follows: when the distance between two
nodes of ’771’\ is less than or equal to some tolerance, one of the two nodes is eliminated.
This can be easily done by slightly changing either the 7% or the 7, decomposition,
so that the two nodes become coincident. In other words, we are making the following
assumption: for every triangle 7" in 7} having an edge E on the boundary, let Hr be the
diameter of 7', and let hy be the smallest length of the intervals of '7? belonging to E.
We assume that there exists a constant v independent of the decompositions, such that

hr > vHr. (3.3)
2ndstep - Introduction of the bubbles.

We add to the discretization of u as many bubble functions as the intervals of 7;}. More
precisely, we proceed as follows. Let T be a triangle having an edge on I'. Let 7' be
such an edge; in general, we will have a situation of the type 7" = Ul, I € 72’\ and,
accordingly, T = UT} (see Fig. 1 as an example). We call bubble a function b, € H' ()
such that supp(by) C Ty , and [; bpds # 0. (See Fig. 2). In order to have uniform

estimates, we need however that the bubbles have “similar” shape. For that, let T be the
reference triangle: 7' = {(&n): 0<E<T, 0<n<1—¢}, and let b be a function in
Hl(T), with b = 0 on the edges £ = 0 and n = 0, and faTBds # 0. (As a simple example,
we can take 8(5, n) = &n. Many other choices are possible, and the optimal shape of b
is still under investigation.) Our bubble by will then be given by by(z,y) = b(€, ) under
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Figure 1 Figure 2

the affine mapping (£,7) — (z,y) from T to T, which maps the edge n = 1 — £ on the
boundary edge .

3restep - The stabilized problem.

Let Bj be the space spanned by the bubbles introduced above. We then write the new
discrete problem with Vj replaced by

Vi = Vi ® By, (3.4)
and M}, replaced by
My = {p€L*T): ;€ R(I) VI € T}, (3.5)
The approximate problem now reads
Find uy € 1~/H, A € ]\7[h such that
JoNug-Nvgde — fp dwvgds = [o fogde  Vug € Va, (3.6)
Jrpugds = [Jrguds VuEJV[h.
Existence, uniqueness, and optimal error bounds for the solution of (3.6) will follow if we
can prove the following Inf-Sup condition relating Vg and Mj:
38 > 0 independent of h such that:

d N _
emvds sy e Ty, e T,
Irdievaiciie

(3.7)

As the Inf-Sup condition holds for the continuous problem, (3.7) will follow from the
general results of [9], if we prove the following theorem.

Theorem 3.1 There exists a constant C, and, for every H, a linear continuous operator
IIg 'V — Vg such that

/(HHU —v)pds = 0 VYyu e M, (3.8)
r



and

| gv||lv < Cl|lv Vv e V. (3.9)

Proof.  We start by observing, cf. [12], that it is possible to construct a linear operator
I} : V= H' Q) — Vg with the following properties:

Myv=v YveVy (3.10)

||H}{v||v < C|p|lv Yo eV, (3.11)
VT' € (Tg)ir 50| o.e < Ollv Vv eV, (3.12)

||0,E

where, here and in the following, F is the union of the boundary edges in 7, having at
least one vertex in common with E, ||v||o,p is the norm in L*(D), ||v||s,p the norm in
H*(D), and C denotes a constant independent of the mesh size. We want to check that,
for every edge E on I', we also have

[v = T0lfo.z < CHy/?||v (3.13)

||1/2,E'

For this, using interpolation theory (see [10, 5]) and (3.12), we only need to show that,

for all v in H*(F), we have

||lv = vllo,e < CHrllo|l, 5 (3.14)
which easily follows from (3.12) and (3.10) by the following standard argument:
lv =gl < infy||(v —p) = I (v = p)llo,s
" ’ y (3.15)

< Cinfy[lv —plly 5 < CHrllv

||1,E7

where the infimum is taken over the polynomials p of degree < 1 in E. Then, define
another linear continuous operator I12 : V. — By, as

/F(Hiv —v)pds = 0 Yyu € M, (3.16)

It can be proved that T2 is uniquely defined by (3.16), and verifies

1 ollor < CH?|vllos VT € T, (3.17)

[Ioll1r < Chi' |olloy VT € Ty (3.18)
Finally, define 115 as

Mpv:=Myv+ 1 (v —Myv) veV. (3.19)



It is immediate to check that Iy is linear and verifies (3.8), since, from (3.19), (3.16) we
have

/F(v —pv)pds = /F ((v —Tjv) — I3 (v — H}qv))u ds = 0  VueM, (3.20)

It remains to prove that Iy verifies (3.9). We first remark that Igv = Lo in all
triangles T' that do not have edges belonging to I'. For the remaining triangles, using
(3.18)-(3.17), and (3.13) gives

2 (v — o) < ChetHy?||o — o

0,E
" (3.21)
S C’hT HT||U||1/2,Ea
so that, from the definition (3.19), using (3.11) and (3.21) we have
1 2 Loz )2
[Tgolly < C [[yolly + (T I (0 - o) | 7)
< C (llolly + (e b’ HE ]2, )'?) (322)
< Clllv,
where, in the last inequality, we used (3.3) and the fact that
DI 5 < Bllvl e < ClIII- (3.23)
B

4. INTERPRETATION OF THE SCHEME

We will show in this section that the approximation (3.6) is directly related to Nitsche’s
scheme recently analyzed in Stenberg [13]. For that, we rewrite (3.6) using the splitting
(3.4) for trial and test functions in Vg

ug=u+p0, vg=v+0b, u,v€ Vg, 3,b € By, (4.1)
and we obtain

[ Find u € Vi, B € By, A\ € Mh such that
JoNu+Vp) -Yvude — [p AMpvds = [, fodx Yv € Vg,
JoNu+¥p) -Vbde — [ A\pbds = [, fodx Vb € By,

\ fFM(u—i_ﬂ)dS = ngMdS VMEMh.

(4.2)

Let us point out that, by construction, B, and M, have the same dimension, say NB. As a
basis in By, it is natural to use the functions {b;} defined in the previous Section (2" step),

7



while a natural basis in M, will be given by the functions u, = the characteristic function
of I, for k =1,.., NB. Then, we can write

B=> Brb, A =D Nbi: (4.3)
p P

From the third equation of (4.2) we can derive the coefficients f; in terms of the linear
unknown u. Taking p = uy we have

ﬂk:/lk(g—u)ds//lkbkds k. (4.4)

From the second equation of (4.2), taking b = b, we can express the A;’s in terms of u
and Bk

Mo = (Jn, Yu- Vb do + B Jr, VO[> dz — Jp, [ dx)/ Jp, bi ds
= (Ji, bewsn ds + By fr, VO * dx — [ fbrdx)/ [} beds Yk

where we have integrated the first integral by parts, and where u/, denotes the outward
normal derivative of u. Using (4.3), the first equation of (4.2) becomes

/ZU~ZUdI+ZBk/ bkv/nds—Z)\k/ vds = /fvdx Yo e Vy, (4.6)

(4.5)

where again we have integrated the second integral by parts. From (4.4) and v, = constant
on I, we have

Ek:ﬂk /Ik- brvm ds = zk: /Ik(g —u)vy, ds = /F(g — u)vyp ds. (4.7)

Setting

Cp = /Tk Thef? i/ (/Ik bkds)Q, (4.8)

we deduce from (4.5)

zk:)\k/lkvds:zk:/lkvu/nds+zk:(]k (/Ik(g—u)ds>/l vds — F(v), (4.9)

k

where, for the sake of simplicity, we set

Fv) = zk:(/Tkfbkdx)(/lkvds)/(/lkbkds). (4.10)

The second integral in the right-hand side of (4.9) can be rewritten by using the mean
value 7 of v on I}, leading to

S Cihy /Ik(g—u)ﬁds = S Cyhy /Ik(y—ﬂ)@ds, (4.11)



Figure 3

where, obviously, Ay is the length of I,. To simplify the notation, we can also set
Br(u,v) = chh,k/ avds. (4.12)
k T

Substituting (4.7) and (4.9) into (4.6), and using (4.10), (4.12) we finally obtain

Find u € Vi such that :
JoYu-NYvdr — [rvusds — [puv, ds + Br(u,v) = (4.13)
Jo fvdz — Jr gvmds + Br(g,v) — F(v) Vv € Vg.

It is interesting to compare (4.13) with Nitsche’s method that, as studied in [13], reads

Find u € Vy such that :
JoNu-Nvdr — [pvuy,ds — [puvpds+ o fpuvds = (4.14)
Jo fvdz — [r g, ds + a [rgvds Yv € Vi,

where « is a positive parameter to be adjusted, typically, to be of the order of the inverse
of the mesh size. As we can see, the only differences between (4.13) and (4.14) are: i) the
use of Br(u,v) (defined in (4.12)) instead of « [p uv ds, and ii) the addition of the term
F(v) to the right-hand side. In what follows, we will indicate a simple way for computing
Br(u,v) and F(v) when using quadratic bubbles, thus producing an estimate of their
order of magnitude.

Let then T" be a boundary triangle, and let T} be a subtriangle as in Fig. 1. We
denote by ey ;, ¢ = 1,2,3 the edges of T}, and assume e; 3 to be the boundary edge; M;
is the midpoint of ey 5, and the \'s are the usual barycentric coordinates of T}, (see Fig.
3.) With this notation, the bubble is by (z,y) = A1 (z,y)\o(x, y). With usual techniques

we find ;
(X |6k,i|2)

4.15

/bkds:|ek,3|/6, / /b |2 dar =
Iy, T
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so that (4.8) becomes

3(Xis lexl?)
4Ty lex 51

Since u and v are linear on ey 3, combining (4.12) and (4.16), and noting that in this case

hi = |ek,s|, we obtain the following expression for Br(u,v)

Cp = (4.16)

3 N8 (2?21 |€k,i 2)
o> TU(M,C)U(M;C). (4.17)

Br(u,v) =
k=1
Notice that, when g is used instead of u, the value u(Mjy) has to be replaced by the mean
value of ¢ in I. We also point out that, comparing (4.17) with (4.14), we see that our
method corresponds to choosing, in each I, a value of a of the order of Hy/h:.

We now turn to the computation of the term F'(v), assuming that f is constant in 7
and v is a basis function in V. Clearly, from (4.10) we have F(v) = 0 if v is associated

with an internal vertex of 7. Otherwise, a simple computation shows that

F) =3 fia [y (4.18)

= 2lexs| /o

In addition, it can easily be checked that

T Tilv(M, 3
Tk vds:mz— vdx. (4,19)

Hence,
3 NB

F(v) = 1 Z: . fvdz. (4.20)

Finally, we point out that, in domain decomposition procedures, the explicit knowledge
of the Lagrange multiplier A, in (3.6) is needed in order to update the interface unknown
g during an iterative solution. With our approach, once u has been computed out of
(4.13), the value of A, in each Ij can be easily recovered from (4.5), which gives

Mo = (un)y, + Ci [ (= u)ds — fulTyl/(2lews]). (4.21)

I,

CONCLUSIONS

The single-domain Dirichlet problem for a linear elliptic operator can be solved by the
Lagrange multipliers technique, which is well suited when the boundary condition is given
on a grid which does not match with the one used within the domain. If the problem
with Lagrange multipliers is stabilized by boundary bubbles, it is possible (with “paper
and pencil”) to eliminate a priori both bubbles and Lagrange multipliers. The resulting
scheme, which is quite simple to implement, results in a variant of the Nitsche’s method
[11]. As needed in domain decomposition procedures, the Lagrange multipliers can then
be computed afterwards, in each subdomain, by an easy and economical post-processing.
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