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We present a modified mixed formulation for second order elliptic equations and linear
elasticity problems which automatically satisfies the “ellipticity on the kernel” condition, i.e.,
one of the two compatibility conditions necessary to ensure stability and optimal error bounds
(the other being the Inf-Sup condition). This modification differs from similar ones introduced
by other authors in that it is independent of the mesh size. Moreover, it allows the use of
continuous stresses.

1. Introduction

In the mixed finite element approximations of second order elliptic problems
and of linear elasticity problems one has to deal (see e.g. Ref. 4) with two sets of
variables: stresses and displacements. (This terminology is taken from elasticity,
but its meaning in the context of second order elliptic equations should still be
rather clear).

It is well known that the discretization of these two sets of variables has to be
made in a “compatible” way in order to avoid instabilities. For the two problems
under consideration, these compatibility conditions are particularly difficult. Actu-
ally, one has to fulfill two conditions which are, in a sense, “fighting” each other.
(The situation is somewhat easier for other mixed formulations such as, for instance,
that for the Stokes problem where there is essentially only one condition to deal
with. See always Ref. 4 for a general treatment). Let us consider, to make things
clearer, the simplest second order elliptic problem: Au = f in , with u € H}(Q).



Introducing the “stress” ¢ = Vu, the mixed formulation is

(1.1)

{(g,z) + (udivz) = 0 Vre H(div;Q),
(diva,v) = (f,v) Yo € L2 ().

where (., .) represents, as usual, the inner product in the space L2(Q) (or in (L?(2))?)}
and H(div;Q) = {r € (L?())?, divr € L?(Q)} with the usual graph norm

IzllF = lllls + lldivzl3, (1.2)

(II.llo is the usual L2(2) or (L%(2))? norm). Assume that we take finite element
spaces ¥y, C H(div;Q) and Uy C L%(Q) in order to discretize our mixed formula-
tion. We have

) € ¥j, x Uy, such that

(oh,1p) + (up,divz,) = 0 V1, € X, (1.3)
(divay,vn) = (f,vn) Yoy € Up.

find (g, up

We are now able to write explicitly the two compatibility conditions:

da > 0 such that
(C1) 5 ) (1.4)
lzplls > allzplly Vo, € Ka,
where
Kh = {Ih € Eh : (diVIh,vh) =0 ‘v’vh c Uh}, (1.5)
38 > 0 such that
(C2) (div Ty, vn) (1.6)

Sup > Bllonllo  Von € Up.

resn | Tplla

It is also clear that o and 8 in (C'1) and (C2) respectively have to be independent
of h. Let us see in which sense (C1) and (C2) are “fighting” each other. It is
clear that (C2) demands for a large choice of ¥, (compared with Up,): the larger is
Y5, the bigger is the supremum in (C2). In a sense, for a given choice of Uy, it is
sufficient to take ¥, “large enough” and (C2) will hold. Let us now turn to (C1).
Inequality (1.4) has no hopes to be true, unless K} is small enough: for instance,
if every 1, in K, satisfies divr;, = 0, then (1.4) holds trivially with o = 1; on the
other hand, if K}, contains vectors 7, with divz, # 0, then (1.4) becomes very
difficult, since it requires to bound the L? norm of div 7, by means of the L? norm
of 7, which is, in general, impossible (unless you take o« = O(h)). Hence, (C1)
requires a “small” Kj: but this is the same as requiring a large U, (compared with
¥1); for instance, if div (X)) C Uy, then K}, is made only of divergence-free vectors,
and (C1) (as we have seen) holds trivially with & = 1. We conclude that, whereas



(C2) is demanding a ¥j large enough (compared with Uj), (C1) is demanding a
Uy, large enough (compared with ¥j,). Starting with a given pair (X5,Up), it is
always possible to fulfill (C1) by enlarging U}, conveniently or to fulfill (C2) by
enlarging ¥;, conveniently. But we need both conditions to hold at the same time...
For common choices of ¥, and Uy, conditions (C1) and (C2) practically amount to

(S1) div (Z5) = Us
and
38 > 0 such that
(S52) Yy, € Up, 374, € X, with :
divzy, = vn |lzplle < (1/8)lvallo-

In other words, (S2) means that the operator div, from X to Uy, has a continuous
lifting with norm < 87!, It is very easy to check that (S1) and (S2) are sufficient
conditions for (C'1) and (C2) to hold. As we said, they are practically necessary for
usual choices of ¥, and Uy,

Our model problem and, in general, second order elliptic problems, are however
so simple that it has been possible to construct several families of methods satisfying
(S1) and (S2) (Refs. 10, 2, 3). On the other hand, for linear elasticity problems
such a construction is yet unachieved and looks rather difficult (see Refs. 12, 13 for
attempts in this direction). We still refer to Ref. 4 for a detailed description of the
available families for elliptic equations and for a discussion of the difficulties related
to elasticity problems.

It has to be pointed out , however, that all the families satisfying (S1) and (52)
available in the literature so far have a discontinuous stress field. To be more precise,
the space Xp is made of vectors whose normal component is continuous across the
interelement boundaries, while the tangential component is, a-priori, discontinuous
when passing from one element to another. This is very reasonable, since we want to
construct subspaces of H(div;{2). On the other hand, there are several applications
where, for various reasons (typically when the equation has to be coupled with other
equations in a bigger system), one needs to work with a continuous stress field ;.
In such a case, no reasonable choice is available. More specifically, no reasonable
example is known of pairs (X5, Up,) of finite element spaces satisfying (S1) — (52)
together with ¥, C (C°(Q))?, unless one takes polynomials of a rather high degree
(see Ref. 11), and not for an arbitrary mesh.

We propose here a modification of the problem such that: 1) the new problem
has exactly the same solution as the old one, and 2) for the approximation of the
new problem condition (C1) is always (automatically) satisfied. It is clear that, to
approximate the new problem, one has to deal only with (C2), and a large enough
choice of X}, will do the job. Moreover, in cases where one is interested in working
with a continuous stress field (i.e., with ¥;, C (C°(2))2, one can profitably use all
the results and methodologies already developed for Stokes problems, in order to
find pairs (Xp, Uy) fulfilling (C2).



As we shall see, our modification is strictly related to a whole class of similar
tricks introduced by other authors for a wider class of problems (see e.g., Ref. 8 and
the references therein). However, on one hand our modification can be seen directly
at the level of the continuous problem. On the other hand, it is independent of the
mesh size (in contrast with the others quoted above). Moreover, we want to make
use of ¥, C (C°(Q))? while Ref. 8 is taylored for discontinuous stresses.

Let us also remark that we shall obtain optimal error bounds in spaces of the
type H(div ;). Such estimates can be seen as non-optimal estimates in (L?(Q))2.
Although this way of looking is not unreasonable, we feel that in many cases, and in
particular in those cases where one has to work with continuous stresses, the “loss
of one order of convergence” is affordable.

Finally, we point out explicitely that, in our opinion, the use of a C° discretiza-
tion for the stress field should, in general, be avoided. The main reason for this is
the difficulty in the numerical solution of the linear system of equations. However,
we accept that there are cases where the use of continuous stresses presents other
additional advantages that justify its choice. For these cases, or for other situations
where more traditional elements cannot be used (see e.g., Ref. 9), we think that
our trick can help in the construction of new stable approximations.

2. Modified formulations for linear elliptic equations.
For the sake of simplicity, we shall deal with the following problem

(2.1)

find u € H}(Q) such that
div (aVu) = f in 0.

In (2.1) the functions a(z) and f(x), (z € Q) are supposed to be given and “well
behaved”; for instance, f € L2(Q), a € L®(Q) and 0 < @ < a(z) ae. in Q. As we
have seen, the usual mixed formulation of (2.1) starts by setting

g=aYu in Q, (2.2)

which gives
a"'c =Yu inQ, (2.3)

and then the variational formulation

find ¢ € H(div;Q) and v € L*(Q2) such that
(e to,7) + (u,divy) = 0 Vr € H(div; ), (2.4)
(divg,v) = (f,v) Vv € L*(9).

It is clear however that, using the equation
dive = f inQ (2.5)
one can consider, in place of (2.2), the alternative (and equivalent) setting

aloc—Vdive = Yu—-Vf in(, (2.6)



which gives rise to the alternative variational formulation
find ¢ € H(div;Q) and u € L*(Q2) such that
(e te,1) + (dive,divr) + (u,divz) = (f,divr) Vre H(div;Q), (2.7)
(diva,v) = (f,v) Vv € L*(Q).

Discretizing (2.7) by means of ¥;, C H(div;Q) and U, C L%(Q) the compatibility
conditions (see always Ref.4) are now

Ja > 0 such that
(C1) 4 ] 5 ) (2.8)
(a 'z,7) +[ldivzlly > allzllz VI €Ki,
with (as in (1.5))
K, = {Ih € Xy (divzh,vh) =0 Vo, € Uh}, (29)
38 > 0 such that
(C2) (div T, vn) (2.10)

Sup > Bllonllo  Von € Us.

resn  lzallm
Comparing (2.8) with (1.4) one can see the gain of the formulation (2.7). Actually,
since a € L (), we have that (2.8) holds trivially with

o = min{L, (lall =) "} (2.11)

for every T, in ¥y, regardless of the nature of K},. Hence, we only have to worry
about (C2). However, now, to enforce (C2) is relatively easy, since we only have to
take ¥, large enough. For instance, in the case ¥, C (C°(0))2, which is of particular
interest for the present paper, we can just take as (X, Up,) a velocity-pressure finite
element pair that satisfies the Inf-Sup condition for the Stokes problem. Actually, if
one interprets Xy, as a velocity field and Uy, as a pressure field, (C2) is an immediate
consequence of the Inf-Sup condition for the Stokes problem
(div 7, vp)

Inf Sup

> (2.12)
vneUn z, € |ITall1llvnllo

since ||z][f (= Izll§ + | VZIl§) > [Izll7; for all .

Hence we have imrn_ediately the following results

Theorem 2.1 Assume that (X5, Uy) is a pair of finite element spaces X5, C H (div; Q)]
and U, C L?(Q) such that (2.10) holds with 3 independent of h. Then the discrete
problem

find g, € ¥, and uy, € U, such that

(a gy, 1p) + (divay, divey,) + (up,dive,) = (f,dive,) Yz, € Ty, (2.13)

(dnghavh) = (f:”h) Yoy, € Up.



has a unique solution. Moreover,
lg = aplle +llu—unllo < A{ inf [lo—zpllz+ inf |lu—wslle}  (2.14)
T,EXh vh€UR

with v independent of h. n

Corollary 2.1 Assume that ¥, C (H'(Q))? and U, C L?(Q) are a pair of finite
element spaces satisfying (2.12) (that is, they are a good velocity-pressure approxi-
mation for the Stokes problem). Then (2.10) holds and the conclusions of Theorem
2.1 follow.

Example. Assume, to fix the ideas, that we take, as a Stokes pair, the Hood-Taylor
element. We then have that X is made of piecewise quadratic continuous vectors
and Uy, is made of piecewise linear continuous functions. With the notation of Ref.
4,
1y2 1
Xy = (£3) 5 Un = L. (2.15)

Since (2.15) satisfies (2.12) (see e.g. Ref. 4) then we deduce (2.14). If u and ¢ are
smooth we get

le = aplla + llu = unlle < Ch*(llells + llull) (2.16)

with the usual notation. Note that (2.16) can be seen as suboptimal since, in the
left-hand side, we bound ¢ — g}, in the H(div ;Q)-norm and not in (H'(Q2))?2 ]

A partial remedy to the suboptimality in (2.16) (and, essentially, in all the
other examples that can be constructed starting from Corollary 2.1) can be sought
as follows. We set

NIzll® = lla™ zl[§ + [[div Zl|§ + [leurl (2™ D)]I3 (2.17)

where, as usual, curl ¢ = d¢2/0x1 — O¢p1/0x2. Notice that (2.17) defines a norm
which is much closer to the (H'(2))?-norm than ||.||z. In particular, if either the
normal or the tangential component of 7 vanishes on the boundary 0, then the
norms |||7||| and ||z||; are equivalent. We also point out explicitly that the two
norms are not equivalent in general. To believe this, take a function v € H'(Q)
with A1 = 0; you can easily construct 1 such that it does not belong to H2((2).
Take now 7 = V¢ (and a(z) = 1). Then divr = 0 and curl (a~!7) = 0, so that
Izl = llzllo < ||¥]]1 is finite, while ||z][1 = [|¢||2 is infinite. In general, however,
we consider the norm [||.||| to be better than the norm ||.|| .
If we consider now the bilinear form

1

A(o,7) = (a'o,7) + (dive,divr) + (curl(a™'g),curl (a™'7)) (2.18)

we have that the problem

{A(o,r) + (udivy) = (f,divr) Vred, (2.19)

(diva,v) = (f,v) Yo e L2



(where H is the set of 7’s such that |||z]|| is finite) has a unique solution which
coincides with that of (2.7). Similarly to Corollary 2.1 we have now

Corollary 2.2 Let %, C (HY(Q))? and U, C L%*(Q) be a pair of finite element
spaces satisfying (2.12). Then the discrete problem

Find g; € ¥} and uy, € Uj, such that
Alap,1p) + (un,divr,) = (f,divz,) V€ X, (2.20)
(divgh,vh) = (f, Uh) Yoy € Uy,

has a unique solution and
llle —anlll +llu —unlle < ~{ inf |[lo =z, + inf |lu—wsllo} (2.21)
T,EXh vp €U

with v independent of h. "

Remark 2.1 The idea of using the bilinear form A(g, ) is also used in a paper in
preparation by K.J.Bathe and F.Brezzi. "

Remark 2.2 The modification by L.Franca and T.Hughes (Ref. 8) for this problem
leads to

(an, Nop) = (f,vn) Yoy, € Up.

(2.22)
where (.,.); is the sum over all the triangles of the L?-inner pruduct on every
triangle. We notice two major differences between (2.22) and (2.13): first, in (2.22)
one assumes to work with totally (a-priori) discontinuous stresses and continuous
displacements (that is, ¥, C (L2(R2))2, U, C HY(Q)); second, the perturbation to
the first equation is added with a coefficient (= 6h?) which depends on the mesh
size h. We also point out that numerical experiments in Ref. 7 show that a bigger
¢ leads to a better accuracy. n

{ (a gy, 1) — (Nun, 1) + 6h*(divey,, divz,), = 0h*(f,divz,), vz, € T,

Remark 2.3 The use of a(h) = O(h) in (1.4) (attainable without our modification)
can produce a much worse suboptimality than that hidden in (2.14) or (2.21). See
Ref. 4 for more details. n

3. Elasticity Problems

As pointed out in the introduction, the main interest of our construction is
however for elasticity problems, where the question of coercivity, (condition (1.4)),
becomes harder and harder as the material approaches incompressibility and for
which we do not have totally satisfactory constructions for symmetric approxima-
tions of the stress field. Indeed, we are now looking for a symmetric stress tensor

IS

o11 g12 .
= € Hg(div; Q) =: X 3.1
(m m) o(div; ) (3.1)



where

Y= Hg(div; Q) = {g | 0y; € L*(Q),divg € (L*(R))?, 012 = 021} (3.2)
with the norm || Z[|§ = || z||§ + [|divz ||5. We consider the bilinear form
L [ » o 1
a(g;7) = @/Qg s dr + m/{)tr(g)tr(;) dx (3.3)
where ¢P = g —1 tr o is the deviatoric of ¢. We then have

. 1 1
a(g,o) > mf(@,m)llgllﬁ (3.4)

with a coercitivity constant vanishing for large A, that is, for nearly incompressible
materials. Fortunately, things are not so bad, at least in the continuous case,
because we have (see e.g. Ref. 4) that, if [, ¢rz dz =0, then

IzIl§ < CAUIZP5 + lldiv z [13), (3:5)

so that, for divz = 0, that is in the kernel of div, we can have coercivity, indepen-
dently of A. Inequality (3.5) also implies that, considering the modified problem

1 1) .
Inf Sup a(z,7) + 5 lldivz +£[§ + (v, divz +1), (3.6)

we now have, for any A, coercivity in the norm || £ [|s with a constant depending on
0 (hence the importance of choosing § ~ 1) and not O(h)).

The optimality conditions associated with (3.6) are,

1 1
UD:IDdx—f—i/trgtrzdx—i—é/(dﬂg—i—f)-dﬂzdw
z o gL o grJ T

+/Q'd'ﬂ;da:=0 Vzey,

Q
/(@g-{-i)-ydaczo Yv € U, (3.8)
Q

where obviously U is now (L%*(2))?. Similar to Theorem 2.1 we have now the
following result.

Theorem 3.1 Let ¢ € ¥ and u € U be the solution of (3.7), (3.8). Let £ C X
and Uy, C U be finite dimensional subspaces satisfying

v, -divr, dzx
Infsupfﬂ—h;ﬁz
S T T Telo

> ko, (3.9)



with kg independent of h, and let g, € ¥h, uy, € Uy, be the solution of

( find g, € Yy and u; € U such that

1 D D 1 /
- a T d$+— tro trT d.Z‘+
2 Jo=t = A+n) Jo = =

4 . . . (3.10)
5/Q(d£gh+i)-@;hdm-l—/ﬂgh-dﬁ;hdat:o VghEEh
/(dﬂthrf)-yhdw:O Yoy, € Up.

\ Q - -

Then we have the following error estimate
le—g,lls+llu—uullo <C {ipfllg—;hllz +i51f||u—yhllo} , (3.11)
=h —h

with C' independent of h. n

From this point, we may let ourselves be guided by the previous examples and try
to employ finite elements similar to those built for the Stokes problem, in order to
satisfy the Inf-Sup condition:

Jouy -divz, dx

Inf Sup

> ko (3.12)
v, I, ||£h||1|2‘0

As in Corollary 2.1 we have again that (3.12) immediately implies (3.9) (since
[|zlls < llzll1), and hence (3.11). The discussion of the previous section on the
qaality of estimate (3.11) can be transferred verbatim except that we know of no
norm similar to (2.17) for tensors.

Let us now consider a few examples.

Example 3.1: The MINI element.

This example has been presented in Ref.4. It is based on the MINI element of
Ref. 1 which satisfies the Inf-Sup condition for Stokes. In particular, in this case
we have ¥, = (L1 + B3)i, Un, = (£1)?, that is, ¥, is made of piecewise linear
elements enriched by bubble functions, and U}, is made of piecewise linear continuous
functions. It is straightforward to extend the proof for Stokes problem to the present
case, that is, following Ref. 4, to build an interpolation operator II; such that

/ div(ec I, 0) - v, dz =0 Vv, € Uy, (3.13)
0 g g
Mrally < Cllallh. (3.14)
This is classically done, element by element, by seeing that on 2 one has:
[ divle-thg)-vyde = - [ (@-Mho)selw) do (3.15)
Q - - Q- - T

From (3.15), and the symmetry of £(v;,), (3.13) can be verified by adjusting inside
each element the bubble part of g, . This construction yields in (3.11) an O(h) error
estimate, independently of A, still valid for incompressible materials. n



Example 3.2: The Crouzeiz-Raviart element.

In this case we take X, = (L3 + B)?, U = (L9)?, that is, Xj, is made of piecewise
quadratic (continuous) functions, enriched by bubbles, and U}, of piecewise linear
discontinuous functions. The proof of the Inf-Sup condition mimics again the proof
for Stokes problem.It makes an essential use of bubbles which can be adjusted
element by element to satisfy (3.13). This element produces an O(h?) estimate in
(3.11). n

Example 3.3: The Hood-Taylor element

The technique of proof described above does not apply to this classical choice for
Stokes problem which would be here ¥, = (£3)4,U, = (£1)2. It is not known if
this element is stable |

4. Incompressible elasticity and the need for § > 0

We have stated in the previous section that the error estimate (3.11) will hold
independently of A, even for incompressible materials. It is worth to give a look
to this limiting case and to see what kind of stabilization mechanism has been
introduced.

Let us therefore consider (3.7) when A becomes large. The limiting case of (3.7)-(3.8)
is then,

1
— [ P :Pdz+46 (@Q-&-f)-dﬁzdw-f—/
0

2 Jo= = Q - = = B = =
/(d1V0'+f) vdr=0 Yo (4.2)
o gar]
If we write o = gP +pl, £=£D+q£,Wemaywrite@g:dﬂgl)—kyp, ivy =
divr? +Yg, and we get from (4.1)-(4.2)
2— Dd:c-l-6/ leU’ +Vp —I-i)-di_v;Ddx
a (4.3)
+/g-dm de =0 vr”,
o T T
/u qu:v+5/ leO’ +¥p+f) -Ygde =0 Vg, (4.4)
Q
[ ixe? +Sp+ ) vds=0 v (4.5)
o g Il

For 6 =0, (4.4) yields dive = 0 and u - Yjpq = 0. For § > 0 we have an expression
similar to those introduced by Brezzi-Pitkiranta (Ref. 5) or Franca-Hughes (Ref. 8)
for the stabilization of standard velocity-pressure approximations of Stokes problem.
It is then normal and reasonable to expect good properties of our approximation for



the limit problem. We shall now consider the impact of the stabilization procedure
on some of the examples presented in section 3.
Example 4.1: The MINI element

We come back to the case of Example 3.1 and we try to interpret condition (4.4)
for 6 = 0. We get

—/ divuy, g dz + / up, -vgrds =0 Yy, € (,Ci + Bs). (4.6)
Q a0

Taking gn = bx, that is, a bubble on K and zero elsewhere and remembering that
divuy,, is constant on K, we conclude that divu, must be exactly zero everywhere.
It is well known that this implies that u, is constant (except for special meshes)
and therefore the use of § > 0 is necessary to obtain a reasonable approximation.
]

Example 4.2: The Crouzeiz-Raviart element

We consider now Example 3.2 and again § = 0. We now have, as u,, is discontinuous,
Z {—/ divghqhdm—l—/ u,-vandsy =0 Vg, € (L3 + Bs). (4.7)
I3 K oK

Taking again g, = bg, the bubble function on K, we again conclude that
divgh‘K =0. (4.8)

Taking now for g, the piecewise quadratic basis function associated with the mid-
side node M on the interface S between two elements K; and K>, we get,

/[Hh vlds =0 (4.9)
S

where [, -v] denotes the jump of [u,-v] on S. As u,, is piecewise linear, this implies
that the normal component of u;, (up to the orientation of v) is continuous at M.
Finally, taking qp to be the basis function ®y associated with a vertex V' we have
from (4.4) (always with § =0):

/ uy, - Voy dr =0 (4.10)
KeNWv) K
where N (V) is the set of elements having V as a vertex.

Contrarily to what happened in the previous example, the set of vector valued func-
tions in (L(l))z satifying (4.8)-(4.9)(4.10) is not empty. It can even be characterized.
In order to do so, we introduce the non-conforming bubble

bve.x(z) =2 — 3\ (z) + Ai(z) + N2 (2)) (4.11)



on every element K, \; being the barycentric coordinates, and the space
BNC = {1} ‘ ’U|K = bNC,K}~ (412)

Let Wy, = L1 4+ Byc be the non conforming quadratic approximation of H ()
defined in Fortin-Soulié (Ref. 6). For v, € Wy, we denote in a standard way
curl, vy, € (£9)? to be the non conforming curl operator, computed elementwise.
We then have

Proposition 4.1: The set V;, C (£9)” of discrete divergence-free functions defined
by (4.8)-(4.9)-(4.10) is equal to curl, Wy,

Proof: One easily ckecks that curl, v, satisfies (4.8)-(4.10) Yv, € Wy, so that we
have curl, Wy, C V. To complete the proof, we check that the two spaces have the
same dimension (= 2e;,,t, where e;,,; is the number of internal edges). n

One may wonder in this case if the regularization is truly necessary to ensure a
good approximation for large A as the space V}, appears to be reasonably large. To
prove this, we would need to check a discrete analogue of (3.5). Finally, a last way
around would be to use a space of tensors enriched by a non conforming bubble
(instead of the cubic bubble). Then the discrete kernel

ker B, = {g, | Z/ divg, -v,dr =0 Vv, € Uy} (4.13)
= JK

is elementwise divergence-free. The question of error estimates for such a non
conforming method is still an open question. First attempts seem to indicate that
they are not optimal with respect to the order of the polynomials employed.
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