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1. Introduction

The aim of this paper is to present a three-field formulation for linear
elliptic problems which is particularly well suited for domain decomposition
methods. The formulation is inspired by the hybrid formulation of Tong [4] for
elasticity problems, the main difference being that we work here at the macro-
element (=subdomain) level instead of working at the element level. The effect
of this is that we obtain a new formulation of the continuous problem which
can then be discretized in many different ways, including the possibility of using
different methods (or the same method with different meshes) from one sub-
domain to another. Hence, we get a fairly general framework in which most
of the domain decomposition methods using non overlapping subdomains can
be reinterpreted. At the end of the paper we also propose a “continuous pre-
conditioner” that seems particularly appealing for dealing with non symmetric
problems and unstructured decompositions.

2. The three-field formulation

Let us consider, for the sake of simplicity, a polygonal domain  C R? split
into a finite number of polygonal subdomains Q, (k =1, .., K):

Q=Ju, (2.1)

and define
k

Let A be a linear elliptic operator of the form

A= 3N o S0 g by(a) + ) g+ e, (23



1 each ik, and we consider the bilinear rorms assoclated with A 1n each 1lZg,
that is,

for u,ve HY(Qy):

- L S LR L) (24)
ag(u, v) = /Qk {Z(Z(a” oz; O, + bjuﬁasj) + ¢ awiv) + duv} dx.

i

We also set, for u, v € [, H (%)

a(u, v) 1= Zak(u, v); (2.5)

for the sake of simplicity we also assume that there exists a constant o > 0 such
that
a(v, v) > a||v||§{1(9) Vv € Hy(9). (2.6)

From now on we are going to use the following notation: (.,.) will be the usual
inner product in L?(Q2); for k¥ = 1,...K, (.,.); will be the inner product in
L?(Qy) and < .,. > will be the inner product in L?(I'y) (or, when necessary,
the duality pairing between H~2 (') and Hz2 (I'y)). Similarly, we will use ||.||
for the H*(2) norm, and ||.||sx, |||.|||s,x for the H®(Q) and H*(I'y) norms
respectively (k = 1,..., K). Let us now introduce the spaces that will be used
in our macro-hybrid formulation. For £ = 1,..., K we set

Vei= H(Qn) 0 V= Ve[ HO(Q); (2.7)

1

Mk = H_§(Fk). (28)

We then define
V=] (2.9)

k
M =[] My, (2.10)
k
and
®:={p € L*(X) : v e Hy(Q) with ¢ = vz} = Hj(Q)x, (2.11)
with the obvious norms
ol =Y 110*7, eV v= (v ...,05)); (2.12)
k



k
4]l = inf{llvll, | v € Hy(), vz = ¢}. (2.14)

For every f, say, in L?(€2), we can now consider the following two problems:

find w € Hj(Q) such that
) (2.15)
a(w,v) = (fvv) Vv € HO (Q)
and
(find u € V, A € M and ¢ € & such that
i) a(u,v)—z<x\k,vk>k: (f,v) YoeV
k
Vi) S < i — b si= 0 Ve M (2.16)
k
i) Y <A, p>p=0 Vo € ®.
\ k

Theorem 1 For every f € L2(Q2), both problems (2.15) and (2.16) have a
unique solution. Moreover we have

uf = w inQp (k=1,.., K), (2.17)

e Ow
A = M onl'y (k=1,..,K), (2.18)
Y=w on X (2.19)

where Ow/On% is the outward conormal derivative (of the restriction of w to
Q) with respect to the operator A.

Proof It follows from (2.6) that (2.15) has a unique solution w. Setting u, A, ¢
as in (2.17) — (2.19) it is easy to verify that this is a solution of (2.16). Hence,
we only need to show that (2.16) cannot have two different solutions or, in other
words, that f = 0 in (2.16) implies u = 0, A = 0, ¢» = 0. Let then f = 0;
from (2.16;ii) we get u* = 1 on I'}, for every k, and therefore the existence of
a function w € Hg(Q) such that ¢ = wg and v* = w)q,. From (2.16;1) with
v =w, and (2.16;iii) with ¢ = w we have

a(w,w) =0 (2.20)
yielding v = 0 and ¢ = 0. From (2.16;i) we have now
<Mu>=0  Weel, (2.21)
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U 1S very l1mportant, 1or applications to domaln decompositlon metnods,
to remark explicitly that the first two equations of (2.16) can be written as

2.22
< :u’kvuk >p= < w’uk >k ,u’k € Mkn Vk. ( )

{ak(uk,vk)— <X oP > = (f,0%) vor € Vi, Vk
In particular, for all fixed k, assuming f ans v as data, (2.22) is the variational
formulation of the Dirichlet problem

k o .
{Au = f in Qg, (2.23)

uF = on 'y,

where the boundary condition is imposed by means of a Lagrange multiplier
(that finally comes out to be A¥ = du*/0nk) as in Babuska [1]. Hence, for f
and 1 given, the resolution of the first two equations of (2.16) amounts to the
resolution of K independent Dirichlet problems. In operator form (2.16) can be

written as
Au — B\ = f
~-BTw  +CyY=0 (2.24)
CcTu =0

where, as already noticed, the operator

A= (_gT _OB> (2.25)

is “block diagonal” in V' x M and invertible. Setting now

CT(u,\) == CT ), (2.26)

(ug, Ap) := ATH(F,0), (2.27)

(uy, Ap) := —A7H(0,C9) = —A~'Cy, (2.28)
g:=Cl(ug,Ap) = CT Ay, (2.29)

problem (2.24) can now be written as
CTA ICy = g. (2.30)

Setting
S:=cTA'c, (2.31)

4



Theorem 2 S is an isomorphism from ® onto ®'. Moreover, for every ¢ € ®
we have

< 86,63 > allgli3 (232

Proof We first prove that, for every ¢ € ®, S is a linear continuous functional
on ®. For this, we associate with any ¢ € ® a function ¢ € H} () defined by

Ap = 0 in Qy,
¢ § (2.33)
(ZS - QS on FkH
for all k£, and we remark that
~ 2
Dol < Do elliglli 4 < cllols. (2.34)
k k

Let now 1) € ® be given. We set (u, \) = A~1C, so that, in particular, u = ).
For every ¢ € ® we have now

k k

From (2.34) — (2.35) we easily get that

<8y, ¢ ><y[[¢]la[[¢]le (2.36)

for some v > 0, independent of ¢ and ¢. Taking ¢ = ¢ in (2.35) and using (2.6)
and (2.14) we have (2.32). This and (2.36) tell us that S is an isomorphism and
the proof is complete. n

Remark 1 In the usual language of domain decomposition methods, § is the
Poincaré-Steklov operator on X, associated with the elliptic operator A. n
Remark 2 It is easy to check that, since AIZJ = 0 in each € we have

ah,x)=0  Vx e ][]V (2.37)
In particular, let ¢* € HZ(Q) be defined by

A*QNS* =0 in Qk,
(ZNS* = (ZS on Fk7

for k =1,..., K, where A* is the formal adjoint of A. From (2.35), (2.37) and
(2.38) we have

(2.38)

< Sy, ¢ >=a(, d") (2.39)
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< 8T, 1h >=< Sh, ¢ >= a(ih, $*) = a” (4", 1)) (2.40)

so that the dual operator of § is the Poincaré-Steklov operator associated with
A*. n

Problem (2.16) can now be approximated in many different ways. Choosing
Vi, My, and &, finite dimensional subspaces of V, M, ®, we can consider the
discretized problem

(find up € Vi, A\, € My, and ¢y, € ®p such that
i) a(uh,v)—z<)\ﬁ,vk > = (f,v) Yv eV,
k

 ii) Z < pF g —uf >p= 0 Vi € My (2.41)
k

i) Y < Afp>p=0 Vo € By,
\ k

It is clear that suitable inf-sup conditions have to be assumed for V},, M}, and Py,
in order to ensure stability and optimal error bounds for the discrete problems
(2.41). We shall not address these questions here. We note however that one can
always stabilize (2.41), for general discretizations, by adding proper stabilizing
terms “a la Hughes”. In this respect, see Barbosa- Hughes [2] for a way of
stabilizing (2.25).

We finally point out that, if one takes a finite element approximation Vj,
of H'(Q), on a mesh compatible with the decomposition (2.1), one can set

VikE = f/hmk ; Vi = HV,Z“;
Vi =V mH&(Qk) ; O = Viog; (2.42)
ME = (V¥ p) D My =[] ME

It is easy to check that with these choices the solution of (2.41) is nothing
else but the standard finite element approximation of the solution of (2.15) by
means of the subspace V,f Moreover, the discrete analogue of § is the classical
Schur complement, and most of the recent literature on non overlapping domain
decomposition methods has been devoted to find optimal preconditioners for
it.(See, e.g., [3] and the references therein).

Out of our analysis of the continuous problem (2.30) we can suggest a
“continuous preconditioner” that can then be applied to a big variety of dis-
cretized problems. Its simplicity makes it appealing for nasty situations as: non
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dimensional problems etc.
Let &, = @ H'(X), and let Ty : ®; — ®} be the operator defined by

<ot >= [ bpdpeds (2.43)

where ¢/, is the tangential derivative of ¢ (in a three-dimensional problem, X
will be two-dimensional and the tangential derivative has to be replaced by the
tangential gradient). Then, one can see that the operator

STT; 1S (2.44)

is symmetric and uniformly bounded, for instance, from L?(X) into itself. Hence,|]
it is a good starting point for designing a discrete preconditioner.
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