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We show that the transmission conditions through two elastic bodies bonded by a thin
adhesive layer can be written as Robin type conditions, well suited for using a domain
decomposition algorithm for which we prove convergence. Numerical approximation by
means of finite element methods is also presented and analyzed. Convergence of the
discrete algorithm is proven as well as optimal error estimates.

1. Introduction

We introduce and analyze a numerical approach to deal with a simplified model of
a bonded structure. The equations describing this model are such that a domain
decomposition type procedure applies in a very natural way. A typical example of
bonding of two elastic bodies is shown in fig. 1, where two bodies, 2 and Q~ are
bonded along their common surface S = 90+ N AN~ . The bonding is obtained by a
very thin adhesive layer, and the adhesive is more flexible than the adherents. From
a mechanical point of view, the problem is the transmission of stresses through three
elastic bodies, i.e., the thin adhesive and the two adherents. However, the differences
in both geometrical and constitutive properties between adhesive and adherents are
so important that the numerical solution of the problem as it is becomes delicate
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and may produce undesirable instabilities. This motivates the introduction of a
simplified model which permits the effective computation of the solution with a
good approximation. Since a pioneering work by Goland and Reissner!?® in 1944,
the bonding of two elastic three dimensional structures by an adhesive layer is
treated with asymptotic analysis. With this approximation, the adhesive is treated
as a material surface: it disappears from a geometrical point of view, but it is
represented by an energy of adhesion. The limit problem becomes then a non usual
transmission problem between two bodies, the adherents only. Two complementary
approaches have been used to obtain these simplified models. We refer for instance
to Refs. 15,12,8,6,5,16,11 for the multiscale asymptotic developments approach, and
to Refs. 3,17,20,9 for the energy methods approach.

Fig. 1.

It is known (see the above Refs.) that, for the limit problem, the conormal
derivative of the solution (i.e., the normal component of the stresses) is continu-
ous at the interface, while the solution (i.e., the displacement) is discontinuous and
has a jump proportional to the conormal derivative. These transmission conditions
can then be reinterpreted as Robin type conditions, thus giving rise to a new for-
mulation, well suited for applying a domain decomposition procedure between two
subdomains, the adherents. More traditional numerical methods can be found in
Refs. 6,7,18,2.

The paper is organized as follows. In Sect. 2, to fix ideas, we recall the for-
mulation of the limit problem for the heat conduction case, and show equivalence
with a suitable multidomain formulation. Very briefly, at the end of the section
we present an application to linear elasticity problems. In Sect. 3 we introduce an
iterative procedure between subdomains for which we prove convergence. In Sect.
4 we study the finite element approximation and the discrete analog of the iterative
algorithm, for which we prove convergence. We also prove that the sequence of
iterates converges to the finite element solution of the multidomain formulation,
thus giving optimal error estimates. Finally, in Sect. 5 we present some numerical
results.

2. Position of the problem

For the sake of simplicity we shall consider a model problem, such as the heat
conduction through two bodies, bonded by a thin adhesive layer whose thermal
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conductivity coefficients are small with respect to those of the adherents. Let QF
and Q~ denote the two bodies, that we assume to be open connected subsets of R?
with boundaries 90+ and 00~ piecewise of class C2, and let S = 90t N OO~ be a
non empty projectable regular surface of positive measure. Let 2 be the union of
Q7 and Q~, with boundary 9. For simplicity, assume that homogeneous Dirichlet
conditions are taken on 9. For a function w defined on €, let w* (resp. w™)
denote the restriction of w to QF (resp. Q7). Let f; denote the ¢ — th partial
derivative of a function f. Using the summation convention of repeated indices, the
local equations are (see Refs. 10,11)

—(ajju;) = ft in QF
—(a;u;)l = f in Q° (2.1)
ut =0 on 601 N oN
u~ = 0 on 00~ N AN

with the transmission condition on S

oot — _ S
{ ajugny = K(u+ ui) on S (2.2)
a;;un; = K(u™ —u™) on S

where n™ (resp. n™) is the outward unit normal to Q% (resp. Q7). Existence
and uniqueness of the solution of (2.1)-(2.2) is proved under the usual regularity
assumptions on the data: f+ € L2(Q1), f~ € L?(Q7), a* and a~ are symmetric
positive definite matrices with smooth and bounded coefficients; K = K(x) is a
function defined on S verifying 0 < K, < K < K* (see refs. 10, 11.) In order
to apply a domain decomposition type procedure, we observe that the boundary
conditions (2.2) can be rewritten as

Fotot — g —m—

ajulting = —ag un; on S, (2.3)
+ ot Y — gmu—n= -
ajuing +2Ku” = aju n; +2Ku on S,

where (2.3) is the continuity condition of the conormal derivative, while (2.4) is a
Fourier-Robin condition. Next, for g € L?(S), consider the following problems

—(az;.u;) = ft in QF
ut =0 on 9O N AN (2.5)
a;;u:;-nj' +2Kut = g on S
_(ai—j ;)l = f- in O~
w" =0 on 02~ N ON (2.6)
ajun; +2Ku™ =g on S

For any given g € L?(S) problems (2.5)-(2.6) have a unique solution u™ € H*(QT)
and u~ € H'(Q7) respectively. (Moreover, note that the boundary conditions on
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S in (2.5)-(2.6) actually induce more regularity on the solutions.) Due to linearity,
these solutions can be split as

ut = u}'—ku;, us o= up t+ug, (2.7)

with uJT solution of (2.5) with g = 0, and ] solution of (2.5) with f* = 0.

(The same applies to uy, u, .) We can then define the linear continuous operators
T, Ty, T, Ty

frel*(QY) — uf =TF(f1), fmel*Q7) —uy =T, (f7), (28)
g€ L*(S) —uf =TS (9), u; =T, (9),

so that (2.7) becomes

W=TIN TG w =Tr() + T () (2.10)
Next, let A be the operator from L2(S) in itself defined as

geL(8) — Ag = (uf +ug)is = (T (9) + T (9)s- (2.11)

It is immediate to check that A is linear and continuous. Moreover, thanks to the

trace theorem (see, e.g., Ref. 14), we have u;‘s € H'/?(S), Uy |5 € H'?(S), so

that A is linear and continuous from L?(S) into H'/?(S), and
3 C > 0 such that ||Ag||H1/z(5) <C ||g||0,5. (212)

Going back to formulation (2.5)-(2.6), note that the continuity condition (2.3) is
not taken into account. Hence, we must find a suitable g such that the solutions of

(2.5)-(2.6) verify (2.3). From (2.5)-(2.6) we deduce af;ufin} +ajuin; = 2(g—

K (ut +wu7)). Therefore, such a g will be the solution of the following minimization
problem

Find g* € L?(S) : 0= J(g*) < J(9) Vg€ L*(9), (2.13)

for the quadratic functional

J(g9) = llg = K(u™ +u7)lfs- (2.14)
Using the notation introduced in (2.10)-(2.11) and setting

F=K(T; () +Tp (f))s, (2.15)

we have

Kut4+u)s = F+ KAy, (2.16)

so that (2.14) can be written as
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J(9) = llg — (F + K Ag)|[3 s- (2.17)

Existence and uniqueness of the solution of the original formulation (2.1)-(2.2) imply
that problem (2.13) has a unique solution g*, which verifies

g° = F+KAg". (2.18)

In order to write the variational formulation of (2.5)-(2.6) we set

Vt:={ve HY(QT) ,uv=0o0n 0" NoN}, (2.19)
V=:={ve HY(Q7) ,uv=0o0n o0~ NN}, (2.20)
at(v,w) = [os afvwide + [(2Kvwds — v,weVT, (2.21)
a” (v,w) = [o- ajujw;de + [(2Kvwds v, w € V. (2.22)
The variational formulation of problems (2.5)-(2.6) is then

Find u* € V* such that : (2.23)

at(ut,v) = (ff0)+(g,v)s  WweVT, '
Find v~ € V™ such that : (2.24)

a”(u,0) = (f70)+(gv)s YoeV™. '

In (2.23)-(2.24) (f*,v), (f~,v) denote the scalar product in L2(Q1), L2(Q7) re-
spectively, and (g,v)s is the scalar product in L?(S). Existence, uniqueness and
a-priori error bounds for the solutions of (2.23) and (2.24) are ensured by the con-
tinuity and coercivity properties of the bilinear forms:

IM™* > 0 such that |at (v, w)| < MF||||o+||lw]|1 o+ v,we VT, (2.25)
IM~ > 0 such that [a= (v,w)| < M~ ||v|l;0-llw|lio- v,weV™, (2.26)
Jat > 0 such that at(v,v) > at[|v]]] o1 YweVT, (2.27)
Ja~ >0 such that a™ (v,0) > a”|P[|f - Yo eV, (2.28)

(As usual, ||.]|1,p denotes the norm in H'(D).)

We conclude this section with an application to linear elasticity problems. The
statement of the problem being essentially the same, we shall write directly the
multidomain variational formulation.

Find ut € V*:= {v e [H(Q")]® ,v = 0 on 99+ N 9N} such that : (2.29)
at(ut,v) = (F*,v)+(g,v)s VeVt '
Findu™ € V™= {v € [H'(Q7)? ,v = 0 on 90~ NN} such that : (2.30)
a=(um,v) = (f=,v)+(g,v)s VveV, '
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having used the following notation:

v = [ A mde + [ 2Kutvas,
Q+ S

a”(u7,v) :/Q, A (@) (v) de + /SQKu_vds,

where AT (resp. A7) is the anisotropic elasticity tensor in QF (resp. Q7), bounded
and coercive; v is the linearized strain tensor; K is a second order tensor assumed to
be bounded and strictly positive, (fT,v) (resp. (f~,v)) denotes the scalar product
in [L2(Q)]® (vesp. [L*(Q27)]%), and (g,v)s the scalar product in [L%(S)]®. As
in the previous case, we can define the functional J(g) (obviously in the [LQ(S)]3
framework), and study the minimum problem for J(g) as in (2.13).

3. The algorithm

We shall now present a domain decomposition type algorithm, based on the vari-
ational formulation (2.23)-(2.24) and the minimum problem (2.13), for which we
shall prove convergence.

Compute u;{ = Tf+(f+), uy =T, (f) solutions of

uf eV*t: at(uf,v) = (ffu)  WYeeVH, (3.1)
up €V oa”(uy,v) = (f7,0) YoeVT,

and set

¢ = K(u;{-i—u;)‘s (= F). (3.3)

For m > 0 compute the solutions u.}, = T,F (™), u,, = T, (9") of the problems

m g

ub € VT rat(ut,v) = (9™,v)s Yo eVt (3.4)
Uy, €V ra (u,,,v) = (g™,v)s YveV. (3.5)
Then set
g = g™ — K(uh + um)is, (3.6)
m—+1

gntt= g™ = p(g™ = 9°),

and compute the solutions u,,,,, u} | of (3.4)-(3.5) with the new datum g™*'.

In (3.7) p > 0 is a parameter to be chosen in order to have convergence, that is,

lim ¢™ = g%, (3.8)

m—r00
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where ¢g* is defined in (2.18). In order to prove (3.8) we shall need the following
theorem:

Theorem 3.1 KA is a compact operator. Moreover, the eigenvalues z of KA are
all real and verify

3Cy > 0 such that 0<z<1-C; <1 Vz. (3.9)

Proof Due to (2.12) and the compact injection of H'/2(S) into L*(S) we deduce
that KA is compact. Therefore its spectrum o(K.A) can have only zero as an
accumulation point, and all the non-zero elements of o(K.A) are eigenvalues. Let
then z be an eigenvalue of K A with z # 0. Then, there exists a g € L%(S) (g # 0)
such that

KAg = zg (3.10)

or, equivalently (see definition (2.11))

K(uf +u,)is = 2g. (3.11)

Since u/ is the solution of (2.23) with f* = 0, u, is the solution of (2.24) with
f~ =0, taking g = (K (u} +u,)|s)/z in (2.23)-(2.24), v = u] in (2.23), v = u, in
(2.24) and adding the two equations we can write

1
ot oyt T + 42
a”(uy,uy) +a” (uy,uy) = ;/SK(ug +uy )" ds, (3.12)

and deduce that z is real and positive. Recalling definitions (2.21)-(2.22) we have
a*(ug, u i+ a”(ug,ug) = C(lluf | or +1ugllf o) + [ 2K ((uf)? + (u7)?) ds

= C’(||u;‘||%QJr + ||ug_||%Q,) + [ K(uf — ug_)2 ds + [ K(uf + ug_)2 ds.
(3.13)
Using (3.13) in (3.12) we deduce that

1
C(IIu;Him+||u;||%,9-)+/ K(uy —uy)*ds < (Z-1) / K (uf +uy)?ds. (3.14)
s s
Poincaré’s inequality on the right-hand side of (3.14), applied in Q" and Q~ (with

constants ¢4, c_ respectively) gives

c
2K* max{c?,c2} +C’

z2<1-— i <1 with C; = (315)

and the proof is completed O.
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We can now prove the following convergence theorem.
Theorem 3.2 For all p with 0 < p < 2 we have

lim ¢™ = g", (3.16)

m—ro0

where g™ is the sequence defined in (8.1)-(3.7), and g* is defined in (2.18).
Proof Note that, according to definition (2.11), (3.6) can be rewritten as

gq" = (I-KAg™. (3.17)
From (3.7) and (3.17), using (3.3) and (2.18) we then have

gt —gr = (1—p)g™ + pKAg™ + pg° — g* + pg* — pg*

(1= p)g™ + pK Ag™ + p(¢g° — ") = (1 = p)g” (3.18)
=(1-p)(g™—g")+pKA(g™ - g*) '
=((1=pI+pKA(g" —9g%).

Recursive application of (3.18) yields

9"t —g* = (1= p)I + pKA)™ 1 (g° — g*), with ¢° — g* = —KAg*. (3.19)

Convergence will be proved if we can show that

i [[[((1 = )T+ pKA)™ ]| =0, (3.20)

where |||L]|| denotes the norm of the linear operator L. From a theorem by Gelfand,
if I is bounded, then lim, o |||L™]||'/" = sup{|A|, A € (L)}, o(L) being the
spectrum of L. Thanks to Theorem 3.1, the elements of the spectrum of the operator
(1-pI+pKAare:1—pand

Aj =1 =p)+pzj, (3.21)
z; being the eigenvalues of KA. Proving (3.20) amounts then to prove that

Flp) s= max{|1 = pl, max |\;]} < 1. (3.22)

It is now immediate to see (since 0 < z; < 1 Vj) that, for all p €]0,2[, we have
-l1<l-p<land -1<1-p(l—-2;)=XA;<10O.

Remark 3.1 The optimal value for p is the minimizing argument of the function

f(p) in (3.22). A simple computation gives popr = o, 1, and f(popt) =
— Zmax

Zmazx

5 . Hence, the reduction factor per iteration, though obviously smaller than
— Zmazx
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one, can be close to one even in the optimal case p = popt, whenever z,,,, is close to
one. This fact can influence the performance of the procedure in terms of number
of iterations required to achieve convergence (see the results of Sect. 5.) 0.

4., The finite element approximation

We shall assume both Q1 and Q~ to be convex polygonal domains in R?, and S to
be a straight line. This will allow us to use the H? regularity of the solutions of (2.5)-
(2.6), thus avoiding further technicalities in the derivation of the error estimates.
Let Ty be a regular decomposition (see Ref. 4) of Q into triangles T' not crossing
the interface S. Thus, each element is either contained in @ or @ . Let T,© (vesp.
T.") be the restriction of 75 to QF (resp. Q7). Define the conforming Lagrangian
finite element spaces

Vil = {0eC@ ) ivp € P(T)VT €T, v=00n2N3NT} C V+, (4.1)

Vi = {vel®Q ):oreP(T)VT €T, ,v=00m00Nn00"}CV~, (42)
where P (T') denotes the space of polynomials of degree < 1 on T'. Denoting by ¥
the decomposition of S (induced by 73) into intervals I, define

&, = {p€C%S): ¢ € Pi(I) VI € Th, dps =0} C L*(S). (4.3)

The finite element approximation of (2.23)-(2.24) is then: for g, € @ given, let
u;, u, be the solutions of

up € V,F o Yo € V,f, (4.4)
u, €V, a (u,,v) = (f7,v)+ (gn,v) Yo eV, . (4.5)

S
+
=
>+
<
N
I
~~
[y
Ut
=
+
S
T
<
N

As in the continuous case, the solutions of (4.4)-(4.5) can be split as

+ + - - -
Uy, —uf’h+ug’h, Uy, —uf’h-i—ug’h,

with u}ih, uyp, solutions of (4.4)-(4.5) with g, = 0, and u;h, u, , solutions of
(4.4)-(4.5) with f* =0, f~ = 0 respectively. In analogy with the notation of Sect.

2 we can introduce discrete operators Tff > TJZ > T;f b Tgih, and write

U?,h = T;h(f+) + T;,h(gh): Upp = Tf,h(f_) + Tgih,(gh)' (4.6)

Similarly, the discrete analog of the operator A defined in (2.11) will be A}, defined
as

g € LX(S) — Ang = (T;,(9) + T, 4(9))ys- (4.7)

In particular, we will have
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gn € & C L*(S) — Angn = (T;:h(gh) + T, 1,(9n))s- (4.8)
We can easily prove the following error estimates:
lut = uy |l 0+ < C(hlu]z0+ + |lg = gnllo,s),

(4.9)
lu= = |la- < Chlulog- +lg — gnllo.s),

where, here and in the following, C' denotes a constant independent of h, and |.|2,p
is the norm in H?(D) N H} (D). Estimates (4.9) can be obtained with the following
arguments: let ﬂ;, i, be the finite element solutions of

uf e Vit ooat(@f,v) = (ff,v) +(g,v) Vv € VT, (4.10)
u, €V, :a (u,,v) = (f~,v)+(g,v) Yo eV, . (4.11)

Standard error estimates results apply to ﬂ;, iy , so that

lut — @ [0+ < Cinf,, oy + [lut —vpll1 0+ < Chlut]y o+,

~ . ~ 4.12
[ut = @f llo+ < Cinf,, eyt [0+ = vally o+ < Chlu |20~ (4.12)

By subtracting (4.10) from (4.4), (4.11) from (4.5) and using ellipticity we get

luy, =ty llo+ <Cllg—gnllos,  lluy =g lhe- < Cllg—gnllos.  (4.13)

Estimates (4.9) follow then by triangle inequality. In particular, estimates (4.12)
imply

||Tf+(f+) - Txh(f+)||1,9+ < O’h|u;{|279+, (4.14)
1Ty (f7) =Ty, (F )0~ < Chluys0-, (4.15)
T, (9) = T, ()|l o+ < Chluf a0+, (4.16)
1Ty (9) = Ty n (@l o- < Chlug |z o-- (4.17)

In view of (4.14)-(4.17) it will be convenient to introduce

[ulz == [uf |20t + [uf 2.0+ + [uf |20 + [ug|20-,

to be used, for simplicity, in the right-hand side of the various estimates. From
(4.16)-(4.17) and Poincaré’s inequality we then have

|IKAg — K Angllo,s < Ch(luflz.0+ + |uj |20-) < Chlul2. (4.18)
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The discrete analog of the minimum problem (2.13) becomes

Find g, € @, : J(g;) < J(9) Vg € ®p. (4.19)

The discrete algorithm reads exactly as (3.1)-(3.7). More precisely:
Compute u}ih = T;fh(fﬂ, uy, =T;,(f7) solutions of

u}ih eVt a+(u;{7h,v) = (f*,v) Yo € V1, (4.20)
up, €V, a*(u;’h,v) = (f7,v) YveV,, (4.21)
and set
0 = K(ut, +us7,)s, = KT (D) +T5, (), (=: F). (4.22)
9 foh T Up ) fih foh [=n h

For m > 0 compute the solutions ), , = T;, (97"), u,, , = T, , (gi") of the problems

uf w €VE rat(ul v = (gtv)  YweV, (4.23)
U, €V ra”(uy, pv) = (g5, 0) YoeV, . (4.24)
Then set
gt = gp = K(u), , +um )i, (4.25)
gt = gpr = p(ar — %), (4.26)

and compute the solutions u,, ., ., u;+17h of (4.23)-(4.26) with the new datum
g;L”H. Exactly as for the continuous case we prove that, for all p €]0, 2],

lim ¢;* = g7, gr = Fn + KAg;, (4.27)

m—»00
following step by step the proof of Theorem 3.2, with the operator A replaced by
Ap, defined in (4.7). It remains now to prove that g;; converges to g* for h — 0.

Theorem 4.1 Let g* be defined in (2.18), and let g; be defined in (4.27). The
following result holds

lg"™ = grllo,s < Chluls, (4.28)
with C a constant independent of h.

Proof Using definitions (2.18), (4.27) and adding and subtracting K. Axg* we have

9" = gillo.s = IKAg™ + F — K Angj, — Fhllo.s

* « . " 4.29
<K AG — KAng®llo.s + IF — Fullo.s + |IKAng™ — K Augillos. 29
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The first term in the right-hand side of (4.29) is bounded as in (4.18). For the
second term we can use (4.14)-(4.15), giving

|F' = Fillo,s= 1K (T; (f*) = T/, (F9) + K(T; (f7) = T, (f)llo,s
<O(ITF (FY) = Trn(FOh o + 1 TF (F7) = Tr(f)lhe-)  (4:30)
< Ch([uf a0+ + [uFl2.0-) < Chluls.

For the last term we use (3.15), that holds also for the eigenvalues of K Ay, inde-
pendently of h. Hence,

K Ang”™ = KAnghllo,s < |[1KAwlll [l9" = g7 llo,s
< (1=C)llg” = gillo,s-

Combining (4.18),and (4.30)-(4.31) in (4.29) we have the result 0.

(4.31)

Remark 4.1 We point out that the arguments of this section apply straightforward
to conforming finite element approximations of degree r > 1, provided that an H"+!
regularity in each subdomain can be used [J.

5. Numerical results

Few general comments are in order for the actual implementation of the algorithm
presented in Sect. 4:

e The finite element approximation (4.1)-(4.5) is a standard finite element for-
mulation of linear elasticity problems, where the classical variational form is
modified in order to take into account the Robin boundary conditions on S
(see (2.21)-(2.22).) This amounts to add to the stiffness matrix of the bound-
ary elements the contribution of a boundary integral.

e The algorithm described in (4.20)-(4.26) is a domain decomposition type algo-
rithm which iteratively computes the “value of the jump of normal stresses on
the interface” starting from an initial guess. The same data structures on the
interface as in a standard domain decomposition algorithm can be used. At
each iteration the local problems (4.23)-(4.24) have to be solved in each sub-
domain. We chose to use a direct method, namely the Cholesky factorization.
As the matrix does not change from one iteration to another the factoriza-
tion can be done once and for all. Then, during the iterative procedure, the
solution of a linear system is reduced to a forward-backward substitution.

The finite element approximation of Sect. 4 has been implemented within the
Modulef library. The numerical experiments have been performed on a plane strain
linear elasticity problem. We study a typical single lap joint (see Fig. 2).

The materials are isotropic and the two adherents have the same material charac-
teristics (v = .3 and E = 2000000 Pa). The bonding tensor K is given by:

E* 1 0
K=——"- 2(1—v*
201+ v7) (0 <£_w§>
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Fig. 2. Single lap joint. Mesh sample.

where E* = 1700M Pa and v* = .35. All over the boundary, except the edges AB
and CD, stress free boundary conditions (o - n = 0) are taken. On the edges AB
and CD the following conditions are considered: (o-n), =0, (¢-n), = 1M Pa, and
uy = 0. (The additional condition u, = 0 at the origin was imposed to guarantee
uniqueness of the solution of the global problem.)

Our first aim is to evaluate the performance of the domain decomposition algorithm
in terms of rate of convergence. To this end, the first test was performed on the
discretization of Fig. 2. The mesh contains 630 elements and 418 nodes (836
degrees of freedom). As already pointed out in Remark 3.1, the optimal value for p
is related to 24z, the (unknown) maximum eigenvalue of KA. An estimate of 2,4z
can be obtained by running the code with p = 1, and using the computed reduction
factor f(1) as an approximation of zmaz. (See (3.22): f(1) = Zmae.) Then we take
p = %ﬂl) as an approximation of pop:. Indeed, this is essentially equivalent to
using the power method for computing the maximum eigenvalue of the iteration
operator. It is however less expensive, in that z,,,, is computed within the same
code, and the iterative procedure goes on with the updated value of p once 2,4, is
computed. For the test case we found 2,4, ~ 0.97, and consequently pope ~ 1.977,
giving a reduction factor per iteration f(popt) ~ 0.941.

Then the initial mesh of Fig. 2 was successively refined taking mesh sizes h/2, h/4,
h/8, h being the mesh size of the initial discretization. This produced meshes with
2520, 10080, and 40320 elements respectively. We observed that the number of
iterations required to reduce by a factor 1078 the L?— norm of the initial residual
g2 — KAg? is virtually independent of h. In Table 1 the number of iterations
is reported versus the number of unknowns on the interface. Note that a simple
extrapolation procedure gives 487 iterations for the continous problem.

Table 1. Iterations versus unknowns

interface nodes iterations

28 453
57 473
115 481

231 484
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In Figs. 3-5 the Von Mises stresses on the four meshes are represented. The triangles
are “coloured” differently according to the intensity of the stresses (constant on
each triangle): light colour corresponds to high stresses. (For reasons of visibility
different blow up around the critical region are shown.)

Fig. 3.
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Fig. 5.

We notice that the coarse mesh gives already an accurate solution (the stresses and
general behaviour do not change too much).

A second point of interest is the comparison of our domain decomposition algorithm
with standard finite element methods applied to the whole real structure containing
a thin adhesive layer of 0.1mm with material characteristics E* = 1700M Pa and
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V*

= .35. The presence of the thin adhesive layer can produce ill-conditioning
(see, e.g., Refs. 19,21), generally avoided with special interface elements. Boundary
conditions and material characteristics of the two adhering bodies are the same as
before.

For this structure a mesh of 20268 elements (20700 d.o.f) was considered. The
results obtained are shown in Figure 6 and are in good agreement with those ob-
tained by the domain decomposition method. The mesh considered here is the
coarsest we could obtain due to the different aspect ratios that we have to take into
account: the width of the adhesive layer is 1/1200 of the total length of the lap

joint, and 1/50 of the width of the adherents.

Fig. 6.

As expected, (see e.g. Ref. 1), all the computations show a stress concentration in
the adherents at the end of the adhesive layer. This corresponds to a weak (logarith-
mic) singularity, as predicted for the limit (simplified) structure in Refs. 10 and 11.
The boundary layer analysis of 10,11 also predicts that, in the real structure, the
highest stress exists at the corner of the adhesive adjacent to the loaded adherent.
It should howewer be noted that, because of the constraint imposed by the different
aspect ratios, it is difficult to determine very accurately the stresses just below the
surface. n

6. Conclusions

The method presented in this paper is very efficient and less expensive than a
standard one where the adhesive is modeled with a thin layer. The implementation
and use is straightforward. It is perhaps possible to improve the performance of the
algorithm by properly preconditioning the interface system. Nevertheless, even if
the number of iterations is rather large, the computational cost is very low compared
to that of the standard method as far as CPU time is concerned.
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