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1. Introduction

In this paper we present examples of mixed finite element schemes for the current
continuity equations of the drift-diffusion semiconductor model. We recall that, in the
drift-diffusion model, a Poisson equation for the electric potential is coupled with two
continuity equations for negative and positive charge densities. For a description of
different iterative procedures to decouple the global system see, e.g. [6]. For simplicity,
we shall deal only with the equation for the positive charge density p. After a suitable

scaling [6], this equation has the form

( Find p € HY(Q) such that
—div(Vp+pVy) = R(p,n) inQ C R?

1.1
) p =9 on I'y C 092 (1.1)
op o0y B
L %—FP% = on F1—8(2\I‘0

where p and n are positive and negative charge densities respectively, 1 is the electric
potential, R is the recombination-generation term, and the current density J is given
by

J = ~Yp—pYy. (1.2)
We recall that, since |[V1)| is quite large in some parts of the domain, equation (1.1) is
an advection dominated equation, for which classical discretization methods may fail.

We shall deal with discretizations of (1.1) assuming that ¢ and n are known. Moreover,

¢ is assumed to be piecewise linear (stemming from a discretization of the Poisson
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equation). During the iterative solution process, equation (1.1) is usually linearized in

such a way that (1.1) becomes

( Find p € HY(Q) such that
—div(Np+pYy) + cp = [ inQ CR?

1.3
< p =9 onlyCOR (13)
dp oY B
\ %—Fp% =0 only=00\I

In equation (1.3) f is a function independent of p, and ¢ a non negative function inde-
pendent of p, which can be assumed piecewise constant. Using the classical change of

variable from the charge density p to the Slotboom variable p
p = pe ", (1.4)

equation (1.3) can be written in the symmetric form

( Find p € H(Q) such that

—div(e™¥Yp) + ce Vp = f in
1.5
) p = x = ¢e¥g onTy (15)

dp
\ an =0 on I'y
and the current is now given by

J = —e'Vp. (1.6)

The idea is to discretize equation (1.5) with mixed finite element methods, go back to
the original variable p by using a discrete version of the transformation (1.4), and then
solve for p.

For the case ¢ = 0, a mixed scheme (based on lowest order Raviart-Thomas element
[7]) has been introduced, extensively discussed in [2] for the case f = 0, and in [3] for
f # 0. The scheme provides an approximate current with continuous normal component
at the interelement boundaries. Moreover, the matrix associated with the scheme can

be proved to be an M-matrix, if a weakly acute triangulation is used (every angle of
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every triangle is < m/2). This property guarantees a discrete maximum principle and,
in particular, a non-negative solution if the boundary data are non-negative. Moreover,
when going back to the variable p, this structure property of the matrix is preserved.
Unfortunately, the M-matrix property does not hold anymore if ¢ > 0. For that, we
introduce here two new mixed finite elements which provide M-matrices for all non
negative function ¢ (if the triangulation is of weakly acute type). For the first presented
scheme (see example 1 in section 3), the continuity at the interelement boundaries is
slightly relaxed, in the sense that the jumps of the normal component of the approximate
current have zero mean value. For the second scheme (see example 2 in section 3), strong
continuity of the normal component of the current at the interelement boundaries is
guaranteed. The two new elements are constructed according to the abstract theory
of [5], which we refer to for the error analysis. In the present paper we describe the

elements in detail, and exhibiting the elementary matrix associated with the problem.

2. Discretization

Let T}, be a regular decomposition of €2 into triangles T [4], and let E}, be the set of
the edges e of Tj,. (€ is assumed to be a polygonal domain). We define, for all T€ T},

the following set of polynomial vectors:

%(T) = span {z', 7%, 7’} , (2.1)

9

with
Zl fd (170) R 12 — (071) , 13 e (w17w2)' (2.2)

The polynomials wy, ws have to satisfy the requirement:
/Tdiv 3dxdy # 0. (2.3)
In the next section we shall specify proper choices of wy, ws. Here, we only remark that
dim (div (T)) = 1. (2.4)
Then, we construct our finite element spaces as follows:
Vi = {re[L2(Q)] : ryp € £(T), VT € Th}, (2.5)
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W, = {¢ € L*(Q): ¢y € Py(T) VT € Ty}, (2.6)

Ane = {ne L*(En) : pp € Pole) e € By ; /(u _&)ds=0VeCTo}, (27)

e

where ¢ is any given function in L?(I'g) and Py(K) denotes the space of constants on

the set K. The mixed-hybrid formulation of (1.5) is then:

(( Find J;, € Vi, pn € Wi, A € A such that :

/eaih~zda:dy—2/divzphda:dy+2/ MT-nds=0 1€V,
Q T JT T JoT

> / div J, ¢dxdy + /Q ce¥ ppdzdy = /Q fodrdy ¢ € W,
T T

A

(2.8)

Z/ pdy -nds = 0 p € App.

In the first equation of (2.8) 1 denotes the piecewise constant function defined in each

triangle T by
eV ir = (/ eV dxdy)/|T| . (2.9)
T

In the second equation of (2.8) @Z denotes the piecewise constant function defined in

each triangle T via a harmonic average:
eV = |é|//e¢ds , (2.10)
é

(where € is an edge where 1 reaches its maximum. More precisely, since ¢ is assumed
linear in each T, two possibilities arise (apart from the trivial case ¢ = constant on T).
If 9 reaches its maximum on an edge, that edge is chosen in (2.10). If the maximum
is attained at one vertex, any of the two edges having that vertex in commom can be
taken. The reason for this choice will be clear in the next section. Due to (2.3) and
(2.4), the choice of the spaces V},, W}, and Ay, , is such that the abstract theory of [5]
applies. Hence, problem (2.8) has a unique solution (J,, pn, Ap). Moreover, J, is an
approximation of the current .J, p;, is an approximation of p, and )y, is an approximation
of p at the interelement boundaries, as proved in [1], [5]. The first equation of (2.8)
is a weak discrete version of (1.6). The second equation is the discrete version of

div.J +ce~¥p = f. Finally, the third equation of (2.8) imposes a continuity requirement
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of the normal component of J; at the interelement boundaries. More precisely, since
p € Ap o is constant on each edge e, the jump of J;, - n across e has zero mean value. If
then J, - n itself is constant (and this is the case for the element described in example
2), the normal component is continuous across the interelement boundaries. For error
estimate results see, e.g., [5] and the references therein.

The linear system associated with (2.8) can be written in matrix form as follows:

A -B C J, 0
—B* -D 0 m| = | -F]|. (2.11)
c* 0 0 An 0

In (2.11) the notation .J,, pn, Ap is used also for the vectors of the nodal values of the
corresponding functions. The matrix in (2.11) is not positive definite. However, A is
block- diagonal (each block being a 3x3 matrix corresponding to a single element T) and
can be easily inverted at the element level. Hence, the variable .J;, can be eliminated
by static condensation, leading to the new system
B*A"'B+D —B*A~'C Ph F
= . (2.12)
~C*A™'B C*A~IC An 0
Now the matrix is symmetric and positive definite. Moreover, the matrix B*A~'B + D
is diagonal, so that the variable p, can also be eliminated by static condensation. This

leads to a final system, acting on the unknown A, only, of the form

MM =G, (2.13)

where M and G are given by:
M = C*A™'C — C*A™'B(B*A™'B+ D)™ 'B*A™'C |, (2.14)
G = C*A™'B(B*A™'B+D)"'F |, (2.15)

and M is symmetric and positive definite.
In order to go back to the original unknown p we recall that A\ is an approximation of

p and we can use a discrete version of the inverse transform of (1.4):

A= (") ph. (2.16)
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In (2.16) (e¥)! is given edge by edge by the meanvalue of e¥. The transformation
(2.16) amounts to multiplying the matrix M columnwise by the value of (e¥)! on the

corresponding edge. The final system in the unknown pj will be of the type
Mp, = G . (2.17)

The matrix M is not symmetric anymore, but it is an M-matrix if the matrix (2.14) is
an M-matrix, which holds true if the triangulation is of weakly acute type, and if wy, ws

are properly chosen.

3. Examples

We give here two possible choices of ¥(T), that is, of 2. Computations will be
carried out directly on the current triangle T. For the notation see fig.1. n’ is the outward
unit normal to the edge e;, and ¢’ is the unit tangent: (#%,t%) = (—nb,n?). Given ey,

the edges denoted by e; and e3 are determined by the counterclockwise numbering.

fig. 1
Ezxample 1. Let us denote by e; the edge where ¢ assumes its maximum, according to
(2.10). Then, choose 73 = (wy,ws) with wy, we € Pi(T) determined by the following

degrees of freedom

/zg-ﬂzds = / 2 .ndds = 0, /zg-ﬂlds = le1], (3.1)
€2 (43 el

/wl dedy = /wz dedy =0 . (3.2)
T T
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The 5 degrees of freedom (3.1)-(3.2) determine a one dimensional manifold. Namely, 73
can be written in terms of the barycentric coordinates \;, (¢ = 1,3) in the form

92 _ a(tz . El)
t3 . nl

Ig = CL()\Q - )\1)£2 + ()\3 - )\1)£3 . (33)

Then, 73 can be chosen, for instance, as the element of minimum norm. This choice

yields
2t2' 1—t3' 1 t2't3
a = 73 (_22) & zﬂ)(_ 3_) 2 3y - (3.4)
(% nt)?+ (% n')? = - nh)(E° - n") (" 17
Ezxample 2. As for the previous case, let e; be the edge where v reaches its maximum,
3

according to (2.10). Then, choose 7° = (w1,ws) with wy, we € Po(T) determined by

the following degrees of freedom

3 2 _ 3 3 _ _
T 0, = 770, = 0, M ne, = 1, (3.5)

/w1 dedy = /w2 dxdy =0 (3.6)
T T

The 11 degrees of freedom (3.5)-(3.6) determine a one dimensional manifold. As in the

3

previous case, 7> can be written in terms of barycentric coordinates \;, (i = 1, 3)

1 2
T3 - [ﬁ)\g + a)\l)\g — (m + a))\z)\g)} EQ

_ ey (3.7)
1 2 6 tz . ﬂl 4 EZ .l 5
+ [£3 -nl Ay — (t3 nl + 3ol a)AiAy + (§3 Tl + ER la))\z)\g t

IS |18

The last d.o.f. can be determined again by choosing among all elements of the form

(3.7) that with minimum norm. Then, we obtain

1 [5(£2
a = —
t>-nt | (£

:il)z =32 ') - n) (- 0) + (£ 'ﬂl)z} (3.8)

D2+ (£ nt)? = (- nh)(E ()

|
As already pointed out, the theory for both elements is set up in [5]. Here we present
in detail the structure of the matrix M defined in (2.14). We construct the elementary
matrix M7 and the elementary right hand side G* associated with the current element

T. As basis functions ¢ € W}, and p € Ay 9, we make the natural choice: ¢ =1in T
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and ¢ = 0 elsewhere; ;4 = 1 on one edge e and p = 0 on the others. We introduce the

following notation

vt = el (3.9)
a = [F(w%—f—w%) dzdy , (3.10)
Ble) = 7T/ (4 + ac|Tle" ") (3.12)
Then we have:

_/IT o0 o 0
AT=¢e? [ 0 |T] 0 BT=10 (3.13)

0 0 «o 0%

vi vi 1}
Ct=|vi v3 v3 DT =¢|T|e™? FT:/fda:dy (3.14)
T

v 0 0

e L e"zcﬁ(c) if i=7=1,
my = | (3.15)
otherwise,

and the coefficients of the right-hand side are:

{B(cn—a [y fdady if i=1,
0 if i=2,3.

g = (3.16)

It is easy to check that B(c) > 0, for ¢ > 0. Hence, if the triangulation is of weakly

acute type, we have

my >0, my <0 ,i#j i,j=13. (3.17)

(24

Therefore, the matrix MT is a symmetric positive definite diagonally dominant M-

matrix. Then, the final matrix obtained by summing the contributions of the elementary
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matrices over the triangles is still a symmetric positive definite diagonally dominant M-
matrix.
When going back to the variable pp, then the transformation (2.16) is applied.
Notice that the definition (2.10) of ¢ implies
CONETA (3.18)

le1

Then, the coefficients of the elementary stiffness matrix have the form

(e¥)] E@Fﬁ{}+CMQ ifi=j=1,
mi = o (3.19)
(61/")1 e~V HTZ'J ] otherwise.

As already pointed out, |Ve| can be quite large in a part of the domain, so that the
presence of exponentials in the coefficients might be a source of numerical problems. In
order to exploit the behaviour of the coeffients it is more convenient to set

_ W

V=

(3.20)

and assume that Vi) is smooth everywhere and [ is a small number. Accordingly,

equation (1.3) becomes

—div(Vp + pszo) +cp = f . (3.21)

The nature of equation (3.21) is such that, as [ — 0, the higher order term behaves like
[=1, while the zero order term is of order 1. Hence, for very small [ (say | < |[Vbo|hT),
our discrete scheme must reproduce the behaviour of the continuous equation (3.21).
To check that, recall that ¢ (and then ) is assumed piecewise linear, and denote by
Y™ the maximum of ¢ on T. We only consider the generic case where the maximum is

reached at one vertex. When [ < |[V)o|hT, a simple computation shows that

- 1
e = m/ e/ dady ~ 2%/t = 2V (3.22)
T

lej

1 M .
), = ﬁ/ Vo /lds ~ g0 '/t = [V (3.23)
e]- e;
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where 1)Mi denotes the maximum of 1/ on the edge ej. Then we have

N l—l . M; — M
COINERES { SR (3.24)

0 otherwise

Hence, recalling the definition of the edge e; as the edge where 1 assumes its maximum,

the coefficients (3.19) behave like

- ) sl
myy ~ 7= |T|_ + cfe) (3.25)
and, for i #1, j # 1,
N l—lﬂi'ﬂj Zf ,wM :¢M,
My = T (3.26)
0 otherwise.

Moreover, due to (3.24), (3.18) and to the choice of ey, notice that

eV (3.27)

hence

Ble) = 7*|TI/(v* + ac|T|D) . (3.28)

The reason of the choice (2.10) is now clear. The expected behaviour in terms of
the order of magnitude with respect to [ is preserved, and, moreover, no bad blow-up
occurs. Different (and maybe more natural) choices for e=% could lead to a coefficient

for the zero order term in which (e”’)l e~¥ does not cancel. Then, the presence of

e
this factor could give rise to a schem|e 1Whose structure does not fit the structure of
the continuous problem, and whose solution does not converge to the solution of the
continuous problem.

The expression (3.24) tells us that whenever |V | is large, the coefficient corresponding
to the node on the edge where 1) does not reach its maximum is zero (with respect to
the machine precision). Such a node can be regarded as downwind node (wind=-V1)
and the scheme as an upwind scheme. In a sense, the scheme automatically adapts to

the changed nature of the problem when advection becomes bigger than diffusion, and

chooses the upwind nodes with no extra computational cost.

10



Remark Since 9 is assumed linear in each triangle T, the integrals which define ea, e¥

in (2.9)-(2.10) can be computed exactly. In the computations, the definition of € as the

edge which connects the vertex with the largest potential value and the vertex with

the second largest potential value allows a unique definition. For the computation of

Jp fdzdy in (3.16) a quadrature formula which is exact for constant f can be used.
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