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Abstract A brief discussion on mixed finite element
formulations is carried out. Examples of approxima-
tions including the so called “face” and “edge” ele-
ments are given, together with abstract results and
remarks on computational aspects.

I. MiXED FORMULATIONS

The use of mixed formulations is becoming increas-
ingly popular in many applications such as structural
mechanics, fluid mechanics and, more recently, electri-
cal engineering. A mixed formulation is typically ob-
tained by factoring the equations to be solved into a
system of first order equations, which are then cast into
variational form and discretized by the finite element
method. In fact, first order systems often arise directly
in physical models, for example, as the constitutive and
equilibrium laws in elasticity or as Maxwell’s equations
in electromagnetism. To illustrate the basic features of
the method, let us consider the simple problem of the
Poisson equation for the electrostatic potential V:

—div (eVYV) = p in Q CR",
V = Va on Fa, (1)
ov
8_V =0 on 8Q\I‘a

The first step towards a mixed formulation of (1) is to
bring it back to a first order system

D = —eVV in Q C R, (2)
divD = p in QC R, (3)
with the boundary conditions:
V =V on I'y, 4)
D-v =0 on ON\T,. (5)

To derive a variational formulation for (2)-(3) we multi-
ply (2) by a test vector dD satisfying (5), and integrate
over 2. Then, integration by parts of the right-hand
side leads to:
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/Q (e7'D) - (6D)dz = /Q V div (6D) d

- / V.(6D)-vds VSD.  (6)
Ta

Similarly, we multiply (3) by a test function §V and
integrate over Q:

/(din)(SVda: = /péVda: VoV. (7)
Q Q

From the mathematical point of view it is now clear from
(6)-(7) that the natural spaces to look for a solution
(D, V) of (6)-(7) are the following:

Ve L}(9), (8)

DeW :={re Hdiv;Q) 7-v=0o0n IO\I',}, (9)

where
H(div;Q) = {z € (L*(Q))", divz € L*(Q)}.  (10)

We see from (6)-(7) two main features of mixed formu-
lations. First, they typically involve two or more fields
(here D and V). A general abstract result for two (or
more)-field formulations will be given in the third sec-
tion. Second, mixed formulations often require the use
of “non traditional” spaces such as H(div; ) (see (10)),
H(curl; ), or H(curl;Q), although such spaces (and
their approximations) may be useful in more general
situations, even without mixed (two-field) formulations.

II. FACE ELEMENTS AND GENERALIZATIONS

When constructing finite element subspaces of W and
of L?(Q), no continuity is required on V, while D € W
implies that the normal component of D must be con-
tinuous across interelement boundaries. Hence, finite
element approximations of the mixed formulation (6)-
(7) require the use of piecewise polynomial vectors hav-
ing normal components continuous across interelement
boundaries. Many families of mixed finite elements sat-
isfying this property have been introduced and analyzed



[3], [9]. We refer to [4] for a detailed treatment and ex-
haustive literature. Let us see few examples. First, let
us construct the lowest order Raviart-Thomas element
for a 2-D problem [9]. Let 7, be a regular family of de-
compositions of ) into triangles T [5]. Define our finite
element spaces Wy, C W and M, C L?(2) as

Wp={rew T = (a1 + bz, az + by)
(=a+br), a,a2,be R} (11)

Mp, = {v : v piecewise constant}. (12)

Notice that a vector in W}, has normal component which
is constant on each edge of each triangle. Hence, as de-
grees of freedom, the value of the normal component on
each edge can be taken. When dealing with 3-D prob-
lems, finite element discretizations of H (div;{2) can be
easily constructed as natural generalization of (11). For
a given decomposition of €2 into tetrahedrons, we take
vectors having the form (a; + bx,as + by,as + bz)(=
a + br) locally, and we use the (constant) values of the
normal components on the four faces as degrees of free-
dom. For this reason these elements are often referred
to as “face” elements.

Let us see now examples of higher order elements. We
consider first the lowest order BDM-element [3], where
the vector space Wy, is given by

Wih={z €W : 7 € Py(T)}, (13)

with P;(T) = polynomials of degree < 1 on T. The
scalar space M}, is the same as in (12). As degrees of
freedom in W}, we take the values of the normal com-
ponent at two different points on each edge (3 x2 =16
d.o.f.). The extension of this element to 3-D problems
uses vectors which are locally P; the corresponding
degrees of freedom are the values of the normal com-
ponent at three different (not aligned) points on each
face (3 x 4 = 12 d.o.f.). The scalar variable is always
piecewise constant. Finally, the “next to the lowest”
Raviart-Thomas element uses the following choice:

Wi ={z €W : £, € Py(T) +rP(T)}, (14)

My = {v e L*(Q) : v € P(T)}. (15)

In (14) P (T) denotes the set of homogeneous polyno-
mials of degree 1. The degrees of freedom for the vectors
in (14) can be taken as: the values of the normal compo-
nent at two different points on each edge plus the mean-
value of each component on T (3 x2+2=8d.o.f.). In
3-D, the definitions of W}, and M, are formally identical
to (14)-(15). The degrees of freedom for (14) will be the
values of the normal component at three different (not

aligned) points on each face, plus the meanvalue of each
component on the tetrahedron (3 x 4+ 3 = 15 d.o.f.).

III. ABSTRACT TREATMENT OF TWO-FIELD FORMULATIONS

Problems of the type (6)-(7) enter a more general
framework that reads as follows [2]: let ¥, U be Hilbert
spaces, and consider the problem

find (o, u) € £ x U such that
a(g,7) + b(r,u) =<g,7> Vrex,  (16)
blo,v) =< f,v> Yv € U,

where a and b are bilinear continuous forms on ¥ x X and
3 x U respectively, g and f are linear continuous func-
tionals on ¥ and U respectively. Sufficient conditions in
order to ensure existence and uniqueness of the solution
of (16) for all g and f (with continuous dependence) are
the following [2]:

Ja > 0 such that
) (17)
a(r,7) > alzls VreK,
where
K ={zeX% : b(r,v) = 0 YveU}, (18)
and
38 > 0 such that
1
sup 250 > glully voe U, (19)
res zlls

When discretizing problem (16) we take finite dimen-
sional subspaces ¥, C ¥ and U, C U, and we consider
the discretized problem

find (o4, up) € ¥p, x Up, such that

algy,7) + bz, un) =<g,z> VIeX; (20)

b(ay,v) =< f,uv> Yv € Uy,
Sufficient conditions in order to guarantee existence and

uniqueness of the solution of (20) for all g and f and
optimal error bounds are the following [2]:

{ Ja > 0 independent of h such that 1)

a(r,7) > allr|3 Vr € K,
where

Ky, = {reX, : b(r,v) = 0 Yv €U}, (22)



and

Ei,g > 0 independent of h such that

Sup b(z,v)

> Bllvllv Vv € Up.
rex lzlls

(23)
More precisely, we have the following result: if condi-
tions (22)-(23) are verified, problem (20) has a unique
solution and the following error bound holds

lle —oplls+llu —unlly < (24)

inf — inf —
’Y{llenZh ||Q I“Z + UhHEth ||’le vh”U}

with v independent of h.

In practice, conditions (21)-(23) are difficult to en-
force and to verify. However, the following sufficient
conditions are often useful. Assume that U is L?(f2)
(or a power of it). Let B be the linear operator from
3 to U associated with the bilinear form b, that is,
b(r,v) = (Br,v) for all 7 € ¥ and v € U. In the
applications, B will be the div (or the curl) operator.
The first assumption to be made is that

B maps X, into Uy,. (25)

Let P, be the orthogonal projection from U onto Up;
assume that there exists a linear continuous operator
I from 3 onto ¥j; with norm bounded independent of
h such that, for all ¢ € X, we have

B(th) = Pth. (26)

We have now the following result. If (17)-(19) hold, and
(25)-(26) hold, then (21)-(23) are verified with & and §
independent of h.

In the applications that we have seen above, namely
(6)-(10), the abstract spaces ¥ and U are H(div;2) and
L?(Q) respectively. Accordingly, the abstract finite di-
mensional subspaces ¥ and Uy are W;, and M. The
operator B is the divergence operator, and it is immedi-
ate to check that it maps W}, into M}, for all the above
choices. Similarly, the operator I, can be constructed
easily, essentially interpolating the natural degrees of
freedom. Care should be taken only in substituting
point values with appropriate averages.

IV. EDGE ELEMENTS AND GENERALIZATIONS

In the electromagnetic context, instead of continu-
ity of the type H(div;{) required by (9), continu-
ity of the type H(curl;Q) or H(curl;Q) is often re-
quired. We recall that, in 2-D, curlz is a scalar given

by curlz = % - %—7; and H(curl;Q) is the set of 2-

vectors T € (L?(Q))? such that curlz € L?(Q2). On the
other hand, in 3-D, H(curl; Q) is the set of 3-vectors
T € (L*(Q))? such that curlz € (L*(2))3. This im-
plies that, when constructing finite element subspaces
of H(curl; ), or H(curl; ), piecewise polynomial vec-
tors having tangential component continuous at the in-
terelement boundaries have to be used. Clearly, in 2-D
problems the spaces H(div; Q) and H(curl; Q) coincide,
up to a m/2 rotation, so that finite elements as (11)-
(12) can be used, (or (13)-(12), or (14)-(15)). In par-
ticular, for instance, (11) has to be changed so that W,
is made of piecewise polynomial vectors locally having
the form (a; + by, as — bx). Accordingly, the values of
the tangential component on the edges have to be used
as degrees of freedom. The choice (13) for W}, can be
left unchanged, but we have to use tangential compo-
nents instead of normals in the definition of the degrees
of freedom. Similarly, in the definition (14), it is suf-
ficient to substitute r = (z,y) with r* = (y, —z), and,
again, to use tangential instead of normal components
in the degrees of freedom. This similarity between the
H(div; Q) and the H(curl; Q) space stops holding for 3-
D problems, and different finite element discretizations
of H(curl; ) have to be constructed in order to preserve
continuity of the tangential components across interele-
ment boundaries [7], [8]. For instance, the lowest order
element is made of vectors having the local form

T = (a1 — b3y + baz,as + b3z — b1z, a3 + box + b1y)
=(a+bxr). (27)

It can be easily checked [7] that: 1) the tangential com-
ponent of vectors of the form (27) is constant on a
straight line; 2) if two vectors of the form (27) have the
same tangential component on each edge of a given tri-
angular face, then the tangential componenents coincide
on the whole face. Therefore, for piecewise polynomial
vectors locally having the form (27), it is appropriate to
take the (constant) values of the tangential component
on the six edges of each tetrahedron as degrees of free-
dom. This is the reason why these elements are often
referred to as “edge” elements.

Let us see shortly the local form and the degrees of
freedom of vector spaces analogues to the choices (13)
and (14). The space (13) remains formally unchanged.
The choice of degrees of freedom now becomes the value
of the tangential component at two different points on
each edge. The H (curl; Q) analog of (14) is slightly more
delicate. We now take

I‘T € Bl(T) +rX Bl(T)> (28)



but we have to notice that the local space (28) has di-
mension 20 instead of the apparent 21 (=4 x 3+3 x 3).
The reason for this is that E1 contains r, and r x r = 0.
As degrees of freedom we now take the values of the
tangential components at two different points on each
edge (12 d.o.f.), plus the average of the tangential com-
ponents on each face (8 d.o.f.).

V. COMPUTATIONAL ASPECTS

Let us now turn to the numerical treatment of a mixed
formulation, concentrating, for simplicity, on face ele-
ments (11)-(12). After discretization, problem (6)-(7)
can be written in matrix form as

A -B D F

(6 0)(F)=(x) o
with obvious notation. The problem with system (29)
is that the matrix is indefinite. However, this inconve-
nience can be eliminated by introducing Lagrange mul-
tipliers at the interfaces to relax the continuity required
(on the normal or the tangential component, according
to the problem we are dealing with). This amounts to
using piecewise polynomial vectors of the form given in
(11) but discontinuous at the interelement boundaries.
The scalars will be the same as in (12), and a third
finite dimensional space for the multipliers has to be in-
troduced. In the case of our example, this space will
be made of functions piecewise constant on each edge.
This leads to a new problem which can be written in
matrix form as

A -B C D F
B o ol||lv]=(m (30)
c* 0 0 A 0

The advantage in (30) is that matrix A is now a block di-
agonal matrix easy to invert element by element. Hence,
D can be eliminated by static condensation, and (30)
gives

B*A™'B —-B*A7'C V b1

(c*A—lB —C*A—10> (A> = (b2> (81)
The matrix B*A !B is also block diagonal. Static con-
densation on V' leads then to a final system, in the un-
knowns A only, whose matrix is symmetric and positive
definite. This trick, first introduced in [6] for computa-
tional purposes, was studied theoretically in [1] where it
was shown that the Lagrange multipliers actually pro-

vide better accuracy on the scalar variable (the potential
V in our case) than that obtained directly.

Another remedy commonly used to solve problems
of the form (29) is the following, often referred to as
penalty method. Let A be a “small” perturbation pa-
rameter, and let us modify equation (3) into

divD = p — AV in  C R, (32)
(V being the potential), so that the discretization of the

perturbed problem leads to the following system (ana-
logue of (29))

(3 )@)=(5) o

where I is an approximation of the identity matrix (and
can, in general, be taken diagonal with a suitable nu-
merical integration). The second equation of (33) can
then be explicitely solved for V', giving

v = xNE - BD). (34)
Substituting (34) into the first equation of (33) yields
AD + MN'BI''B*D = F, + AR, (35)

that is, a linear system in the unknown D with a sym-
metric and positive definite matrix. It can be shown
that, if the discretization has been properly made (that
is, in accordance with the general rules (21)-(23)), the
perturbation in the solution is of the order of A. This is
not true, in general, if conditions (21)-(23) are violated:
the perturbed problem is solvable for every A > 0 but
the solution can degenerate when A tends to zero.

VI. CONCLUSIONS

In the formulation of the basic laws of electromag-

netism as a first order system (as in the classical Maxwell’s]j

equations) one has to deal with vector fields that need
to have only some components continuous (normal or
tangential). The most suitable spaces to set these pre-
blems are therefore spaces of the type H(div;(2) and
H(curl; Q) (or H(curl;Q)). Several ways for approxi-
mating these spaces have been presented above. The
use of these formulations (and of the corresponding dis-
cretizations) often leads to indefinite systems with in-
definite matrices of the form

( o r ) . (36)



Conditions for well-posedness of systems of this type
have been recalled, together with examples of their ap-
plications to non-classical finite element spaces in elec-
tromagnetic contexts. Algorithms and tricks for the nu-
merical solution of such indefinite systems have been
presented.

In other contexts (structures, fluids, etc.) mixed for-
mulations, once well understood, have proved to be a
very powerful tool, often providing at the same time
a better accuracy and a better fulfilment of the basic
physical laws. This encourages in pursuing their analy-
sis and experimentation for electromagnetic problems.
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