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Abstract. In this paper we analyze a discontinuous finite element method recently intro-

duced by Bassi and Rebay for the approximation of elliptic problems. Stability and error

estimates in various norms are proven.

1 Introduction

Discontinuous finite element methods are nowadays rather widely used, as a variant

(or subclass) of finite volumes, in the numerical treatment of hyperbolic equations, in

particular related to conservation laws: see, for instance, [11, 12, 17] and the references

therein. Their use in the treatment of elliptic equations, in particular related to

diffusion problems, is, at the same time, much older and much more recent. Indeed,

the use of penalty methods to adapt C0−elements to the discretization of fourth order

problems goes back to the early seventies (see [14, 15]). For second order problems,

the use of discontinuous elements with penalty can be traced back to a few years

later, (see [2, 3],) but was afterwards rather abandoned. In recent times, as the use of

discontinuous elements became fashionable for hyperbolic problems, there has been

an attempt to use them as well in problems where small (but not negligible) diffusive

terms are present together with major convective terms. The idea being, clearly, to

use their good features for treating the convective terms, and “make them work”

(one way or another) for treating the diffusive part as well. Among these attempts,

we mention the Local Discontinuous Galerkin (LDG) method analyzed in [13] for

time-dependent convection-diffusion systems, and the method proposed by Bassi and

Rebay [4–7] for Navier-Stokes equations with high Reynolds number. The aim of this

paper is to provide a solid mathematical background for the approach proposed by
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Bassi and Rebay, and to trace properly its limits and its capabilities. In particular, we

consider as a model problem the Laplace operator in a polygonal domain, in order to

cast out the ability of the method to deal with diffusive terms. We rewrite the original

formulation of [4–7] in a new and more elegant way, better suited for a mathematical

investigation. We show that the original formulation can be rank-deficient when

applied to stationary problems, and this, somehow, does not encourage its use in time

dependent problems either. On the other hand, the variant proposed in [7] can be

proven to be stable and optimal order accurate, at least with a minor modification

in the choice of a parameter. Indeed, it is not yet clear whether for the value of the

parameter proposed in [7] (simply equal to 1) the scheme is stable or not. What we

prove here is that stability (together with all the other nice and desirable properties)

is ensured if this value is strictly bigger than 3.

An outline of the paper is the following. In Section 2 we present the problem

and the original formulation of [4–6]: using a more convenient notation we provide a

new presentation which is better suited for theoretical investigation. Since, as already

pointed out, the original formulation may present a potential instability, in Section 3

we discuss the stabilized version of [7]. Stability proofs and error estimates are then

reported in Section 4. Finally, in Section 5 a different stabilization based on a penalty

approach is introduced and investigated.

Acknowledgments. This research has been carried out within the project MIGALE,

financed by ENEL Ricerca – Polo Termico (Pisa). We are also grateful, for the fruit-

ful discussions we had with them, to F. Bassi (University of Ancona) and S. Re-

bay (University of Brescia) as well as to L. Brusa and S. Arnelli (from CISE) who,

moreover, discovered experimentally the instability of the original formulation in the

one-dimensional case.
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2 Description of the Method

Let Ω be a two-dimensional convex polygonal domain, with boundary Γ = ∂Ω parti-

tioned as Γ = ΓN ∪ΓD, with ΓN ∩ΓD = ∅. We consider the following boundary value

problem: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−Δu = f in Ω,

u = gD on ΓD,

∂u

∂n
= gN on ΓN ,

(1)

where f , gD and gN satisfy the usual regularity assumptions needed to write (1) in

variational form (see, e.g., [18]). Introducing the auxiliary vector variable θ = ∇u,

problem (1) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ −∇u = 0 in Ω,

− div θ = f in Ω,

u = gD on ΓD,

θ · n = gN on ΓN ,

(2)

where n is the outward normal unit vector to ∂Ω. Let {Th}h be a regular family of

triangulations of Ω, in the sense of [10]; we shall indicate by E the triangles of Th,

and set h = maxE∈Th
diam (E). We denote by Eh the set of all edges of Th, by E ′

h the

set of the internal edges, by E D
h the set of edges on ΓD, and by E N

h the set of edges

on ΓN . The length of the edge e ∈ Eh will be denoted by he.

The finite element spaces for the approximation of u and θ will be denoted by Vh

and Wh respectively. The precise definition of Vh and Wh will be given later; here

we only assume that functions in Vh and Wh are (possibly) discontinuous along the

edges, and no boundary values are enforced. We also require that

∇h(Vh) ⊂ Wh, (3)

where ∇h is the element by element gradient.
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In [4–7] the following discrete variational formulation of (2) is considered:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

find (uh, θh) ∈ Vh ×Wh such that∑
E∈Th

[∫
E

(θh −∇uh) · τ h −
∫
∂E

(u0
h − uh) τ h · n

]
= 0 for all τ h ∈ Wh,∑

E∈Th

[∫
E

θh · ∇vh −
∫
∂E

θ0
h · n vh

]
=

∫
Ω

fvh for all vh ∈ Vh,

(4)

where u0
h and θ0

h are defined as follows. Let E be an element, and let e be an edge

of E; let Eext be the other element having e as an edge, and let uext
h , and θext

h denote

the values of uh, and θh, respectively, in Eext. Then,

• u0
h =

uh + uext
h

2
on internal edges e ∈ E ′

h;

• u0
h = gD on Dirichlet boundary edges e ∈ E D

h ;

• u0
h = uh on Neumann boundary edges e ∈ E N

h ;

and

• θ0
h =

θh + θext
h

2
on internal edges e ∈ Eh;

• θ0
h = θh on Dirichlet boundary edges e ∈ E D

h ;

• θ0
h · n = gN on Neumann boundary edges e ∈ E N

h .

Notice that the first equation in (4) corresponds to the condition θ = ∇u, and the

second one to the condition − div θ = f .

Let us now introduce the jump of a function vh ∈ Vh on an edge e as

[[vh]] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

v+h n
+ + v−h n

− on internal edges,

vhn on Dirichlet boundary edges,

0 on Neumann boundary edges,

(5)

where n is the outward normal to the edge and the notation (·)+ and (·)− indicates

the value of the generic quantity (·) on the two elements sharing the same edge.
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After some manipulations, equations (4) can be given the following (more elegant)

form ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
E∈Th

∫
E

(θh −∇uh) · τ h +
∑
e∈Eh

∫
e

[[uh]] · τ 0
h =

∑
e∈ED

h

∫
e

gD τ h · n, (6a)

∑
E∈Th

∫
E

θh · ∇vh −
∑
e∈Eh

∫
e

θ0
h · [[vh]] =

∑
e∈E N

h

∫
e

gNvh +

∫
Ω

fvh. (6b)

The system of equations (6) can be recognized as a saddle-point type problem. Ac-

tually, introducing the bilinear forms a(·, ·) on Wh × Wh and b(·, ·) on Vh × Wh

as

a (θh, τ h) =

∫
Ω

θh · τ h, (7)

b (uh, τ h) = −
∑
E∈Th

∫
E

∇uh · τ h +
∑
e∈Eh

∫
e

[[uh]] · τ 0
h, (8)

problem (6) becomes⎧⎪⎪⎪⎨⎪⎪⎪⎩
a (θh, τ h) + b (uh, τ h) =

∑
e∈ED

h

∫
e

gD τ h · n,

−b (vh, θh) =

∫
Ω

fvh +
∑
e∈E N

h

∫
e

gNvh.

(9)

It is then clear that an Inf-Sup condition should be satisfied in order to ensure existence

and uniqueness of the solution of (9). See, e.g., [8]. We shall discuss this point in the

next section.

Now, we can derive a single variational equation by solving equation (6) for θh.

To this end, we first define the space Ṽ as

Ṽ =
∏
E∈Th

H1(E), (10)

and the affine operator RgD
: Ṽ → Wh in the following way. Given w ∈ Ṽ , we define

RgD
(w) ∈ Wh as the solution of the variational problem∫
Ω

RgD
(w) · τ h = −

∑
e∈Eh

∫
e

[[w]] · τ 0
h +

∑
e∈ED

h

∫
e

gD τ h · n for all τ h ∈ Wh. (11)
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From (6) and (3) we have then

RgD
(uh) = θh −∇uh. (12)

We also define the linear operator R = R0 : Ṽ → Wh by∫
Ω

R(w) · τ h = −
∑
e∈Eh

∫
e

[[w]] · τ 0
h for all τ h ∈ Wh, (13)

and we notice that the following relationship holds:∫
Ω

RgD
(w) · τ h =

∫
Ω

R(w) · τ h +
∑
e∈E D

h

∫
e

gD τ h · n. (14)

Using (13) (with τ h = θh and w = vh), and (12) in equation (6), the scheme becomes:

∑
E∈Th

∫
E

[∇uh +RgD
(uh)

] · [∇vh +R(vh)
]
=
∑
e∈EN

h

∫
e

gNvh +

∫
Ω

fvh, (15)

or equivalently, using (14),

∑
E∈Th

∫
E

[∇uh +R(uh)
] · [∇vh +R(vh)

]
=
∑
e∈EN

h

∫
e

gNvh +

∫
Ω

fvh

−
∑
e∈ED

h

∫
e

gD
[∇vh +R(vh)

] · n. (16)

3 The Pk-Pk approximation

We are interested in the study of system (9) for discontinuous piecewise polynomials

of degree k ≥ 1, for both vh ∈ Vh and τ h ∈ Wh. Hence, we define, for k ≥ 1,

Vh =
{
vh ∈ L2(Ω) such that vh|E ∈ Pk(E) for all E ∈ Th

}
, (17)

Wh =
{
τ h ∈ [L2(Ω)

]2
such that τ h|E ∈ [Pk(E)]2 for all E ∈ Th

}
. (18)

As already mentioned, an Inf-Sup condition relating the spaces Vh andWh is needed in

order to guarantee the nonsingularity of the matrix associated with (9). Unfortunately,

the Inf-Sup condition does not hold for this choice of spaces, as shown in [9] through

a counter-example. Since an a priori control over the uh variable cannot be provided,
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it seems quite natural to add to the second equation of (9) a suitable stabilizing term.

We shall describe here the modification proposed in [7]. Mimicking the definition

of RgD
, for each Dirichlet boundary edge e of the triangulation we define the affine

operator re,gD : Ṽ → Wh by∫
Ω

re,gD(w) · τ h = −
∫
e

w τ h · n+

∫
e

gDτ h · n for all τ h ∈ Wh. (19)

If e is an internal edge, re,gD(w) is defined by∫
Ω

re,gD(w) · τ h = −
∫
e

[[w]] · τ 0
h for all τ h ∈ Wh (20)

(note that in this case re,gD does not depend on gD), and for Neumann boundary edges

re,gD is defined to be zero. Finally, as before we set re = re,0. It can be easily seen

that the following relationship between RgD
and re,gD holds: for any triangle E ∈ Th,

we have ∑
e⊂∂E

re,gD = RgD
on E. (21)

If e is an internal edge, it is clear from definition (20) that the support of re,gD is

contained in the union of the two triangles sharing the edge e. The modification

proposed by Bassi and Rebay consists in replacing in (15), for each E ∈ Th,

the term

∫
E

RgD
(uh) ·R(vh) by

∑
e⊂∂E

∫
Ω

re,gD(uh) · re(vh). (22)

This procedure can be interpreted in the following way. As we shall see more precisely

in the next Section, the quantity re(vh) allows to control the jump of vh on e (see

Lemma 2); hence, a natural stabilization of (9) consists in adding to the left-hand side

of the second equation the term

s
∑
e∈Eh

∫
Ω

re,gD(uh) · re(vh), (23)

where s > 0 is a parameter (to be chosen later on), thus obtaining the new scheme

∑
E∈Th

∫
E

[∇uh +RgD
(uh)

] · [∇vh +R(vh)
]

+ s
∑
e∈Eh

∫
Ω

re,gD(uh) · re(vh) =
∑
e∈EN

h

∫
e

gNvh +

∫
Ω

fvh. (24)
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Indeed, as we also point out at the end of Section 4, this stabilization works for every

positive s. In the next Section, we shall show that if s is large enough (s > 3), we

can also supress the term
∫
E
RgD

(uh) ·R(vh) in (24), obtaining the following scheme,

equivalent to the formulation of Bassi and Rebay [7] (when s = 1):

∑
E∈Th

∫
E

[∇uh · ∇vh +∇uh ·R(vh) +RgD
(uh) · ∇vh

]
+ s

∑
e∈Eh

∫
Ω

re,gD(uh) · re(vh) =
∑
e∈EN

h

∫
e

gNvh +

∫
Ω

fvh. (25)

The advantage of this scheme with respect to (24) is that the stiffness matrix of (25)

is much more sparse than that of (24). Indeed, if we take a vh having support inside

one element E (far from the boundary), we see that the elements involved in (24) are

always 10, while the elements involved in (25) are always 4, as depicted in Figure 1.

E

First stabilization (24)

E

Bassi-Rebay stabilization (25)

Figure 1: Sparsity of the stiffness matrix

For the sake of simplicity, in this paper we shall limit ourselves to study in detail

the case of Dirichlet homogeneous boundary conditions. Hence, from now on we will

assume ΓN = ∅, ΓD = ∂Ω, and gD = 0, so that the continuous problem reads⎧⎪⎨⎪⎩
−Δu = f in Ω,

u = 0 on ∂Ω.
(26)
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Accordingly, we define the bilinear form ah(·, ·) after (25) as

ah(uh, vh) =
∑
E∈Th

∫
E

[∇uh · ∇vh +∇uh ·R(vh) +R(uh) · ∇vh
]

+ s
∑
e∈Eh

∫
Ω

re(uh) · re(vh), (27)

and the discrete variational formulation becomes⎧⎪⎨⎪⎩
find uh ∈ Vh such that

ah(uh, vh) = (f, vh), for all vh ∈ Vh.
(28)

Error estimates will be obtained in the following mesh-dependent norm:

|||v|||2 =
∑
E∈Th

|v|21,E +
∑
e∈Eh

||re(v)||20,Ω, v ∈ Ṽ , (29)

and, as usual, || · ||m,S, | · |m,S denote the norm and seminorm, respectively, in the

Sobolev space Hm(S). Notice that ||| · ||| is only a semi-norm in Ṽ , while it is a norm

in Vh +H1
0 (Ω).

Remark. Using definitions (13)-(14) in (25) the bilinear form can be rewritten

equivalently as

ah(uh, vh) =
∑
E∈Th

∫
E

∇uh · ∇vh −
∑
e∈Eh

∫
e

[[uh]] · (∇vh)
0 −

∑
e∈Eh

∫
e

[[vh]] · (∇uh)
0

+ s
∑
e∈Eh

∫
Ω

re,gD(uh) · re(vh). (30)

One can then recognize similarities with other formulations studied, for instance, in

[2, 15, 19], the only difference being in the last term of (30).

4 Error Estimates

We shall prove in this section coercivity and continuity on Vh of the bilinear form

ah(·, ·) with respect to the norm ||| · ||| defined in (29). Moreover, under the regularity

assumption u ∈ Hk+1(Ω) ∩ H1
0 (Ω), with k ≥ 1, we shall prove the following error

estimates:
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• |||u− uh||| ≤ C hk|u|k+1,Ω,

• ||u− uh||0,Ω ≤ C hk+1|u|k+1,Ω,

where u is the solution of (26), and uh is the solution of (28). Here and in the

sequel, C will denote a generic constant depending only on the minimum angle of the

triangulation.

Proposition 1 There exists a constant M > 0, independent of h, such that

(i) ah(uh, vh) ≤ M |||uh||| |||vh|||, for all uh, vh ∈ Vh.

Moreover, if s > 3, there exists a constant α > 0, independent of h, such that

(ii) ah(vh, vh) ≥ α |||vh|||2, for all vh ∈ Vh.

Proof. We first observe that an easy consequence of (21) is

||R(vh)||20,E ≤ 3
∑
e⊂∂E

||re(vh)||20,E . (31)

Then, (i) follows immediately from the definition of ah(uh, vh) and inequality (31).

In order to prove (ii), notice that, since the support of each re is the union of the

triangles sharing the edge e, we can write∑
e∈Eh

||re(vh)||20,Ω =
∑
E∈Th

∑
e⊂∂E

||re(vh)||20,E. (32)

Using (32), inequality 2ab ≤ εa2 +
1

ε
b2, and (31) we deduce

ah(vh, vh) =
∑
E∈Th

[
|vh|21,E + 2

∫
E

R(vh) · ∇vh + s
∑
e⊂∂E

||re(vh)||20,E
]

≥
∑
E∈Th

[
(1− ε)|vh|21,E − 1

ε
||R(vh)||20,E + s

∑
e⊂∂E

||re(vh)||20,E
]

≥
∑
E∈Th

[
(1− ε)|vh|21,E +

(
s− 3

ε

) ∑
e⊂∂E

||re(vh)||20,E
]
.

Then, (ii) holds with α = min

(
1− ε, s− 3

ε

)
, which is positive whenever

3

s
< ε < 1.

The following properties will be used in the sequel.
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Lemma 1 Let ϕ ∈ H1(Ω), with Δϕ ∈ L2(Ω), and let vh ∈ Vh. Then∑
E∈Th

∫
∂E

vh
∂ϕ

∂n
=
∑
e∈Eh

∫
e

[[vh]] · (∇ϕ)0. (33)

Proof. The regularity of ϕ implies that ∇ϕ ·n is continuous across the interelement

boundaries, that is, n+ · ∇ϕ+ + n− · ∇ϕ− = 0. Thus, recalling (5), we have∑
E∈Th

∫
∂E

vh
∂ϕ

∂n
=
∑
e∈E ′

h

∫
e

[
v+h n

+ · ∇ϕ+ + v−h n
− · ∇ϕ−]+ ∑

e∈E D
h

∫
e

vhn · ∇ϕ

=
∑
e∈E ′

h

∫
e

[
v+h n

+ · ∇ϕ+ +∇ϕ−

2
+ v−h n

− · ∇ϕ+ +∇ϕ−

2

]
+
∑
e∈E D

h

∫
e

vhn · ∇ϕ

=
∑
e∈Eh

∫
e

[[vh]] · (∇ϕ)0.

Lemma 2 There exist two positive constants C1 and C2, independent of h, such that

(i) ||[[vh]]||0,e ≤ C1h
1/2
e ||re(vh)||0,Ω

(ii) ||re(vh)||0,Ω ≤ C2h
−1/2
e ||[[vh]]||0,e

for each vh ∈ Vh and for each e ∈ Eh.

Proof. Let e be an edge of E. Given ϕh ∈ Pk(e), let Pe(ϕh) ∈ Pk(E) be the

extension of ϕh on E, which is constant along the lines orthogonal to the edge e. It

follows immediately that

||Pe(ϕh)||0,E ≤ Ch1/2
e ||ϕh||0,e. (34)

For a vector ϕh ∈ [Pk(e)]
2, Pe(ϕh) is defined component-wise. Taking in (19) w = vh,

and τ h ∈ Wh defined by τ h|E = Pe([[vh]]), and τ h = 0 elsewhere, we have

1

2
||[[vh]]||20,e ≤

∫
E

|re(vh) · Pe([[vh]])| ≤ ||re(vh)||0,E ||Pe([[vh]])||0,E . (35)

Then, inequality (i) follows by using (34) in (35) and summing over all E ∈ Th. In

order to prove (ii), we take τ h = re(vh) in (20). Thus, we find

||re(vh)||20,Ω ≤ ||[[vh]]||0,e ||(re(vh))0||0,e ≤ C h−1/2
e ||[[vh]]||0,e ||re(vh)||0,Ω, (36)

where the last inequality follows by a simple scaling argument, see [16].
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Lemma 3 Let ϕ ∈∏E∈Th
H2(E) and vh ∈ Vh. Then∑

e∈Eh

∫
e

[[vh]] · (∇ϕ)0 ≤ C
∑
E∈Th

∑
e⊂∂E

||re(vh)||0,Ω
(
|ϕ|1,E + he|ϕ|2,E

)
. (37)

Proof. The trace inequality (see [1, 2]) gives

||∇ϕ||20,e ≤ C
(
h−1
e |ϕ|21,E + he|ϕ|22,E

)
, (38)

where the constant C depends only on the minimum angle bound. Using (38) and

Lemma 2 (i) we obtain∫
e

[[vh]] · ∇ϕ ≤ ||[[vh]]||0,e ||∇ϕ||0,e ≤ C||re(vh)||0,Ω
(
|ϕ|1,E + he|ϕ|2,E

)
, (39)

and the thesis follows since∑
e∈Eh

∫
e

[[vh]] · (∇ϕ)0 =
1

2

∑
E∈Th

∑
e⊂∂E

∫
e

[[vh]] · ∇ϕ.

We are now able to prove our convergence theorem.

Theorem 1 Let u and uh be the solutions of (26) and (28), respectively. Then, the

following estimate holds:

|||u− uh||| ≤ Chk|u|k+1,Ω. (40)

Proof. Let Ṽh be the usual conforming finite element space

Ṽh = {vh ∈ H1
0 (Ω) such that vh|E ∈ Pk(E)}, with k ≥ 1, (41)

and let uI ∈ Ṽh be the Pk-interpolant of u. The definition of ||| · ||| yields

|||u− uI |||2 =
∑
E∈Th

|u− uI |21,E ≤ C h2k |u|2k+1,Ω. (42)

From Proposition 1 we have

α|||uI − uh|||2 ≤ ah(uI − uh, uI − uh)

= ah(uI − u, uI − uh) + ah(u− uh, uI − uh)

≤ M |||uI − u||| |||uI − uh|||+ ah(u− uh, uI − uh). (43)
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It is now easy to see that

ah(u− uh, uI − uh) = 0. (44)

Indeed, using definition (30) for ah(· , · ) and integration by parts we obtain

ah(u− uh, uI − uh) = ah(u, uI − uh)− ah(uh, uI − uh)

=
∑
E∈Th

∫
E

∇u · ∇(uI − uh)−
∑
e∈Eh

∫
e

(∇u)0 · [[uI − uh]]−
∑
E∈Th

∫
E

f (uI − uh) (45)

=
∑
E∈Th

[∫
E

(−Δu − f)(uI − uh) +

∫
∂E

∂u

∂n
(uI − uh)

]
−
∑
e∈Eh

∫
e

(∇u)0 · [[uI − uh]],

and (44) follows from Lemma 1 . Then, (40) is a consequence of (42), (43), and the

triangle inequality.

We shall now prove an L2−estimate.

Theorem 2 Let u and uh be the solutions of (26) and (28), respectively. Then, the

following estimate holds:

||u− uh||0,Ω ≤ Chk+1|u|k+1,Ω. (46)

Proof. As standard in duality arguments, we consider the following auxiliary prob-

lem ⎧⎪⎨⎪⎩
−Δw = u− uh in Ω

w = 0 on ∂Ω
(47)

for which the regularity estimate

||w||2,Ω ≤ C ||u− uh||0,Ω (48)

holds. We denote by w̃h ∈ Ṽh the solution of the conforming finite element problem∫
Ω

∇w̃h · ∇ṽh =

∫
Ω

(u− uh) ṽh for all ṽh ∈ Ṽh, (49)

and we recall that (see e.g. [10])

||w − w̃h||1,Ω ≤ C h|w|2,Ω. (50)
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From equation (47), integrating by parts and keeping the interelement terms, since

uh is discontinuous, we obtain

||u− uh||20,Ω =
∑
E∈Th

∫
E

−Δw(u− uh) =
∑
E∈Th

[∫
E

∇w · ∇(u− uh)−
∫
∂E

∂w

∂n
(u− uh)

]
=
∑
E∈Th

[∫
E

∇(w − w̃h) · ∇(u− uh) +

∫
E

∇w̃h · ∇(u− uh) +

∫
∂E

∂w

∂n
(uh − u)

]
. (51)

Since uh is the solution of (28), and u that of (26), using definition (30) we have∑
E∈Th

∫
E

∇(u− uh) · ∇w̃h = −
∑
e∈Eh

∫
e

[[uh]] · (∇w̃h)
0. (52)

Therefore, (51) reduces to

||u− uh||20,Ω =
∑
E∈Th

[∫
E

∇(w − w̃h) · ∇(u− uh) +

∫
∂E

∂w

∂n
(uh − u)

]
−
∑
e∈Eh

∫
e

[[uh]] · (∇w̃h)
0.

(53)

By Lemma 1 and Lemma 3 we have

−
∑
e∈Eh

∫
e

[[uh]] · (∇w̃h)
0 +

∑
e∈Eh

∫
e

[[uh − u]] · (∇w)0 =
∑
e∈Eh

∫
e

[[uh]] · [∇(w − w̃h)]
0 ≤

C
∑
E∈Th

∑
e⊂∂E

||re(uh)||0,Ω
(
|w − w̃h|1,E + he|w − w̃h|2,E

)
. (54)

Thus, substituting (54) in (53), and using (50) we deduce

||u− uh||20,Ω ≤ C h|||u− uh||| |w|2,Ω. (55)

Finally, applying estimates (48) and (40) we conclude the proof.

Remark. A quick glance at the proofs of Proposition 1 and Theorems 1 and 2

immediately shows that the same results, namely error estimates (40) and (46), can

be obtained for the scheme (24) for every s > 0.

5 A penalty method

In this section we present and analyze a variant of the scheme introduced by Bassi

and Rebay. This variant presents some computational advantages, as it reduces the

14



number of integrals to be computed when building the elementary matrices. On the

other hand, with this variant the scheme becomes a penalty method, and very large

coefficients might be introduced in the matrix, mainly when high-order polynomials

are used. Let us consider the problem:⎧⎪⎨⎪⎩
find uh ∈ Vh such that

ah(uh, vh) = (f, vh), for all vh ∈ Vh

(56)

with ah(·, ·) now defined by:

ah(uh, vh) =
∑
E∈Th

∫
E

∇uh · ∇vh +
∑
e∈Eh

s(he)

∫
Ω

re(uh) · re(vh). (57)

In (57) s(he) is a positive function which tends to +∞ when he tends to zero. For

reasons which will become clear in the proof, we choose

s(he) =
1

h2k
e

, (58)

k being the order of the polynomials used in the approximation. We define the norm

|||v|||2h = ah(v, v) =
∑
E∈Th

|v|21,E +
∑
e∈Eh

s(he)||re(v)||20,Ω, v ∈ Ṽ , (59)

and, always with the same regularity assumptions of the previous section, we shall

prove the following error estimates:

• |||u− uh|||h ≤ C hk|u|k+1,Ω,

• ||u− uh||0,Ω ≤ C hk+1|u|k+1,Ω,

where u is the solution of (26), and uh that of (56). Let us notice that the continuity

and the coercivity of ah(·, ·), with respect to the norm ||| · |||h, are now straightforward

(with M = α = 1). The following modification of Lemma 3 will also be useful :

Lemma 4 Let be ϕ ∈∏E∈Th
H2(E) and vh ∈ Vh. Then

∑
e∈Eh

∫
e

[[vh]] · (∇ϕ)0 ≤ C |||vh|||h
(∑

E∈Th

∑
e⊂∂E

s(he)
−1||ϕ||22,E

)1/2

. (60)
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Proof. From Lemma 3 we easily obtain∑
e∈Eh

∫
e

[[vh]] · (∇ϕ)0 ≤ C
∑
E∈Th

∑
e⊂∂E

||re(vh)||0,Ω||ϕ||2,Es(he)
−1/2s(he)

1/2. (61)

The thesis follows immediately by applying Cauchy-Schwarz inequality and (32).

We can now prove the convergence theorem.

Theorem 3 Let u and uh be the solutions of (26) and (28), respectively. Then, the

following estimate holds:

|||u− uh|||h ≤ Chk|u|k+1,Ω. (62)

Proof. Proceeding as in Theorem 1, let again uI ∈ Ṽh be the Pk–interpolant of u.

The definition of ||| · |||h yields

|||u− uI |||2h =
∑
E∈Th

|u− uI |21,E ≤ C h2k |u|2k+1,Ω. (63)

From definition (59) it easily follows that

|||uI − uh|||2h ≤ ah(uI − uh, uI − uh)

= ah(uI − u, uI − uh) + ah(u− uh, uI − uh)

≤ |||uI − u|||h |||uI − uh|||h + ah(u− uh, uI − uh). (64)

Using (57) and (56), integrating by parts, and applying Lemma 1 we have that

ah(u− uh, uI − uh) = ah(u, uI − uh)− ah(uh, uI − uh)

=
∑
E∈Th

[∫
E

∇u · ∇(uI − uh)−
∫
E

f (uI − uh)

]
=
∑
E∈Th

[∫
E

(−Δu− f)(uI − uh) +

∫
∂E

∂u

∂n
(uI − uh)

]
=
∑
e∈Eh

∫
e

[[uI − uh]] · (∇u)0. (65)

From Lemma 4 we have∣∣∣∣∣∑
e∈Eh

∫
e

[[uI − uh]] · (∇u)0

∣∣∣∣∣ ≤ C |||uI − uh|||h
(∑

E∈Th

∑
e⊂∂E

s(he)
−1||u||22,E

)1/2

, (66)
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and inserting inequality (66) in (65) and (64), we obtain

|||uI−uh|||2h ≤ |||uI−uh|||h |||uI−u|||h+C |||uI−uh|||h
(∑

E∈Th

∑
e⊂∂E

s(he)
−1||u||22,E

)1/2

. (67)

The result follows then from (63), (67), and triangle inequality, by choosing s(he) as

in (58).

A duality argument allows us to prove the following L2−estimate.

Theorem 4 Let u and uh be the solutions of (26) and (28), respectively. Then, the

following estimate holds:

||u− uh||0,Ω ≤ Chk+1|u|k+1,Ω. (68)

Proof. Proceeding exactly as in the proof of Theorem 2, let w ∈ H2(Ω) ∩H1
0 (Ω) be

the solution of the auxiliary problem −Δw = u − uh in Ω, and let w̃h ∈ Ṽh be the

finite element approximation of w. Then, from equation (47), integrating by parts

and keeping the interelement terms, since uh is discontinuous, we obtain

||u− uh||20,Ω =
∑
E∈Th

−
∫
E

Δw(u− uh) =
∑
E∈Th

[∫
E

∇w · ∇(u− uh)−
∫
∂E

∂w

∂n
(u− uh)

]
=
∑
E∈Th

[∫
E

∇(w − w̃h) · ∇(u− uh) +

∫
E

∇w̃h · ∇(u− uh) +

∫
∂E

∂w

∂n
(uh − u)

]
. (69)

Since re(w̃h) = 0 in Ω, and u and uh are the solutions of (26) and (56), respectively,

we have ∑
E∈Th

∫
E

∇(u− uh) · ∇w̃h = 0. (70)

Hence, (69) reduces to

||u− uh||20,Ω =
∑
E∈Th

[∫
E

∇(w − w̃h) · ∇(u− uh) +

∫
∂E

∂w

∂n
(uh − u)

]
. (71)

Using Lemma 1, the continuity of u and uI , and Lemma 4, we obtain∑
E∈Th

∫
∂E

∂w

∂n
(uh − u) =

∑
e∈Eh

∫
e

[[uh]] · (∇w)0 =
∑
e∈Eh

∫
e

[[uh − uI ]] · (∇w)0

≤ C |||uh − uI |||h
(∑

E∈Th

∑
e⊂∂E

s(he)
−1||w||22,E

)1/2

≤ C |||uh − uI |||hhk||w||2,Ω, (72)
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where the last inequality follows from (58). Then, substituting (72) in (71), and

using (50) we obtain

||u− uh||20,Ω ≤ C
(
|||u− uh|||h h |w|2,Ω + |||uh − uI |||h hk ||w||2,Ω

)
. (73)

The result follows then from (73), (48), and (62).
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