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Abstract. We present an abstract stabilization method which covers previous concrete appli-
cations to advection—diffusion equations and to the Stokes equations for incompressible fluids.
We then apply the method to stabilize domain decomposition formulations for elliptic prob-
lems. We obtain a method that allows the treatment of internal variables, interface variables
and Lagrange multipliers (normal derivatives) by piecewise polynomials of arbitrary order.

Introduction

We present an abstract regularization result inspired essentially by previous regu-
larization techniques introduced by Hughes and various other authors for advection-
diffusion problems and for the Stokes equations for incompressible fluids (see [12],
[11], [10] for surveys and references). To be more precise, the application of our ab-
stract result to the Stokes equations leads to the method introduced by Douglas and
Wang [9], while the application to advection-diffusion problems produces a variant of
Galerkin least square methods studied in [11]. For a more general abstract setting
which includes other regularization techniques, see [2]. If we apply our result to the
Dirichlet problem (for linear elliptic equations) with Lagrange multipliers we obtain
a variant of [3].

In this paper the use of this abstract theory for the macro-hybrid domain decom-
position method of [6],[7] is investigated. We recall that the method of [6] produces a
three-field formulation where the three unknowns represent the solution u of the orig-
inal problem inside each macro-element, the normal derivative A of u on the boundary
of each macro-element, and the trace ¢ of u at the interfaces. The application of our
abstract theory to this method allows a great generality in the choice of discretizations
for the three fields. For instance, piecewise polynomials of arbitrary (and indepen-
dent) degree can be chosen for each variable, still preserving stability and optimal
error bounds. Alternatively, different Galerkin methods (finite elements, spectral,
Fourier, wavelets etc.) can be used in different macro-elements to obtain a variant of
the mortar elements techniques of [4].

An outline of the paper is as follows. In Section 1, starting from an abstract
variational formulation, we present a class of regularization techniques and prove
stability and error bounds under reasonable assumptions. To help the reader, the
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Douglas-Wang method for Stokes is used throughout this section to clarify the abstract
objects we have to deal with. In Section 2 we recall the macro-hybrid formulation of
[6] for domain decomposition methods. In Section 3 we briefly apply the results of
Section 1 to the three-field formulation of Section 2 and we sketch the error bounds
that can be obtained. We refer to [8] for a more detailed treatment.

1 An Abstract Result

Let V; be a Hilbert space, and A; (U, V') a bilinear form on V; xV;, which is continuous
in the usual sense:

AM; >0 A1(U,V) SM1||U||1||V||1 (11)

We assume that there exist two positive constants 3, and 3; such that for every W
in V; there exist V. and V; in V; — {0} with

AL (Vi, W) = Be|Villa W], (1.2)
AW, Ve) 2 Br Wl Vel - (1.3)

It is well known that, with these assumptions, for every f; € V] there exists a unique
U; in V; such that
./41(U1,V) =< f1, V> VYWeV. (14)

Remark 1.1: A tipical example of the situation that we are going to face is given
by the Stokes problem, which can be fit in our framework by setting, with obvious
notation:

{V1 = (Hy()” x (L*(Q)/R) ; U = (u,p); V = (1,0q) (1.5)

A1 (U V) = (Yu,Yo) — (dive,p) + (dive, g).

The well-posedness of (1.4) follows from the inf-sup condition (see e.g. [5]) and
cannot, be deduced using Lax—Milgram theorem. ]

Let now {Vi}r>o be a sequence of finite dimensional subspaces of V;. It is well
known that, in general, the problem of finding U} in V}, such that

A (UL, Vi) =< fi, Vi > YV, € Vy (1.6)

does not have a unique solution, unless discrete analogues of (1.2) and (1.3) hold.
We present here an abstract regularization technique that allows to circumvent this
problem. When applied to the Stokes problem our technique reproduces the Douglas—
Wang method (see [9]); when applied to the domain decomposition formulation of [6]
it gives rise, as we shall see, to a variant of [3]. Although this last application is our
aim here, we shall keep track of the Stokes problem as a first illustration of the abstract
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theory. The main reason for that is that Stokes problem is much more familiar and
also formally simpler.

First of all we assume that the bilinear form A; (U, V) is non—negative. More
precisely, we assume that there exist a seminorm |-| on V; and a positive constant 7y,
such that

AV, V) > V]2 YV eV, . (1.7)

We also assume that
VI<IVIL  VvVen. (1.8)

For the Stokes problem we clearly have |V| = |(v,q)| = ||ly||2L2(Q).

We assume now that we are given a sequence {V2(h)},, of Hilbert spaces, with
seminorms |V, 5 and norms ||V||2 5, such that V, C Va(h) < Vi and U; (solution of
(1.4)) belongs to Va(h) for every h; we also assume that

1Vall2,n < Mel[Vallx VVi €V (1.9)
IVall3n < c(IVal® + [Val34) VVh € Vi (1.10)

with M., ¢ constants independent of h.
For the Stokes problem and for piecewise polynomial spaces Vy,, we can take

I 0l n = IZulFe + 3 W {IAulBe) + I¥alei ) (111)
KeT

always with usual notation, and

(0, )5, = Z hill = Av + Vall72 (k) - (1.12)
KeTh

We assume now that we are also given a bilinear form A (U, V') on Vy(h) X Va(h)
such that, for every W,V in Vy(h)

A (W, V) < My [|[Wl|2,n |V ||2,n (1.13)
AV, V) > %[V, (1.14)

with positive constants M> and ~» independent of h. We set
<f2,V >i= AQ(Ul,V) VVEVQ(h) (115)

Note that (1.15) will not produce a reasonable right—hand side, unless it is effectively
computable without knowing the solution U; of (1.4) explicitely. For instance, for
Stokes problem, if U; = (u,p) and —Au + Vp = f, we can set

-/42(U5V) = Z h%{ (—Au+Zp,—AQ+Zq)L2(K) (1-16)
KeTn



so that
<fo,V>=) b (£, ~D0+Y4) o g, (1.17)
which is computable without explicit knowledge of the solution U;.

We can now set A = A; + As and f = f; + fo. It is pretty obvious that the
problem

find Uy, € V), such that (1.18)
AU, Vo) =< f,Vi > YV eV, '
has a unique solution, since
AWVi, Vi) 27 [Val? + Vi, = v [IVall3n (1.19)
for every Vj, in Vy, from (1.7), (1.14) and (1.10).
On the other hand, it is also obvious that
AU, Vi) = A1(Ur, Vi) + A2 (U, Vi) (1.20)

=< fi, >+ < o,V >=<f,V, >

for every V}, in Vp,, using (1.4), (1.15), and the definitions of A and f. It is still not
clear whether U}, converges to Uy (possibly with optimal rate) or not. For this we need
some further assumptions. We assume therefore that there exists a linear operator
7h : V1 — Vj, and another seminorm, | - |45, on V; such that, for every W € V; and
Vi, € V3, we have

1.21
1.22
1.23
1.24

AL (W —m,W, Vi) < My [W — 1, Wl [[Vill2,n
Ao (Vi, W = mn W) < My W = 7nWlon [|[Vall2,n
W — 1, Wen < My |[W]|

T Wil < Mp[[Wlh

~—~ o~ —~
~— ~— O~

with M;, M,, M,, M, constants independent of h.

In the case of Stokes problems, restricting ourselves, for the sake of simplicity, to
finite element approximations with continuous pressures (but the case of discontinuous
pressures can also be easily treated, following essentially [13]) we can take as mj, the
usual projection (in V;) onto V. It is easy to check that, in this case, for V = (v, q)
we can take

VIEn = IX2lZ + 572 lullie + lpllZe)m (1.25)

and (1.21)—(1.24) will hold. Notice also that, for Uy = (u,p) smooth enough, the
three quantities

U1 —wpUnlly s UL — 7nUdllzn s U — 7nUdlen (1.26)
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have the same order of magnitude (in powers of h), and correspond to optimal orders

of accuracy.
We can now prove our two basic results.

Theorem 1.1: There exists a constant d; such that, for all h we have
U1 = Unll2,n < 01 ([[UL = 7o Uill2,n + U = 7nUslsn) -

Proof: We have

YT = w3 < (use(1.19))

< AUy — U, Uy — mpUy) = (use(1.18), (1.20) )
:A(Ul — Uy, Uh—ﬂhUl) < (use(1.21), )
< MUy = mpUilen UL — 7 Unll2,8

which easily implies
WUn — 7nUill2,n < (Mi/7) U = 7aUilxon

and the result follows by the triangle inequality.

Theorem 1.2: There exists a constant d» such that for all A we have
WU = Uillr <62 (U — maUtll2,n + U — 7aUslen) -
Proof: We have from (1.3) that there exists V;. in V; such that
A1 (Un = mpUs, Vi) 2 B |Un = maUslly [Vl -
Then we have

Br I1Velly 1UL —maUilli < Ay (U — 7nUs, Vi) = (27 V7)

(1.27)

(1.28)

(1.29)

(1.30)

(1.31)

(1.32)

= A (Uh —7mpUy, V. — Wh‘/;n) + A1 (Uh — Uy, Wth) < (use(1.22), (1.23))

S MM, |Up = mnUtllyy (1Velly + A (Un = mpUs, mhVe) = (£A2)

= MMy ||Up —mnUi|ly, Vel + A(Un = mpUv, i Vy) =
— Ay (Up, — mp Uy, mp Vi) < (use(1.18), (1.20) and (1.13))

< MM, ||Uy — m Uy ||2,h [| Vs ||1 + AU — mpUr, mhlVe) +

+ My [ Un =701 oy 70 Vi llyp < (use A= Ay + Ay, (1.21),(1.13))

S MMy ||Un = mnUsllyp Ve lly + Mo [Ur = 7nUs |,y |7 Ve fly p +
+ My || Un = 7nUsllyp 170 Vel + M2 [[Un = 70 Us e 170 Ve lly <
(use (1.9),(1.24)) < (M, My + MaMcMy) [[Up —mpUs ||y, [Vl +

+ MMMy Uy —mnUs |y Ve lly + Me Mo My || Uy = maUs [l 1Vl
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from which

|| Up — mnUn ||1 < C( ||Uh—7ThU1 ||2,h+ |U1 —II,U; |*,h+ || Uy —mUs ||2,h) (133)

and the result follows from (1.29) and (1.33). ]

Remark 1.2: We notice that, for piecewise polynomial approximations of the Stokes
problem, both (1.27) and (1.30) provide error estimates of optimal order (as it was
already shown by [9] with a direct approach). In Section 3 we shall apply these
abstract results to domain decomposition methods.

2 The continuous formulation for a domain decomposition
method

Let us consider, for the sake of simplicity, a polygonal domain Q C IR? split into a
finite number of polygonal subdomains Q. (k =1,..,N). Let

Q:UQk : D=0 z:Urk. (2.1)
k k

Let A be a linear elliptic operator of the form

=3 S s g+ o) + ) g+ dae (22)

i J

We assume that the coefficients a;;, bj, ¢;, d belong to L*(2) and are smooth in

each , and we consider the bilinear forms associated with A in each €, that is,

foru,ve H'Y(Q):

Ou Ov Ov Ou (2.3)
ag(u, v) ;== /Qk Z(Z(a”c’)_:ma—x] + bjua—mj) + C"a_a;i”) + duv p dx.

i
We also set, for u, v € [T, H' ()

a(u, v) := Zak(u, v); (2.4)

k

for the sake of simplicity we also assume that there exists a constant a > 0 such that
a(v, v) > Oé||’l}||%[1(9) Vv € Hy (Q). (2.5)

From now on we are going to use the following notation: (.,.) will be the usual inner
product in L3(Q); for k = 1,...,N, < .,. >, will be the inner product in L?(T)
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(or, when necessary, the duality pairing between H~2 (') and H2 (T'y)). Let us now
introduce the spaces that will be used in our formulation. For k = 1, ..., N we set

Y= HY Q) ;M= H 3(Ty). (2.6)
We then define
T=[[te ; M:=]]M, (2.7)
k k
and
®:={pe L*X) : Fve Hy() with p = v} = Hj(Q)s, (2.8)

with the obvious norms

lollx =Y I 1lin@, @eT;v=(@". . o")); (2.9)
k
Ial =SSRy €M = (™) (210)
k
lelle =inf{ v |H1(Q) | v € Hy(9), vz = ¢} (2.11)

For every f, say, in L2(f2), we can now consider the following two problems:

find w € Hy(Q)  such that
) (2.12)
a(w,v) = (f,v) Vo€ HY(Q)
and
findueY, Xé M and ¢ € & such that
i) a(u,v)—z<)\k,vk > = (f,v) YoeTX
k
ii) Z <pFp—uF>p= 0 Yue M (2.13)
k
i) Y <A, >p=0 Vo € ®.
\ k

Theorem 2.1: For every f € L2(2), both problems (2.12) and (2.13) have a unique
solution. Moreover we have

uk = w inQ, (k=1,...,N), (2.14)
v Ow

= — only (k=1,..,N), (2.15)
on’y

Y=w on ¥ (2.16)

where Gw/0nk is the outward conormal derivative (of the restriction of w to Q) with
respect to the operator A.



Proof Tt follows from (2.5) that (2.12) has a unique solution w. Setting u, A, as in
(2.14)—(2.16) it is easy to verify that this is a solution of (2.13). Hence, we only need
to show that (2.13) cannot have two different solutions or, in other words, that f =0
in (2.13) implies u = 0, A = 0, ¥» = 0. Let then f = 0; from (2.13;ii) we get u* = 1)
on 'y for every k, and therefore the existence of a function w € H{(2) such that
¢ = wyy, and ub = wg, . From (2.13;i) with v = w, and (2.13;iii) with ¢ = w we have

a(w,w) =0 (2.17)
yielding u = 0 and ¢ = 0. From (2.13;i) we have now
<M ou>p=0 WweY, Vk (2.18)

which easily gives A = 0. [

It is very important, for applications to domain decomposition methods, to re-
mark explicitly that the first two equations of (2.13) can be written as

ap(uh o) — < AF ok > = (f 0k ot ey, Vk
{k( ) k= (f,v") k 219)

< pkouk >pe= <,k >y Yk e My, Vk.

In particular, for all fixed k, assuming f and v as data, (2.19) is the variational

formulation of the Dirichlet problem

Au® in Q,
f g (2.20)
uk (0 on [,

where the boundary condition is imposed by means of a Lagrange multiplier (that
finally comes out to be \¥ = gu*/dn%) as in Babugka [1]. Hence, for f and 1 given,
the resolution of the first two equations of (2.13) amounts to the resolution of N

independent Dirichlet problems.

3 Regularization of domain decomposition methods

We apply now the abstract technique of Section 1 to problem (2.13). For this, we
have first to set it in the form (1.4). We define

Vi =T xMx®, (3.1)
A (A1), (0, 9) = alu,0) = 3 < Aok >,
k

+Y <A Y <t > =Y <k g >y
k k k
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One can easily check that (1.1)-(1.3) hold true. Non-negativity (1.7) is trivial if we
take

|(’U,,U,,(p)|2 = Z ||Z’U||i2(§lk) (33)
k

(using (2.5)). Assume now that we are given finite dimensional subspaces V}, =
Yn x My x ®,. For the sake of simplicity we may think that we have a global
decomposition T, of €2 into finite elements w (say, triangles), which is compatible with
the macro-element subdivision (2.1) (in other words, for every w in 7} and for every
O, the symmetric difference (Q;Uw)\ (2 Nw) has zero measure). The decomposition
Tr induces then, in a natural way, finite element decompositions of each (1, of each
I, and of 3. For the sake of simplicity we shall write >_ ) and }__ ;) for the sum
over those elements w (resp. o) belonging to Q (resp. I'y). We shall also denote
by h, and h, the diameter of w and o, respectively. As far as the degrees of the
polynomials are concerned, we allow the maximum generality; the degree can also
change from one macro-element to another. Since Vj, C V), the functions v¥ must be
continuous in Qg, and ¢, must also be continuous on X.

Remark 3.1: Our assumptions on V, are much more restrictive than necessary. In
principle we can easily adapt these ideas to more general subspaces, even allowing
different Galerkin methods (Fourier, spectral, wavelets etc.) from one 2 to another.
However, as we shall see, the notation (more than the actual implementation) is
already cumbersome in our simplified case, and would become too heavy in a more
general one. ]

From now on we shall often write U and V instead of (u, \,%) and (v, &, ).
The bilinear form A(U,V) that we want to add to A;(U,V) is the Fréchet
derivative of the functional

1 3
JOV) = W2IVE =53 {382 | A [+

ko w(k)

(3.4)
2 2
+ 3 (o (| =00 fomly [y +ho |05 =0 )}
(k)
(i.e., A2 (U, V) is the bilinear symmetric form associated with (3.4)). Note that (3.4)
also defines the seminorm | - |2,5. The norm || - ||2., can now be defined in a natural
way as

IVIE, = VIS {00 [ Ak [+

k w
") (3.5)

+ 3 (o 16 oy + o (|00 1008 [y + B 10 3a0)) -
(k)

The space V,(h) will be defined accordingly (i.e., as the set of the V’s in V; such
that (3.5) is finite). Note that (1.13)-(1.14) are trivial, while (1.9)-(1.10) can be
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proved (with arguments very similar to those in [9] and [3], for instance) by means of
local inverse inequalities for piecewise polynomials. Note also that, if U; is the exact
solution of (2.13), we easily have

2 (UL V) = D3 h2(f, Avk) o (3.6)

k w(k)

which is easily computable.
We can now write problem (1.18), in the present application, in its expanded
form:

find (’LLh, )\h, Q/Jh) € YT x My x &, such that

Z{ak(uhavh) < AR UF >k +Zh3(AU§aAUﬁ)L2(w)+ (3.7)
k w(k)

- Zho[o‘lli - 8“’2/3"@:8”2/3"@)1;2(0) + (Ulfi - ¢h,U§)H1(a)]} =
o (k)
—ZZ f)Uh—'_Avh L2 ) vvhe’rh

k w(k)
Z{< ph uf = n >e + Y ho(M — Ouf /onk, 1) r2(o)} = 0 Viun € My, (3.8)
o(k)
Z < Ah on >k +Zha(ulg —Yn,en)H1(e) ¢ =0 Vo € ®p. (3.9)
k o(k)

Problem (3.7) — (3.9) has clearly a unique solution. We point out explicitly that the
regularized formulation (3.7) — (3.9) is still well suited for parallel implementation.
Indeed, for vy, and f given, the resolution of (3.7) — (3.8) amounts to the resolution
of N independent problems, each of them being a Dirichlet problem with Lagrange
multipliers treated with a variant of [3]. For studying the convergence of (3.7) — (3.9)
we have to introduce a | - |, , norm. An easy computation shows that, by setting

VEL=llviE+>.> ! (|| o ||§2(0)+ lelia@ + || 1 ||3H1(0)),)(3.10)
k o(k)

(where (H! (a))l is the dual space of H!(o) ), properties (1.21) and (1.22) hold for
any reasonable choice of 7w, : Vi — V. Hence, we only need to choose mj, in such
a way that (1.23), (1.24) hold and both ||Uy — wpUi ||y, and |Ur — ms |, , provide
estimates of optimal order. This can be done very easily in many ways. Let us see,
for instance, what can then be deduced from, say, Theorem 1.2 as an estimate for the
error. To fix the ideas, assume that we approximate u, A, ¢ with piecewise polynomials
of degree r, s,t respectively. Clearly r > 1, s > 0, ¢ > 1. If the solution (u, A, ¥) is
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smooth enough we have the following estimate

= sy + 30 (et =l g + 1A = M [ igryy ) < 3:1D)
k

S 62{ Z hz’r || uk ||i{7’+1(w) + Z (h§s+3 ” >‘k ||i[5+1(0—) +
k

w(k) o(k)

B2 o)) }

with 0 constant independent of h.
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