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Abstract In the present paper we construct Virtual Element Spaces that are
H(div)-conforming and H(curl)-conforming on general polygonal and polyhe-
dral elements; these spaces can be interpreted as a generalization of well known
Finite Elements. We moreover present the basic tools needed to make use of
these spaces in the approximation of partial differential equations. Finally, we
discuss the construction of exact sequences of VEM spaces.

1 Introduction

The Virtual Element Methods (in short, VEM) were initially introduced in
[10], as a variant of classical Lagrange Finite Element Methods to accommo-
date the use of polygonal and polyhedral elements. Needless to say, they could
be seen as an evolution of nodal Mimetic Finite Differences (see [23, 14]) as well
as a variant of other Galerkin methods for polygonal and polyhedral elements
(see e.g. [4, 7, 8, 9, 18, 21, 30, 31, 33, 34, 35, 36, 40, 42, 44, 45, 46, 47, 48, 49] and
the references therein). Even more recently, in [24] we started the extension
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to polygonal elements of Raviart-Thomas or BDM elements for mixed formu-
lations (see e.g. [20] and the references therein). These, in a sense, constitute
the most natural and direct evolution of the original “flux based” Mimetic
Finite Differences, as for instance in [39]. See also, for the more mathematical
aspects, [25, 28, 27], as well as [16, 37, 13], the review papers [19, 32, 41],
and the book [15]. In addition to [10], see for instance [29, 11, 1, 17, 24] and
references therein for applications of the Virtual Element Method to various
types of problems.

On the other hand, to deal with a sufficiently wide range of mixed formula-
tions (see again [20] and the references therein), one needs to use a big variety
of H(div) and H(curl)-conforming spaces (to be used together with the more
classical H1-conforming and L2-conforming ones). See for instance [43] or [3].
See also the recent overview on Finite Element spaces presented in [2].

The purpose of this paper is to indicate a possible strategy to construct the
extensions of all these types of spaces to more general elemental geometries,
and typically to polygonal and polyhedral elements. The use of curved edges
or curved faces (that so far, in this context, was tackled only in [26]) will be
the object of future research.

As a general matter, the (vector valued) functions to be used, in each
element, in the Virtual Element Methods are not polynomials (although they
contain suitable polynomial spaces within each element), and are presented as
solutions of (systems of) partial differential equations. However “the name of
the game”, in the VEM context, is to avoid solving these PDE systems, even in
a roughly approximate way. Hence, in order to be able to construct, element by
element, the necessary local matrices, we have to be able to construct suitable
projectors from the local VEM spaces to some polynomial spaces (whose degree
will determine the final accuracy of the method).

In presenting our H(div)-conforming and H(curl)-conforming spaces we
will therefore take care to show how, for them, one can construct suitable L2-
projection operators on the corresponding polynomial spaces. This of course
will not always solve all the problems, but (as pointed out for instance in [1]
for some particular cases) will surely be a precious instrument.

As the range of possible variants (required by different applications) is
overwhelming, we decided to limit ourselves, here, to the presentation of a
few typical cases (that in our opinion could be sufficient to give the general
idea), leaving to the very last (and short) section the task to give hints on
some of the possible variants. In the same spirit, we decided not to present
direct applications. We believe that, for the readers with some experience in
the approximation of mixed formulations, the general ideas outlined in this
paper should be enough to understand the possible use of our spaces for most
of the applications discussed in [20]. Clearly, a lot of additional work, and a
lot of numerical experiments, will be needed for the tune-up of these methods
in each particular type of application. To have an idea on the implementation
of Virtual Element Methods we refer to the guidelines given in [12] for nodal
virtual elements.
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Here is an outline of the paper: in the next section we will introduce a suit-
able notation and recall a few classical results of Calculus in several variables.
Then we will present, each in a separate section, the H(div)-conforming and
the H(curl)-conforming spaces for polygonal elements, and the corresponding
ones for polyhedral elements. Next, we will briefly recall the H1-conforming
and L2-conforming spaces (as introduced for instance in [10]) and discuss the
possibility of having exact sequences of VEM spaces, in the spirit of [3].

In the last section, as announced already, we will give a short hint of the
huge range of possible variants.

2 Notation, Assumptions, and Known Results

In the present section we introduce some preliminaries.

2.1 Basic notation on mesh and operators

In what follows, we will detail the spaces and their degrees of freedom mainly
at the element level. One of the best features of Virtual Element Methods
is the possibility to use elements having a very general geometry, and actually,
in order to give the definition of the space we could use, in 2D, arbitrary
simply connected polygons, and in 3D arbitrary simply connected polyhedra
with simply connected faces. In order to have optimal interpolation errors, as
well as suitable stability properties in the applications to different problems, we
would however need some additional assumptions (see, for instance, [10]). For
every geometrical object O that we are going to use in what follows (segment,
polygon, polyhedron) and for a generic space of functions F(O) defined on
O, we denote by F(O)/R (or simply by F/R when the context is clear) the
subset of functions having zero mean value on O.

In two dimensions E denotes a polygon, and `Ee (or simply `e) the
number of edges. Moreover,

– For a polygon E, nE or simply n will be the outward normal unit vector,
and tE , or simply t, will be the tangent counterclockwise unit vector.

– For a scalar field q and a vector field v = (v1, v2), we will set (with a usual
notation)

rot q :=
(∂q
∂y
,− ∂q

∂x

)
rotv :=

∂v2
∂x
− ∂v1

∂y

In three dimensions P denotes a polyhedron having `Pe (or simply `e)
edges, and `f faces. Moreover,

– For a face f of a polyhedron P , the tangential differential operators will
be denoted by a subscript 2, as in: div2, rot2, rot2, grad2, ∆2, and so on.

– When dealing with a single polyhedron, we will always assume that all
its faces are oriented with the outward normal, while, when necessary, we
will have to choose an orientation for every edge. Obviously when dealing
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with a decomposition in several polyhedra we will also have to decide an
orientation for every face.

– On a polyhedron P , on each face f we will have to distinguish between the
unit outward normal to the plane of the face (that we denote by nfP ), and
the unit vector in the plane of the face that is normal to the boundary ∂f
(that will be denoted, on each edge e, by nef ). On each face, tf or simply
t will again be the unit counterclockwise tangent vector on ∂f .

– For a (smooth enough) three dimensional vector-valued function ϕ on P ,

and for a face f with normal nfP , we define the tangential component of ϕ
as

ϕf := ϕ− (ϕ · nfP )nfP , (2.1)

while ϕt denotes the vector field defined on ∂P such that, on each face
f ∈ ∂P , its restriction to the face f satisfies:

ϕt|f = ϕf . (2.2)

– Note that ϕf as defined in (2.1) is different from

ϕ ∧ nfP ; (2.3)

indeed, for instance, if nfP = (0, 0, 1) and ϕ = (φ1, φ2, φ3), then

ϕf = (φ1, φ2, 0) ϕ ∧ nfP = (φ2,−φ1, 0).

– With an abuse of language, sometimes we will treat both ϕf and ϕ ∧ nfP
as 2D vectors in the plane of the face. In the previous case, then, we would
often take ϕf = (φ1, φ2) and ϕ ∧ nfP = (φ2,−φ1).

2.2 Polynomial spaces and exact sequences

We will now recall some basic properties of Calculus of several variables, ap-
plied in particular to polynomial spaces. For a generic non negative number
k and for a generic geometrical object O in 1,2, or 3 dimensions Pk(O) de-
notes the space of by polynomials of degree ≤ k on O, with the additional
(common) convention that P−1(O) = {0}. Moreover, with a common abuse of
language, we will often say “polynomial of degree k” meaning actually “poly-
nomial of degree ≤ k”. Often the geometrical object O will be omitted when
no confusion arises.

In all the following diagrams (2.4), (2.5), and (2.6), as well as in those at
the end, i.e. (8.1), (8.2), and (8.10) we will denote by i the mapping that to
every real number c associates the constant function identically equal to c,
and by o the mapping that to every function associates the number 0. Then
we recall that, in 2 and in 3 dimensions, we have the exactness of the following
sequences. In 2 dimensions

R
i
−−→ Pr

grad
−−−−→ (Pr−1)2

rot
−−→ Pr−2

o
−−→ 0 (2.4)



H(div) and H(curl)-conforming Virtual Element Methods 5

or, equivalently,

R
i
−−→ Pr

rot
−−−→ (Pr−1)2

div
−−→ Pr−2

o
−−→ 0 (2.5)

are exact sequences. In three dimensions we have that

R
i
−−→ Pr

grad
−−−−→ (Pr−1)3

curl
−−−→ (Pr−2)3

div
−−→ Pr−3

o
−−→ 0 (2.6)

is also an exact sequence. We recall that the exactness means that the image of
every operator coincides with the kernel of the following one. To better explain
the consequences of these statements we introduce an additional notation. For
s integer ≥ 1, in two dimensions we denote by

Gs−1 the set grad(Ps), Rs−1 the set rot(Ps), (2.7)

and in three dimensions

Gs−1 the set grad(Ps), Rs−1 the set curl
(

(Ps)3
)
. (2.8)

When considering polynomials on a domain O (not too irregular) we might
use the L2(O) or (in d dimensions) the (L2(O))d inner product, and introduce

G⊥s := orthogonal of Gs in (Ps)d, R⊥s := orthogonal of Rs in (Ps)d. (2.9)

Obviously, (Ps)d = Gs ⊕ G⊥s = Rs ⊕R⊥s . In a similar way, the space Ps could
be seen as decomposed in the subspace of constants (the image of i : R −→ Ps)
and the polynomials in Ps having zero mean value on O (and hence orthogonal
to the constants), that is (Ps(O))/R.

We recall now some of the properties following from the exactness of the
above sequences. The exactness of the sequence (2.4) implies in particular that
for all integer s:

i) grad is an isomorphism from (Ps)/R to Gs−1,
ii) {v ∈ (Ps)2} ⇒ {rotv = 0 iff v ∈ Gs},
iii) rot is an isomorphism from G⊥s to the whole Ps−1,

(2.10)

and equivalently (2.5) implies that

i) rot is an isomorphism from (Ps)/R to Rs−1,
ii){v ∈ (Ps)2} ⇒ {div v = 0 iff v ∈ Rs},
iii) div is an isomorphism from R⊥s to the whole Ps−1.

(2.11)

Finally, the exactness of the sequence (2.6) implies in particular that, for all
integer s:

i) {v ∈ (Ps)3} ⇒ {curlv = 0 iff v ∈ Gs},
ii){v ∈ (Ps)3} ⇒ {div v = 0 iff v ∈ Rs},
iii) grad is an isomorphism from (Ps)/R to Gs−1,
iv) curl is an isomorphism from G⊥s to Rs−1,
v) div is an isomorphism from R⊥s to the whole Ps−1.

(2.12)
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Remark 1 Properties [2.10;ii)], [2.11;ii)], and [2.12;i) and ii)] are just partic-
ular cases of well known results in Calculus. Indeed, on a simply connected
domain, we know that a (smooth enough) vector field v having rotv = 0 (in
2 dimensions) or curlv = 0 (in 3 dimensions) is necessarily a gradient, and
a (smooth enough) vector v field having div v = 0 is necessarily a rot (in 2
dimensions) or a curl (in 3 dimensions).

To all these spaces we can attach their dimensions. To start with, we denote
by πk,d the dimension of the space Pk(Rd), that is,

πk,1 = k + 1; πk,2 =
(k + 1)(k + 2)

2
; πk,3 =

(k + 1)(k + 2)(k + 3)

6
. (2.13)

The dimension of vector-valued polynomials (Pk)d is then

dim{(Pk)d} = dπk,d. (2.14)

We denote by γk,d the dimension of Gk ⊆ (Pk)d defined in (2.7)-(2.8):

dim{Gk} in d dimensions ≡ γk,d = πk+1,d − 1. (2.15)

Clearly, γk,2 also equals the dimension ρk,2 of rot(Pk+1) (that is, Rk):

dim{Rk} in 2 dimensions = ρk,2 = γk,2 = πk+1,2 − 1. (2.16)

We also have (obviously), in d dimensions,

dim{G⊥k } in d dimensions = dπk,d − γk,d = dπk,d − πk+1,d + 1. (2.17)

In 2 dimensions, looking at [2.10;iii)] and at [2.11;iii)] we see that the dimension
of G⊥k as well as that of R⊥k equal that of Pk−1, that is

dim{G⊥k } = dim{R⊥k } = πk−1,2 in two dimensions. (2.18)

On the other hand, for d = 3, we can use [2.12;iv)] and see that the dimension
ρk−1,3 of Rk−1 = curl((Pk)3) is given by

ρk−1,3 = dim{Rk−1} = dim{G⊥k } = 3πk,3 − πk+1,3 + 1, (2.19)

while, following [2.12;v], we have

dim{R⊥k } = πk−1,3 in three dimensions. (2.20)

We summarize all the above results on the dimensions of polynomial spaces in
the following equations. In two dimensions:

dim{Gk} = dim{Rk} = πk+1,2−1 dim{R⊥k } = dim{G⊥k } = πk−1,2 (2.21)

and in three dimensions:

dim{Gk} = πk+1,3 − 1, dim{G⊥k } = 3πk,3 − πk+1,3 + 1

dim{Rk} = 3πk+1,3 − πk+2,3 + 1 dim{R⊥k } = πk−1,3. (2.22)
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2.3 Spaces Hdiv, Hrot, Hcurl

As announced, the definition of our local Virtual Element spaces will be done
as the solution, within each element, of a suitable div-curl system. In view of
that, it will be convenient to recall the compatibility conditions (between the
data inside the element and the ones at the boundary) that are required in
order to have a solution. To start with, for a polygon E we define

H(div;E) := {v ∈ (L2(E))2 such that div v ∈ L2(E)}, (2.23)

H(rot;E) := {v ∈ (L2(E))2 such that rotv ∈ L2(E)}, (2.24)

and for a polyhedron P

H(div;P ) := {v ∈ (L2(P ))3 such that div v ∈ L2(P )}, (2.25)

H(curl;P ) := {v ∈ (L2(P ))3 such that curlv ∈ (L2(P ))3}. (2.26)

We now assume that we are given, on a simply connected polygon E, two
smooth functions fd and fr, and, on the boundary ∂E, two edge-wise smooth
functions gn and gt. We recall that the problem: find v ∈ H(div;E)∩H(rot;E)
such that:

div v = fd and rotv = fr in E and v · n = gn on ∂E (2.27)

has a unique solution if and only if∫
E

div v dE =

∫
∂E

gn ds. (2.28)

Similarly the problem: find v ∈ H(div;E) ∩H(rot;E) such that:

div v = fd and rotv = fr in E and v · t = gt on ∂E (2.29)

has a unique solution if and only if∫
E

rotv dE =

∫
∂E

gt ds. (2.30)

In three dimensions, on a simply connected polyhedron P we assume that we
are given a smooth scalar function fd and a smooth vector valued function fr
with div fr = 0. On the boundary ∂P we assume that we are given a face-
wise smooth scalar function gn and a face-wise smooth tangent vector field gt
whose tangential components are continuous (with a natural meaning) at the
edges of ∂P . Then we recall that the problem: find v ∈ H(div;P )∩H(curl;P )
such that:

div v = fd and curlv = fr in P and v · n = gn on ∂P (2.31)

has a unique solution if and only if∫
P

div v dP =

∫
∂P

gn ds, (2.32)
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and similarly the problem: find v ∈ H(div;P ) ∩H(curl;P ) such that:

div v = fd and curlv = fr in P and vt = gt on ∂P (2.33)

has a unique solution if and only if

fr · n = rot2 gt on ∂P. (2.34)

For more details concerning the solutions of the div-curl system we refer, for
instance, to [5], [6] and the references therein.

Finally, in order to clarify what we consider as feasible (in a code), we
recall that we assume to be able to integrate any polynomial on any polygon
or polyhedron, for instance through formulae of the type∫

E

xk1 =
1

k + 1

∫
∂E

xk+1
1 n1 ds. (2.35)

Remark 2 The virtual spaces presented in this work will be indexed by an
integer number k, to underline that, in all cases, the scalar or vector-valued
polynomial space Pk is contained in the local virtual space, and k will be the
expected order of accuracy.

3 2D Face Elements

These spaces are the same of Brezzi-Falk-Marini [24], although here we propose
a different set of degrees of freedom.

3.1 The local space

On a polygon E, for k integer ≥ 1, we set:

V face
2,k (E) := {v ∈ H(div;E) ∩H(rot;E) : v · n|e ∈ Pk(e) ∀ edge e of E,

grad div v ∈ Gk−2(E), and rotv ∈ Pk−1(E)}. (3.1)

3.2 Dimension of the space V face
2,k (E)

We recall from Subsection 2.3 that, given

– a function g defined on ∂E such that g|e ∈ Pk(e) for all e ∈ ∂E,
– a polynomial fd ∈ Pk−1(E) such that∫

E

fd dE =

∫
∂E

g ds, (3.2)

– a polynomial fr ∈ Pk−1(E) ,
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we can find a unique vector v ∈ V face
2,k (E) such that

v · n = g on ∂E, div v = fd in E, rotv = fr in E. (3.3)

This easily implies that the dimension of V face
2,k (E) is given by:

dimV face
2,k (E) = `e dimPk(e) + {dimPk−1(E)− 1}+ dimPk−1(E)

= `eπk,1 + πk−1,2 − 1 + πk−1,2 (3.4)

3.3 The local Degrees of Freedom

A convenient set of degrees of freedom for functions v in V face
2,k (E) will be:

∫
e
v · n p k de for all edge e, for all pk ∈ Pk(e), (3.5)∫

E
v · gk−2 dE for all gk−2 ∈ Gk−2, (3.6)∫
E
v · g⊥k dE for all g⊥k ∈ G⊥k . (3.7)

A depiction of the degrees of freedom above, for the cases k = 1, 2, 3, can be
found in Figure 1. Here and in the rest of the paper we adopt a common abuse
of notation, calling “degrees of freedom” (3.5)–(3.7). To be more precise, in
order to get true d.o.f. out of (3.5)–(3.7) one should first choose a basis in
the involved polynomial spaces. Remembering (2.21) we easily see that the
number of degrees of freedom in (3.5)–(3.7) equals the dimension of V face

2,k (E)
as given in (3.4).

k = 1 k = 2 k = 3

Fig. 1 Representation of the degrees of freedom for 2D face elements, k = 1, 2, 3. The
arrows represent (3.5), while the circles and squares stand for (3.6) and (3.7), respectively.
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3.4 Unisolvence

Since the number of degrees of freedom (3.5)-(3.7) equals the dimension of
V face
2,k (E), to prove unisolvence we just need to show that if for a given v in

V face
2,k (E) all the degrees of freedom (3.5)-(3.7) are zero, that is if∫

e
v · n p k de = 0 for all edge e, for all pk ∈ Pk(e), (3.8)∫

E
v · gk−2 dE = 0 for all gk−2 ∈ Gk−2, (3.9)∫
E
v · g⊥k dE = 0 for all g⊥k ∈ G⊥k , (3.10)

then we must have v = 0. For this we introduce a couple of preliminary
observations.

Lemma 1 If v ∈ V face
2,k (E) and if (3.8) and (3.9) hold, then∫
E

v · gradϕdE = 0 ∀ϕ ∈ H1(E). (3.11)

Proof Using the fact that div v ∈ Pk−1 and setting qk−1 := div v we have∫
E

|div v|2 dE =

∫
E

div v qk−1 dE

=

∫
∂E

v · nqk−1 ds−
∫
E

v · grad qk−1 dE = 0, (3.12)

where the last step follows from (3.8) and (3.9). Hence we have that div v = 0
and since (using again (3.8)) v ·n = 0 on ∂E, the result (3.11) follows by using
a simple integration by parts.

Lemma 2 If v ∈ V face
2,k (E) then there exist a q⊥k in G⊥k and a ϕ ∈ H1(E)

such that
v = q⊥k + gradϕ. (3.13)

Proof We first note that according to (3.1) if v ∈ V face
2,k (E) then rotv ∈ Pk−1.

Looking at [2.10;iii)] we have then that rotv = rot q⊥k for some q⊥k ∈ G⊥k . Now
the difference v − q⊥k satisfies rot(v − q⊥k ) = 0, and as E is simply connected
the result follows from Remark 1.

We can now easily prove the following theorem.

Theorem 1 The degrees of freedom (3.5)-(3.7) are unisolvent in V face
2,k (E).

Proof Assume that for a certain v ∈ V face
2,k (E) we have (3.8)-(3.10). From

Lemma 2 we have v = q⊥k + gradϕ for some q ∈ G⊥k and some ϕ ∈ H1(E).
Then ∫

E

|v|2 dE =

∫
E

v · (q⊥k + gradϕ) dE = 0 (3.14)

since the first term is zero by (3.10) and the second term is zero by (3.8)-(3.9)
and Lemma 1.
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Remark 3 The degrees of freedom (3.5) are pretty obvious. A natural variant
would be to use, on each edge e, the value of v ·n at k + 1 suitable points on
e. On the other hand, for the degrees of freedom (3.6) we could integrate by
parts, and replace them with∫

E

div v qk−1 dE for all qk−1 ∈ Pk−1/R. (3.15)

Moreover, the degrees of freedom (3.7) could be replaced by∫
E

rotv qk−1 dE for all qk−1 ∈ Pk−1 (3.16)

as we had in the original work [24]. Finally, in (3.7) G⊥k could be replaced by
any subspace G⊕k of (Pk)d such that (Pk)d = Gk ⊕ G⊕k .

3.5 Computing the L2 projection

Since the VEM spaces contain functions which are not polynomials, and their
reconstruction can be too hard, for the practical use of a virtual element
method it is often important to be able to compute different types of projec-
tions onto spaces of polynomials. Here we show how to construct the one that
is possibly the most convenient, and surely the most commonly used: the L2

projection onto (Pk(E))2.
For this, we begin by recalling that to assign grad div v ∈ Gk−2(E) (as we

do with our degrees of freedom (3.6) for v ∈ V face
2,k (E)), is equivalent to assign

div v ∈ Pk−1(E) up to an additive constant. This constant will be assigned
by the integral of v · n over ∂E, that can be deduced from the degrees of
freedom (3.5). Indeed, using the same integration by parts applied in (3.12),
the degrees of freedom (3.5) and (3.6) allow us to compute

∫
E

div v qk−1 dE
for all qk−1 ∈ Pk−1(E), and since div v ∈ Pk−1(E), we can compute exactly
the divergence of any v ∈ V face

2,k (E). In turn this implies, again by using an
integration by parts and (3.5), that we are able to compute also∫

E

v · gk dE ∀gk ∈ Gk,

and actually ∫
E

v · gradϕdE ∀ϕ polynomial on E.

The above property, combined with (3.7), allows to compute the integrals
against any qk ∈ (Pk(E))2 and thus yields the following important result.

Theorem 2 The L2(E) projection operator

Π0
k : V face

2,k (E) −→ (Pk(E))2

is computable using the degrees of freedom (3.5)–(3.7).

Remark 4 We point out that, for instance, the (L2(E))2 projection would be
much more difficult to compute if we used the original degrees of freedom of
[24] discussed in Remark 3.
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3.6 The global 2D-face space

Given a polygon Ω and a decomposition Th of Ω into a finite number of
polygonal elements E, we can now consider the global space

V face
2,k (Ω) := {v ∈ H(div;Ω) s. t. v|E ∈ V face

2,k (E) ∀ element E ∈ Th}. (3.17)

Note that in (3.17) we assumed that the elements v of V face
2,k (Ω) have a diver-

gence that is globally (and not just element-wise) in L2(Ω). Hence the normal
component of vectors v ∈ V face

2,k (Ω) will have to be “continuous” (with obvi-
ous meaning) at the inter-element edges. From the local degrees of freedom
(3.5)-(3.7) we deduce the global degrees of freedom:∫

e
v · n p k de for all edge e, for all pk ∈ Pk(e), (3.18)∫

E
v · gk−2 dE for all element E, for all gk−2 ∈ Gk−2(E), (3.19)∫
E
v · g⊥k dE for all element E, for all g⊥k ∈ G⊥k (E). (3.20)

From the above discussion it follows immediately that the degrees of freedom
(3.18)-(3.20) are unisolvent, and that the dimension of V face

2,k (Ω) is given by

dim(V face
2,k (Ω)) = πk,1 × {number of edges in Th}+

(2πk−1,2 − 1)× {number of elements in Th}.

4 2D Edge Elements

The edge elements in 2D exactly correspond to the face elements, just rotating
everything by π/2. For the sake of completeness we just recall the definition
of the spaces and the corresponding degrees of freedom.

4.1 The local space

On a polygon E we set

V edge
2,k (E) := {v ∈ H(div;E) ∩H(rot;E) : v · t|e ∈ Pk(e)∀ edge e of E,

rot rotv ∈ Pk−2(E), and div v ∈ Pk−1(E)}. (4.1)

4.2 The local Degrees of Freedom

A convenient set of degrees of freedom for elements v in V edge
2,k (E) will be:∫

e
v · t pk de for all edge e, for all pk ∈ Pk(e), (4.2)∫

E
v · rk−2 dE for all rk−2 ∈ Rk−2, (4.3)∫
E
v · r⊥k dE for all r⊥k ∈ R⊥k . (4.4)
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Remark 5 Here too we could use alternative degrees of freedom, in analogy
with the ones discussed in Remarks 3. In particular we point out that we
can identify uniquely an element v of V edge

2,k (E) by prescribing its tangential
component v · t (in Pk(e)) on every edge, its rotation rotv (in (Pk−1(E))/R),
and its divergence div v (in Pk−1(E)).

Remark 6 Obviously, here too we can define the L2−projection onto Pk, ex-
actly as we did in subsection 3.5, with R⊥k taking the role of G⊥k .

4.3 The global 2D-edge space

Given a polygon Ω and a decomposition Th of Ω into a finite number of
polygonal elements E, we can now consider the global space

V edge
2,k (Ω) := {v ∈ H(rot;Ω) s. t. v|E ∈ V edge

2,k (E) ∀ element E ∈ Th}. (4.5)

Note that the tangential component of vectors v ∈ V edge
2,k (Ω) will have to

be “continuous” (with obvious meaning) at the inter-element edges. Mimicking

what we did for the 2D-face elements, the degrees of freedom for v ∈ V edge
2,k (Ω)

are the obvious extension of the local d.o.f. (4.2)-(4.4), and the dimension of

V edge
2,k (Ω) is

dim(V edge
2,k (Ω)) = πk,1 × {number of edges in Th}+

(2πk−1,2 − 1)× {number of elements in Th}.

5 3D Face Elements

The three-dimensional H(div)-conforming spaces follow in a very natural way
the path of their two-dimensional companions.

5.1 The local space

On a polyhedron P we set

V face
3,k (P ) := {v ∈ H(div;P ) ∩H(curl;P ) s. t. v · nfP ∈ Pk(f)∀ face f of P,

grad div v ∈ Gk−2(P ), curlv ∈ Rk−1(P )}. (5.1)

The dimension of V face
3,k (P ) is given by:

dim(V face
3,k (P )) = `fπk,2 + γk−2,3 + ρk−1,3. (5.2)
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5.2 The local Degrees of Freedom

The degrees of freedom will be:

∫
f
v · nfP pk df for all face f , for all pk ∈ Pk(f), (5.3)∫

P
v · gk−2 dP for all gk−2 ∈ Gk−2, (5.4)∫
P
v · g⊥k dP for all g⊥k ∈ G⊥k . (5.5)

A depiction of the degrees of freedom for the case k = 1 can be found in Figure
2. It is not difficult to check, using (2.15) and (2.19), that the number of the
above degrees of freedom is given by

`fπk,2 + dim{Gk−2}+ dim{G⊥k } = `fπk,2 + γk−2,3 + ρk−1,3, (5.6)

which equals the dimension of V face
3,k (P ) as given in (5.2).

The proof that the above operators are degrees of freedom for the space
V face
3,k (P ) follows the same steps as in the two dimensional case and is therefore

omitted.

Remark 7 We note that also in the three dimensional case there are alternative
choices of degrees of freedom, similarly as in Remark 3.

Remark 8 Obviously, here too we can compute the L2−projection onto Pk,
exactly as we did in subsection 3.5.

Sample element Face degrees of freedom

(5.3)

Internal degrees of freedom

(5.5)

Fig. 2 Representation of the degrees of freedom for 3D face elements, case k = 1. Note that
the set (5.4) is empty in this case.
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5.3 The global 3D-face space

Having now a polyhedron Ω and a decomposition Th of Ω into a finite number
of polyhedral elements P , we can consider the global space:

V face
3,k (Ω) := {v ∈ H(div;Ω) s. t. v|P ∈ V face

3,k (P ) ∀ element P ∈ Th}. (5.7)

As we did for the 2D case, we note that the normal component of the elements
of V face

3,k (Ω) will be “continuous” at the inter-element face. The degrees of

freedom for the global space V face
3,k are the obvious extension of the local ones

already described, and the dimension of V face
3,k (Ω) is

dim(V face
3,k (Ω)) = πk,2 × {number of faces in Th}+

(πk−1,3 − 1 + ρk−1,3)× {number of elements in Th}.

6 3D Edge Elements

This time we cannot just rotate the 3D-face case. However we can get some
inspiration. We recall, from the very beginning, the Green formula:∫

P

curlψ ·ϕ dP =

∫
P

ψ · curlϕ dP +

∫
∂P

ψ · (ϕ ∧ n) dS, (6.1)

as well as∫
P

curlψ·curlϕdP =

∫
P

ψ·
[
−∆ϕ+grad divϕ

]
dP+

∫
∂P

ψ·(curlϕ∧n) dS.

(6.2)
We also recall the observation that we made in Section 2 concerning the dif-
ference between ϕ ∧ nf and ϕf . We introduce moreover the following space.

Definition 1 We define the boundary space B(∂P ) as the space of v in
(L2(∂P ))3 such that vf ∈ H(div; f) ∩ H(rot; f) on each face f ∈ ∂P , and
such that on each edge e (common to the faces f1 and f2), vf1 · te and vf2 · te
(where te is a unit tangential vector to e ) coincide . Then we define Bt(∂P )
as the space of the tangential components of the elements of B(∂P ).

Definition 2 We now define the boundary VEM space Bedge
k (∂P ) as

Bedge
k (∂P ) :=

{
v ∈ Bt(∂P ) such that vf ∈ V edge

2,k (f) on each face f ∈ ∂P
}
.

Recalling the previous discussion on the two-dimensional virtual elements
V edge
2,k (f), we can easily see that for a polyhedron with `e edges and `f faces

the dimension βk of Bedge
k (∂P ) is given by

βk = `eπk,1 + `f (2πk−1,2 − 1). (6.3)
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6.1 The local space

On a polyhedron P we set

V edge
3,k (P ) := {v| vt ∈ Bedge

k (∂P ),

div v ∈ Pk−1(P ), and curl curlv ∈ Rk−2(P )}. (6.4)

6.2 Dimension of the space V edge
3,k (P )

We start by observing that, given a vector g in Bedge
k (∂P ), a function fd in

Pk−1, and a vector fr ∈ Rk−2(P ) we can find a unique v in V edge
3,k (P ) such

that

vt = g on ∂P , div v = fd in P , and curl curlv = fr in P . (6.5)

To prove it we consider the following auxiliary problems. The first is: find
H in H(div;P ) ∩H(curl;P ) such that

curlH = fr in P , divH = 0 in P , and H · n = rot2 g on ∂P , (6.6)

that is uniquely solvable since∫
∂P

rot2 g dS = 0. (6.7)

The second is: find ψ in H(div;P ) ∩H(curl;P ) such that

curlψ = H in P , divψ = 0 in P , and ψt = g on ∂P , (6.8)

that is also uniquely solvable since

H · n = rot2 g. (6.9)

The third problem is: find ϕ ∈ H1
0 (P ) such that:

∆ϕ = fd in P , (6.10)

that also has a unique solution. Then it is not difficult to see that the choice

v := ψ + gradϕ (6.11)

solves our problem. Indeed, it is clear that (gradϕ)t = 0, that div(gradϕ) =
fd and that curl curl(gradϕ) = 0; all these, added to (6.6) and (6.8), produce
the right conditions. It is also clear that the solution v of (6.5) is unique.

Hence we can conclude that the dimension of V edge
3,k (P ) is given by

dim(V edge
3,k (P )) = βk + πk−1,3 + ρk−2,3. (6.12)



H(div) and H(curl)-conforming Virtual Element Methods 17

6.3 The local Degrees of Freedom.

A possible set of degrees of freedom will be:

– for every edge e:
∫
e

v · t pk de for all pk ∈ Pk(e), (6.13)

– for every face f : ∫
f
v · r⊥k df for all r⊥k ∈ R⊥k (f), (6.14)∫

f
v · rk−2 df for all rk−2 ∈ Rk−2(f), (6.15)

– and inside P ∫
P
v · r⊥k dP for all r⊥k ∈ R⊥k , (6.16)∫

P
v · rk−2 dP for all rk−2 ∈ Rk−2. (6.17)

A depiction of the degrees of freedom for the case k = 1 can be found in
Figure 3. The total number of degrees of freedom (6.13)-(6.15) is clearly equal
to βk as given in (6.3), and the number of degrees of freedom (6.17) is equal to
ρk−2,3. On the other hand, using [2.12;v)] we see that the number of degrees
of freedom (6.16) is equal to πk−1,3, so that the total number of degrees of

freedom (6.13)-(6.17) equals the dimension of V edge
3,k (P ) as computed in (6.12).

Sample element Face degrees of freedom

(6.13) (6.14)

Internal degrees of freedom

(6.16)

Fig. 3 Representation of the degrees of freedom for 3D edge elements, case k = 1. Note
that the sets (6.15), (6.17) are empty in this case.

6.4 Unisolvence.

Having seen that the number of degrees of freedom (6.13)-(6.17) equals the

dimension of V edge
3,k (P ), in order to see their unisolvence we only need to check
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that a vector v ∈ V edge
3,k (P ) that satisfies∫

e
v · t pk de = 0 ∀ edge e of P and ∀ pk ∈ Pk(e), (6.18)∫
f
v · r⊥k df = 0 ∀ face f of P and ∀ r⊥k ∈ R⊥k (f), (6.19)∫

f
v · rk−2 df = 0 ∀ face f of P and ∀ rk−2 ∈ Rk−2(f), (6.20)∫
P
v · r⊥k dP = 0 ∀ r⊥k ∈ R⊥k (P ), (6.21)∫

P
v · rk−2 dP = 0 ∀ rk−2 ∈ Rk−2(P ), (6.22)

is necessarily equal to zero.

Actually, recalling the results of Section 4, it is pretty obvious that (6.18)-
(6.20) imply that vt = 0 on ∂P . Moreover, since curl curlv ∈ Rk−2(P ),
we are allowed to take rk−2 = curl curlv as a test function in (6.22). An
integration by parts (using vt = 0) gives

0 =

∫
P

v · curl curlv dP =

∫
P

(curlv) · (curlv) dP (6.23)

and therefore we get curlv = 0. Using this, and again vt = 0, we easily check,
integrating by parts, that∫

P

v · curlϕ dP = 0 ∀ϕ ∈ H(curl;P ). (6.24)

Now we recall that from the definition (6.4) of V edge
3,k (P ) we have that div v

is in Pk−1. From [(2.12);v] we then deduce that there exists a q⊥k ∈ R⊥k with
div q⊥k = div v, so that the divergence of v − q⊥k is zero, and then (since P is
simply connected)

v − q⊥k = curlϕ (6.25)

for someϕ ∈ H(curl;P ). At this point we can use (6.24) and (6.25) to conclude
as in (3.14)∫
P

|v|2 dP =

∫
P

v · (q⊥k + curlϕ) dP =

∫
P

v · q⊥k dP +

∫
P

v · curlϕdP = 0.

6.5 Alternative degrees of freedom

As we did in the previous cases, we observe that the degrees of freedom (6.13)-
(6.17) are not (by far) the only possible choice. To start with, we can change
the degrees of freedom in each face, according to Remark 3. Moreover, in the
spirit of (6.5) we could assign, instead of (6.16) and/or (6.17), curl curlv in
Rk−2(P ) and/or div v in Pk−1(P ), respectively.
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6.6 The global 3D-edge space

Here too we can assume that we have a polyhedral domain Ω and its decom-
position Th in a finite number of polyhedra P . In this case we can define the
global space

V edge
3,k (Ω) := {v ∈ H(curl;Ω) s. t. v|P ∈ V edge

3,k (P )∀ element P ∈ Th}. (6.26)

Accordingly, we could take, as degrees of freedom:

– for every edge e in Th:∫
e

v · t pk de for all pk ∈ Pk(e), (6.27)

– for every face f in Th:∫
f
vf · r⊥k df for all r⊥k ∈ R⊥k (f), (6.28)∫

f
vf · rk−2 df for all rk−2 ∈ Rk−2(f) (6.29)

– and for every element P in Th∫
P
v · r⊥k dP for all r⊥k ∈ R⊥k , (6.30)∫

P
v · rk−2 dP for all rk−2 ∈ Rk−2. (6.31)

From the above discussion it follows immediately that the degrees of freedom
(6.27)-(6.31) are unisolvent, and that the dimension of V edge

3,k (Ω) is

dim(V edge
3,k (Ω)) = πk,1 × {number of edges in Th}

+ (2πk−1,2 − 1)× {number of faces in Th}
+ (πk−1,3 + ρk−1,3)× {number of elements in Th}.

6.7 An enhanced edge space

It is immediate to check that the degrees of freedom (6.16)-(6.17) allow to

compute the moments of v ∈ V edge
3,k (P ) up to order k−2. Nevertheless, in order

to be able to compute the L2(P ) projection operator on the space (Pk(P ))3 we
need to be able to compute the moments up to order k. In the present section,
in the spirit of [1], we will introduce an enhanced space W edge

3,k (P ) with the

additional property that the L2 projector on (Pk(P ))3 is computable.
We consider the larger virtual space

Ṽ edge
3,k (P ) := {v| v|∂P ∈ Bedge

k (∂P ),div v ∈ Pk−1(P ),

and curl curlv ∈ Rk(P )}. (6.32)
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Following the same identical arguments used in the previous section and in-
troducing the space

Rk/Rk−2(P ) :=
{
qk ∈ Rk :

∫
P

qk · rk−2 dP = 0 ∀rk−2 ∈ Rk−2
}
,

it is immediate to check that (6.13)-(6.17), with the addition of∫
P

v · qk dP for all qk ∈ Rk/Rk−2(P ), (6.33)

constitute a set of degrees of freedom for Ṽ edge
3,k (P ). Note moreover that V edge

3,k (P )

is a subset of Ṽ edge
3,k (P ) and that the combination of (6.16), (6.17) and (6.33)

allows, for any function in Ṽ edge
3,k (P ), to compute all the integrals against poly-

nomials in Pk(P ). Therefore the L2 projection operator

Π0
k : Ṽ edge

3,k (P )→
(
Pk(P )

)3
is computable.

For the time being we assume the existence of a projection operator

Π̃k : Ṽ edge
3,k (P )→

(
Pk(P )

)3
, (6.34)

with the fundamental property of depending only on the degrees of freedom
(6.13)-(6.17) (meaning that if v satisfies (6.18)-(6.22) then Π̃kv = 0). We now
introduce the space

W edge
3,k (P ) := {v ∈ Ṽ edge

3,k (P ) such that:∫
P

(Π̃kv) · qk dP =

∫
P

(Π0
kv) · qk dP ∀qk ∈ Rk/Rk−2(P )}. (6.35)

We then have the following lemma.

Lemma 3 The dimension of the space W edge
3,k (P ) is equal to the dimension of

the original edge space V edge
3,k (P ). Moreover, the operators (6.13)-(6.17) con-

stitute a set of degrees of freedom for W edge
3,k (P ).

Proof By definition of W edge
3,k (P ) we have

dim
(
W edge

3,k (P )
)
≥ dim

(
Ṽ edge
3,k (P )

)
−dim

(
Rk/Rk−2(P )

)
= dim

(
V edge
3,k (P )

)
.

Therefore, in order to conclude the lemma, it is sufficient to show the unisol-
vence of (6.13)-(6.17). For this, let v ∈W edge

3,k (P ) satisfying (6.18)-(6.22). Note
that, by the previously mentioned property of the (linear) projection operator
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Π̃k, we immediately have that Π̃k(v) is equal to 0. Therefore, by definition of

W edge
3,k (P ), for all qk ∈ Rk/Rk−2(P ) it holds∫

P

v · qk dP =

∫
P

(
Π0
kv
)
· qk dP =

∫
P

(
Π̃kv

)
· qk dP = 0. (6.36)

Since W edge
3,k (P ) ⊆ Ṽ edge

3,k (P ) and the set of degrees of freedom (6.13)-(6.17)

plus (6.33) is unisolvent for Ṽ edge
3,k (P ), we conclude that (6.18)-(6.22) plus

(6.36) imply v = 0.

Note that, due to the above lemma, the enhanced space W edge
3,k (P ) has the

same degrees of freedom as V edge
3,k (P ). Moreover, since the condition in (6.35) is

satisfied by polynomials of degree k, we still have (Pk(P ))3 ⊆ W edge
3,k (P ). The

advantage of the space W edge
3,k (P ) with respect to V edge

3,k (P ) is that in W edge
3,k (P )

we can compute all the moments of order up to k. Indeed, the moments∫
P

v · qk−2 dP for all qk−2 ∈ Rk−2(P ),∫
P

v · q⊥k dP for all qk ∈ R⊥k (P )

can be computed using the degrees of freedom (6.16) and (6.17), while∫
P

v · qk dP =

∫
P

(
Π0
kv
)
· qk dP =

∫
P

(
Π̃kv

)
· qk dP (6.37)

for all qk ∈ Rk/Rk−2(P ).

We are therefore left with the duty to build a projection operator Π̃k as in
(6.34). Let N denote the dimension of the space V edge

3,k (P ), i.e. the number of
degrees of freedom (6.13)-(6.17). Let us introduce the operator

D : Ṽ edge
3,k (P ) −→ RN

that associates, to any v ∈ Ṽ edge
3,k (P ), a vector with components given by the

evaluation of all the (ordered) operators (6.13)-(6.17) on v (in other words,

D associates to every element of Ṽ edge
3,k (P ) its “first N” degrees of freedom).

Note that the operator D is not injective (as the dimension of Ṽ edge
3,k (P ) is

bigger than that of V edge
3,k , that in turn is equal to N). On the other hand,

since (Pk(P ))3 ⊆ V edge
3,k (P ) and the above N operators are a set of degrees of

freedom for V edge
3,k (P ), the operator D restricted to (Pk(P ))3 is injective. Given

now any symmetric and positive definite bilinear form S defined on RN ×RN
we define the projection operator Π̃Sk as follows. For all v ∈ Ṽ edge

3,k (P ): Π̃Sk v ∈
(
Pk(P )

)3
S
(
D Π̃Sk v −Dv,Dqk

)
= 0 ∀qk ∈

(
Pk(P )

)3
.

(6.38)
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By recalling that D is injective on (Pk(P ))3, it is immediate to check that the
above operator is well defined. Moreover, by definition it depends only on the
degrees of freedom (6.13)-(6.17).

Remark 9 Our construction is pretty general. Actually it is not difficult to
prove that for every projector P onto (Pk(P ))3 depending only on the degrees
of freedom (6.13)-(6.17) we can find a bilinear symmetric positive definite form

S such that P = Π̃Sk .

Remark 10 The construction of the enhanced space W edge
3,k (P ) has basically a

theoretical interest. In practice (meaning, in writing the code) one does not
even need to know what this space is. If one needs to use the L2 projection
of the elements of V edge

3,k , one can just use the construction (6.38) (typically,

with S equal to the Euclidean scalar product in RN ) in order to define Π̃k,
and then (6.37) to get the L2 projection. For stability reasons in practical
problems, what is really important is that the degrees of freedom D scale all
in the same way (see. for instance, [10] and [12]), and that the eigenvalues of
S are uniformly bounded from above and from below.

Remark 11 The construction (6.38) could be used with any operator D that,
restricted to (Pk(P ))d, is injective. This could be used in order to eliminate
some internal degrees of freedom without loosing the inclusion of (Pk(P ))d in
the VEM-space.

7 Scalar VEM spaces

In the present section we restrict ourselves to the three dimensional case, the
two dimensional one being simpler and analogous. We denote as usual with P
a generic polyhedron.

7.1 VEM vertex elements

Let us brieflyy recall the H1-conforming scalar space introduced in [10], here
generalized to three dimensions. For computing the L2−projection in this case
we refer to [1]. Let k be, as usual, an integer ≥ 1.

Definition 3 We define Bvert
k (∂P ) as the set of functions v ∈ C0(∂P ) such

that v|e ∈ Pk(e) on each edge e ∈ ∂P , and ∆2v|f ∈ Pk−2(f) on each face
f ∈ ∂P , where ∆2 is the planar Laplace operator on f .

We introduce the family of local vertex spaces V vert
3,k (P ) ⊂ H1(P ) as

V vert
3,k (P ) := {v| v|∂P ∈ Bvert

k (∂P ) and ∆v ∈ Pk−2(P )}, (7.1)
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with the associated set of degrees of freedom:

• the pointwise value v(ν) for all vertex ν, (7.2)

•
∫
e

v pk−2 de for all edge e, for all pk−2 ∈ Pk−2(e), (7.3)

•
∫
f

v pk−2 df for all face f , for all pk−2 ∈ Pk−2(f), (7.4)

•
∫
P

v pk−2 dP for all pk−2 ∈ Pk−2(P ). (7.5)

The dimension of the space is thus given by

dim
(
V vert
3,k (P )

)
= `v + `eπk−2,1 + `fπk−2,2 + πk−2,3 . (7.6)

Remark 12 The following observation follows immediately applying the results
for the two dimensional space in [10]. Given any face f ∈ ∂P the operators
(7.4) combined with the operators (7.2)-(7.3) restricted to the vertices and
edges of ∂f , form a set of degrees of freedom for the restriction of V vert

3,k (P ) to
the face f .

As in the above section we can also consider the global spaces. Assuming that
we have a polyhedral domain Ω and a decomposition Th in a finite number of
polyhedra P , we can define the global space

V vert
3,k (Ω) := {v ∈ H1(Ω) s. t. v|P ∈ V vert

3,k (P ) for all elements P ∈ Th}, (7.7)

with the associated set of degrees of freedom:

• the pointwise value v(ν) for all vertex ν, (7.8)

•
∫
e

v pk−2 de for all edge e, for all pk−2 ∈ Pk−2(e), (7.9)

•
∫
f

v pk−2df for all face f , for all pk−2 ∈ Pk−2(f), (7.10)

•
∫
P

v pk−2 dP for all element P, for all pk−2 ∈ Pk−2(P ). (7.11)

Note that, thanks to the observation in Remark 12, the above degrees of free-
dom indeed guarantee the continuous gluing of the local spaces. In other words,
the condition V vert

3,k (Ω) ⊆ H1(Ω) is compatible with the choice of degrees of
freedom. The dimension of the global space is given by

dim
(
V vert
3,k (Ω)

)
= {number of vertices ∈ Th}+πk−2,1×{number of edges ∈ Th}

+πk−2,2×{number of faces ∈ Th}+πk−2,3×{number of elements ∈ Th}.
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7.2 VEM volume elements

We finally introduce, for all integer k ≥ 0, the family of volume spaces
V elem
3,K (P ) := Pk(P ) ⊂ L2(P ), with the associated degrees of freedom∫

P

v pk dP for all pk ∈ Pk(P ).

This is a actually a space of polynomials (like the ones used, for instance, in
Discontinuous Galerkin methods), and to deal with it does not require any
particular care. The corresponding global space will be

V elem
3,k (Ω) = {v ∈ L2(Ω) such that v|P ∈ Pk(P )∀ element P ∈ Th}. (7.12)

8 Virtual exact sequences

We show now that, for the obvious choices of the polynomial degrees, the set
of virtual spaces introduced in this paper constitutes an exact sequence. We
start with the (simpler) two-dimensional case. Let V vert

2,k (Ω) denote the same

H1 conforming space introduced in [10] and V elem
2,k (Ω) = Pk−2(Ω) the obvious

two dimensional counterpart of (7.12).

Theorem 3 Let k ≥ 2, and assume that Ω is a simply connected polygon,
decomposed in a finite number of polygons E. Then the sequences

R
i
−−→ V vert

2,k (Ω)
grad
−−−−→ V edge

2,k−1(Ω)
rot
−−→ Pk−2(Ω)

o
−−→ 0 (8.1)

and

R
i
−−→ V vert

2,k (Ω)
rot
−−−→ V edge

3,k−1(Ω)
div
−−→ Pk−2(Ω)

o
−−→ 0 (8.2)

are both exact sequences.

Proof We note first that the two sequences are practically the same, up to a
rotation of π/2. Hence we will just show the exactness of the sequence (8.1).
Essentially, the only non-trivial part will be to show that

– a.1 for every v ∈ V edge
2,k−1(Ω) with rotv = 0 there exists a ϕ ∈ V vert

2,k (Ω)
such that gradϕ = v.

– a.2 for every q ∈ V elem
2,k−2(Ω) there exists a v ∈ V edge

2,k−1(Ω) such that rotv =
q.

We start with a.1. As Ω is simply connected, we have that the condition
rotv = 0 implies that there exists a function ϕ ∈ H1(Ω) such that gradϕ = v
in Ω. On every edge e of Th such ϕ will obviously satisfy, as well:

∂ϕ

∂te
= v · te ∈ Pk−1(e). (8.3)
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Then the restriction of ϕ to each E ∈ Th verifies:

ϕ|e ∈ Pk(e) ∀e ∈ ∂E; ∆ϕ ≡ div v ∈ Pk−2(E) (8.4)

so that clearly ϕ ∈ V vert
2,k (Ω).

To deal with a.2, we first construct a ϕ in (H1(Ω))2 such that rotϕ = q
and

ϕ · t =

∫
Ω
q dx

|∂Ω|
on ∂Ω, (8.5)

where t is the unit counterclockwise tangent vector to ∂Ω and |∂Ω| is the

length of ∂Ω. Then we consider the element v ∈ V edge
2,k−1(Ω) such that

v · te := Π0
k−1(ϕ · te) ∀ edge e in Th (8.6)

and, within each element E:

rotv = rotϕ = q, div v = 0. (8.7)

Clearly such a v solves the problem.

Remark 13 The construction in the proof of a.2 could also be done if the two-
dimensional domain Ω is a closed surface, obtained as union of polygons. To
fix the ideas, assume that we deal with the boundary ∂P of a polyhedron P ,
and that we are given on every face f of P a polynomial qf of degree k− 2, in
such a way that ∑

f∈∂P

∫
f

qfdf = 0. (8.8)

Then there exists an element v ∈ Bedge
k−1 (∂P ) such that on each face f we have

rot2(v|f ) = qf . To see that this is true, we define first, for each face f , the
number

τf :=

∫
f

qfdf.

Then we fix, on each edge e, an orientation te, we orient each face f with
the outward normal, and we define, for each edge e of f , the counterclockwise
tangent unit vector tfc . Then we consider the combinatorial problem (defined
on the topological decomposition Th) of finding for each edge e a real number
σe such that for each face f ∑

e∈∂f

σete · tfc = τf . (8.9)

This could be solved using the same approach used in the above proof, applied
on a flat polygonal decomposition that is topologically equivalent to the de-
composition of ∂P without one face. The last face will fit automatically, due to
(8.8). Then we take v such that on each edge v ·t ∈ Pk−1 with

∫
e
v ·te de = σe,

and for each face, div vf = 0, rotvf = qf .
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We are now ready to consider the three-dimensional case.

Theorem 4 Let k ≥ 3, and assume that Ω is a simply connected polyhedron,
decomposed in a finite number of polyhedra P . Then the sequence

R
i
−→ V vert

3,k (Ω)
grad
−−−−→ V edge

3,k−1(Ω)
curl
−−−→ V face

3,k−2(Ω)
div
−−→ Pk−3(Ω)

o
−→ 0 (8.10)

is exact.

Proof It is pretty much obvious, looking at the definitions of the spaces, that

– a constant function is in V vert
3,k (Ω) and has zero gradient,

– the gradient of a function of V vert
3,k (Ω) is in V edge

3,k−1(Ω) and has zero curl,

– the curl of a vector in V edge
3,k−1(Ω) is in V face

3,k−2(Ω) and has zero divergence,

– the divergence of a vector of V face
3,k−2(Ω) is in V elem

3,k−3(Ω).

Hence, essentially, we have to prove that:

– b.1 for every v ∈ V edge
3,k−1(Ω) with curlv = 0 there exists a ϕ ∈ V vert

3,k such
that gradϕ = v.

– b.2 for every τ ∈ V face
3,k−2(Ω) with div τ = 0 there exists a ϕ ∈ V edge

3,k−1(Ω)
such that curlϕ = τ

– b.3 for every q ∈ V elem
3,k−3(Ω) there exists a σ ∈ V face

3,k−2 such that divσ = q.

The proof of b.1 is immediate, as in the two-dimensional case [2.1]: the
function (unique up to a constant) ϕ such that gradϕ = v will verify (8.3) on
each edge. Moreover, its restriction ϕf to each face f will satisfy grad2 ϕ = vf ,
and so on.

Let us therefore look at b.2. Given τ ∈ V face
3,k−2(Ω) with div τ = 0 we first

consider (as in Remark 13) the element g ∈ Bedgek−1 (∂Ω) such that, on each face
f ∈ ∂Ω

rot2(g|f ) = τ · n (∈ Pk−2(f)). (8.11)

Note that ∑
f∈∂Ω

∫
f

τ · nfΩ df =

∫
Ω

div τ dΩ = 0, (8.12)

so that the compatibility condition (8.8) is satisfied. Then we solve in Ω the
Div − Curl problem

divψ = 0 and curlψ = τ in Ω, with ψt = g on ∂Ω. (8.13)

The (unique) solution of (8.13) has enough regularity to take the trace of
its tangential component on each edge e, and therefore, after deciding an
orientation te for every edge e in Th, we can take

ηe := Π0
k−1(ψ · te) on each edge e in Th. (8.14)
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At this point, for each element P we construct ϕ ∈ Bedge
k−1 (∂P ) by requiring

that

ϕ · te = ηe on each edge,

rot2ϕf = τ · nfP and divϕf = 0 in each face f ∈ ∂P. (8.15)

Then we can define ϕ inside each element by choosing, together with (8.15),

curlϕ = τ and divϕ = 0 in each element P. (8.16)

It is easy to see that the boundary conditions given in (8.15) are compatible
with the requirement curlϕ = τ , so that the solution of (8.16) exists. More-
over it is easy to see that all the necessary orientations fit, in such a way that
curlϕ is globally in (L2(Ω))3, so that actually ϕ ∈ V edge

3,k−1(Ω).
Finally, we have to prove b.3. The proof follows very closely the two di-

mensional case: given q ∈ V elem
3,k−3(Ω), we first choose η ∈ (H1(Ω))3 such that

div η = q in Ω and η · nΩ =

∫
Ω
q dΩ

|∂Ω|
(8.17)

where, now, |∂Ω| is obviously the area of ∂Ω. Then on each face f of Th we
take

σ · nf = Π0
k−2(η · nf ) (8.18)

and inside each element P we take divσ = q and curlσ = 0. Note again that
condition divσ = q is compatible with the boundary conditions (8.18) and
the orientations will fit in such a way that actually divσ ∈ L2(Ω), so that
σ ∈ V face

3,k−2(Ω).

Remark 14 Although here we are not dealing with applications, we point out
that, as is well known (see e.g. [22], [43], [38], [3]), the exactness of the above
sequences are of paramount importance in proving several properties (as the
various forms of inf-sup, the ellipticity in the kernel, etc.) that are crucial in
the study of convergence of mixed formulations (see e.g. [20]).

9 A hint on more general cases

As already pointed out in the final part of [24] for the particular case of 2D
face elements, we observe here that actually in all four cases considered in this
paper (face elements and edge elements in 2D and in 3D), we have at least
three parameters to play with in order to create variants of our elements.

For instance, considering the case of 3D face elements, we could choose
three different integers kb, kr and kd (all ≥ −1) and consider, instead of (5.1)
the spaces

V face
3,k (P ) := {v ∈ H(div;P )∩H(curl;P ) s. t. v ·nfP ∈ Pkb(f)∀ face f of P,

grad div v ∈ Gkd−1(P ), curlv ∈ Rkr (P )}, (9.1)
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where obviously k is given by k := (kb, kd, kr). Taking, for a given integer k,
the three indices as kb = k, kd = k − 1, kr = k − 1 we re-obtain the elements
in (5.1), that in turn are the natural extension of the BDM H(div)-conforming
elements. We notice that, like for the BDM elements, the case k = 0 is useless
in practice (even the construction of a local basis would be cumbersome). On
simplices, for k = 1 the VEM spaces (3.1) and (5.1) have one d.o.f. more than
BDM1, which could however be eliminated in the spirit of Remark 11. On the
other hand, taking instead kb = k, kd = k, kr = k − 1, for k ≥ 0 we would
mimic more the Raviart-Thomas elements. In particular, on simplices and for
k = 0 we recover exactly the RT0 element.

We also point out that if we know a priori that (say, in a mixed formulation)
the vector part of the solution of our problem will be a gradient, we could
consider the choice kb = k, kd = k − 1, kr = −1 obtaining a space that
contains all polynomial vectors in Gk (that is: vectors that are gradients of
some scalar polynomial of degree ≤ k + 1), a space that is rich enough to
provide an optimal approximation of our unknown.

Similarly, for the spaces in (6.4) one can consider the variants

V edge
3,k (P ) := {v| vt ∈ Bedge

kb
(∂P ),

div v ∈ Pkd(P ), and curl curlv ∈ Rkr−1(P )}. (9.2)

Taking kb = kr = k and kd = k−1 (inside the element and, in three dimensions,
also on every face), we would mimick instead the Nédélec elements of the first
kind; in particular, for k = 0 on simplices we would get the lowest order
Nédélec elements. On the other hand, for nodal VEMs we can play with two
indices, say kb and k∆, to have

V vert
3,k (P ) := {v| v|∂P ∈ Bvert

kb
(∂P ) and ∆v ∈ Pk∆−2(P )}, (9.3)

and, needless to say, in the definition of Bkb(∂P ), the degree of ∆2 in each
face could be different from kb.

Actually, to be sincere, the amount of possible variants looks overwhelming,
and the need of numerical experiments (for different applications of practical
interest) is enormous.
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