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Abstract

We consider a family of mixed finite element discretizations of the Darcy flow
equations using totally discontinuous elements (both for the pressure and the flux
variable). Instead of using a jump stabilization as it is usually done for DG methods
(see e.g. [3], [13] and the references therein) we use the stabilization introduced in
[18], [17]. We show that such stabilization works for discontinuous elements as well,
provided both the pressure and the flux are approximated by local polynomials of
degree ≥ 1, without any need for additional jump terms. Surprisingly enough,
after the elimination of the flux variable, the stabilization of [18], [17] turns out
to be in some cases a sort of jump stabilization itself, and in other cases a stable
combination of two originally unstable DG methods (namely, Bassi-Rebay [4] and
Baumann-Oden [6]).

1 Introduction

Mixed finite element methods based on the Galerkin formulation have become an increas-
ingly popular way to discretize the Darcy flow equations (see, e.g., as kindly suggested
by a reviewer, [11], [12], [5]). Within this framework, the proper trial solution spaces for
velocity and pressure are the classical Sobolev spaces H(div) and L2/IR, respectively. Fi-
nite dimensional subspaces of H(div) and L2/IR are referred to as conforming. Stability
conditions preclude many desirable combinations of interpolations but successful combi-
nations have been derived, namely, the RT (Raviart and Thomas [19]) and BDM (Brezzi,
Douglas and Marini [7]) families, which require continuity of the normal component of
velocity in combination with specific discontinuous pressure interpolation. In an effort
to enlarge the spectrum of possibilities, Masud and Hughes [18] introduced a stabilized
finite element formulation in which an appropriately weighted residual of the Darcy law
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is added to the standard mixed formulation. In [18] it was proved that this stabilized
method is convergent for:

(1) All combinations of conforming velocity and continuous pressure.
(2) All combinations of quadratic or higher-order conforming velocity and discontin-

uous pressure of any order.
Furthermore, although not specifically dealt with in [18], it is also apparent that the

method is convergent for:
(3) All combinations of discontinuous velocity and continuous pressure.
Numerical studies performed in [18] provided confirmation of the theoretical results.

An interesting feature of the formulation is that the additional stabilization term does
not involve a stabilization parameter depending on the type of element, the mesh, or the
constitutive coefficients. It is simply a nondimensional, universal constant that may be se-
lected once and for all. (The value 1/2 was utilized and advocated in [18].) Consequently,
the formulation is remarkably “clean”.

In Hughes-Masud-Wan [17], the method was extended within the Discontinuous Galerkin
(DG) framework in order to consider various combinations of discontinuous velocity and
pressure. The convergence proof relied upon a commonly used device in DG methodology,
an additional stabilization term that improves control of pressure jumps across element
interfaces (see, e.g., [3], [4], [13]). The term is a bilinear form in which the arguments are
the jumps in pressure trial solution and pressure weighting function. The bilinear form
needs to be weighted by an appropriately selected stabilization parameter that depends
on element type, the mesh, and constitutive coefficients. Currently, these parameters
can only be estimated by dimensional scaling and convergence arguments, which only
provide crude estimates, especially in the case of discontinuous constitutive parameters
and anisotropic meshes. Consequently, the practical utility of such methods is diminished
because of the ambiguity associated with the selection of the pressure jump stabilization
parameter. However, anticipating (and hoping) that some combinations of discontinuous
interpolations would be convergent without the pressure jump stabilization term, numer-
ical convergence studies were performed with some one- and two-dimensional elements
that led us to conjecture that all combinations of discontinuous velocity and pressure,
involving linear and/or higher-order polynomials, were convergent. In this paper, we ex-
plore this issue mathematically. Our main result is an affirmation of the conjecture. The
theoretical approach enlarges the scope, compared to that considered in [17]. Here, we
consider two classes of DG methods that, in the second-order form of Darcy flow, may
be identified with the Bassi-Rebay/interior penalty method ([4], [2], [15], [20]) properly
stabilized, and with a combination of the Bassi-Rebay and Baumann-Oden method ([6]).
We also prove convergence for a range of values of the stabilization constant. Our theo-
retical results are confirmed by some numerical convergence studies. In all cases, the L2

rates of convergence for velocity, pressure, and pressure derivatives are at least the mini-
mum of k +1 and `, where k and ` are the polynomial orders of the velocity and pressure
approximations, respectively. In cases where adjoint consistency can be invoked, and k
is greater than or equal to `− 1, the pressure is proved to converge at rate ` + 1. Based
on our results, we can assert that the mixed stabilized DG formulation of Darcy flow is
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mathematically viable, and we also believe it may be practically useful. It is a “clean”
formulation that does not involve any ambiguous stabilization parameters, it generalizes
and encompasses all the successful elements described in [17] and [18], and it provides
many convergent combinations of discontinuous velocity and pressure interpolations that
would otherwise be unstable in the classical mixed DG format.

An outline of the remainder of the paper follows: In Section 2, we describe the bound-
ary value problem of Darcy flow that we consider subsequently. In Section 3, we describe
the mixed stabilized DG formulation, we prove convergence and obtain error estimates.
We conclude in Section 4 with some numerical convergence studies that support the
theory.

In the sequel we shall follow the usual notation for Sobolev spaces (see e.g. Ciarlet
[10]). We will also denote by (· , ·) the usual L2(Ω)-inner product of both scalars and
vectors.

2 Darcy flow

Consider the problem






u = −κ∇p in Ω,
div u = f in Ω,
u · n = g on Γ = ∂Ω.

(1)

where κ ∈ L∞(Ω) is a given permeability coefficient, f ∈ L2(Ω) is a given source term,
and g ∈ H1/2(Γ) is a given prescribed flux at the boundary. All the methods that we
are going to describe, and all the analysis that we will carry out, hold independently of
the number of dimensions. Here however, for simplicity, we will use a two-dimensional
notation. To go to the three-dimensional case we just have to use faces instead of edges
and so on. Problem (1) can also be written, eliminating u, as

{

−div(κ∇p) = f in Ω,
κ(x)∇p · n = − g on Γ = ∂Ω.

(2)

With the usual compatibility assumption that

∫

Ω

f dx =
∫

Γ

g ds, (3)

it is well known that problem (2) has a unique solution p in the space H1(Ω)/IR made of
the functions belonging to H1(Ω) having zero mean value in Ω.

Going back to the original formulation (1) we see that u is unique as well, and it clearly
belongs to the space H(div; Ω), made of vectors of (L2(Ω))2 having their divergence
in L2(Ω). Using De Giorgi-Nash regularity, we also have that p is Hölder continuous,
although we are not going to use it.

The regularity of the solution p (as well as the regularity of u) will depend, in general,
on the regularity of Ω, f , g, and the permeability κ. See for instance [14] and the references
therein. For the sake of simplicity, we will only consider here the case of piecewise constant

3



κ. However, we point out that in the case of a more general permeability coefficient we
can always approximate it by means of a piecewise constant, substituting κ by its average
in each element.

3 Mixed stabilized DG formulation

Let Th be a regular family of decompositions of Ω into elements T , triangles or quadri-
laterals; let hT denote the diameter of T , and h = maxT∈Th

hT . In order to write a
discontinuous finite element approximation of problem (1) we need first to introduce typ-
ical tools such as jumps and averages of scalar and vector valued functions across the
edges of Th. Following the notation of [8], [9], [3], let e be an interior edge shared by
elements T1 and T2. Define the unit normal vectors n1 and n2 on e pointing exterior to
T1 and T2, respectively. For a function ϕ, piecewise smooth on Th, with ϕi := ϕ|Ti

we set

{ϕ} =
1

2
(ϕ1 + ϕ2), [[ ϕ ]] = ϕ1n1 + ϕ2n2 on e ∈ E◦h, (4)

where E◦h is the set of interior edges e. For a vector valued function v, piecewise smooth
on Th, we define v1 and v2 analogously, and set

{v} =
1

2
(v1 + v2), [[v ]] = v1 · n1 + v2 · n2 on e ∈ E◦h. (5)

Notice that the jump [[ ϕ ]] of the scalar function ϕ across e ∈ E ◦h is a vector parallel to
the normal to e, and the jump [[v ]] of the vector function v is a scalar quantity. The
advantage of these definitions is that they do not depend on assigning an ordering to the
elements Ti. For e ∈ E∂

h , the set of boundary edges, we set

{v} = v, [[ ϕ ]] = ϕn on e ∈ E∂
h . (6)

We do not require either of the quantities {ϕ} or [[v ]] on boundary edges, and leave them
undefined.

Next, with any integer k ≥ 1 we associate the discontinuous finite element space for
vector valued functions:

V k
h = {v ∈ [L2(Ω)]2 : v|T ∈ [Pk(T )]2 ∀T ∈ Th}, (7)

where, as usual, Pk is the space of polynomials of degree ≤ k. Similarly, with any integer
` ≥ 1 we associate the space for scalars:

Q`
h = {q ∈ L2(Ω)/IR : q|T ∈ P`(T ) ∀T ∈ Th}. (8)

In practical computations the discrete pressure is usually set to be equal to zero at some
given point (that is, the zero-mean value condition is never enforced as such). Setting

ah (uh,vh) =
∑

T∈Th

∫

T
κ−1uh · vh dx

bh (ph,vh) =
∑

T∈Th

∫

T
ph div vh dx−

∑

e∈E◦
h

∫

e
{ph}[[vh ]] ds−

∑

e∈E∂

h

∫

e
{vh} · [[ ph ]] ds

(f, qh) =
∫

Ω

fqh dx, 〈g, qh〉 =
∑

e∈E∂

h

∫

e
g qh ds,

(9)
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the discrete problem can be written as:







find uh ∈ V k
h , ph ∈ Q`

h such that :
ah (uh,vh)− bh (ph,vh) = 0 ∀vh ∈ V k

h ,
bh (qh,uh) = (f, qh)− 〈g, qh〉 ∀qh ∈ Q`

h.
(10)

Elimination of the flux variable u

In order to eliminate the flux variable, we first recall a useful identity (see [9], [3]), that
holds for vectors v and scalars ϕ piecewise smooth on Th:

∑

T∈Th

∫

∂T
v · nϕ ds =

∑

e∈Eh

∫

e
{v} · [[ ϕ ]] ds +

∑

e∈E◦
h

∫

e
[[v ]]{ϕ} ds, (11)

where Eh = E◦h ∪ E
∂
h is the set of all the edges. Using (11) we have, for all qh ∈ Q`

h and
uh ∈ V k

h ,

∑

T∈Th

∫

T
(divuh qh + uh · ∇qh) dx =

∑

e∈Eh

∫

e
{uh} · [[ qh ]] ds +

∑

e∈E◦
h

∫

e
[[uh ]]{qh} ds. (12)

Substituting (12) in the first equation of (10) we obtain:

∑

T∈Th

∫

T
(κ−1uh +∇ph) · vh dx−

∑

e∈E◦
h

∫

e
[[ ph ]] · {vh} ds = 0 ∀vh ∈ V k

h . (13)

Introducing the lifting operator R : L1(∪∂T ) → V k
h defined by

∫

Ω

R([[ q ]]) · vh dx = −
∑

e∈E◦
h

∫

e
[[ q ]] · {vh} ds ∀vh ∈ V k

h , (14)

we can substitute (14) in (13), thus obtaining:

∑

T∈Th

∫

T
(κ−1uh +∇ph + R([[ ph ]])) · vh dx = 0 ∀vh ∈ V k

h . (15)

We also introduce the operator πV from, say, (L2(Ω))2 to V k
h defined for all w ∈ (L2(Ω))2

as
(πV w,vh) = (w,vh) ∀vh ∈ V k

h . (16)

In other words, πV is the L2-projection onto V k
h . As we assumed that κ is piecewise

constant, equation (15) gives now:

κ−1uh = −(πV∇hph + R([[ ph ]])), (17)

where ∇h denotes the gradient element by element. It is clear that whenever

∇hQ
`
h ⊂ V k

h , (18)
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we have πV∇hqh ≡ ∇hqh for all qh ∈ Q`
h, but this will not be true in general. In what

follows we shall write (∇hqh,vh) or (πV∇hqh,vh), as they are always equal. On the other
hand we point out that, for instance, (πV∇hph, πV∇hqh) and (∇hph,∇hqh) will not be
equal, unless (18) holds true.
Using once more (12) and the lifting operator R defined in (14) we have, for every vh ∈ V k

h

and for every qh ∈ Q`
h, the following identity:

bh (qh,vh) ≡ −
∑

T∈Th

∫

T
vh · ∇qh dx +

∑

e∈E◦
h

∫

e
[[ qh ]] · {vh} ds

= −
∑

T∈Th

∫

T
vh · (∇qh + R([[ qh ]])) dx ∀qh ∈ Q`

h.
(19)

Replacing (19) with vh = uh in the second equation of (10) and using (17) we finally
obtain:

∑

T∈Th

∫

T
κ(πV∇ph +R([[ ph ]])) · (πV∇qh +R([[ qh ]])) dx = (f, qh)−〈g, qh〉 ∀qh ∈ Q`

h. (20)

When assumption (18) holds, defining

ABR(ph, qh) := (κ(∇hph + R([[ ph ]])),∇hqh + R([[ qh ]])), (21)

formulation (20) can be written as

ABR(ph, qh) = (f, qh)− 〈g, qh〉 ∀qh ∈ Q`
h, (22)

that coincides with the Bassi-Rebay [4] formulation of problem (2), which is known to
suffer from stability problems (see e.g.[9], [3]).
When assumption (18) does not hold, formulation (20) can be seen as a “generalized”
Bassi-Rebay formulation, and can be written as:

Aπ
BR(ph, qh) = (f, qh)− 〈g, qh〉 ∀qh ∈ Q`

h, (23)

with

Aπ
BR(ph, qh) := (κ(πV∇hph + R([[ ph ]])), πV∇hqh + R([[ qh ]])), ph, qh ∈ Q`

h. (24)

Remark. We have to underline an important point concerning the use of the operator
R. We point out that, in writing the bilinear forms, the operator R, as defined in (14),
should be used only when tested on elements of the space V k

h . In order to have a simpler
notation, we will actually use it everywhere. However, terms of the type

(κ∇hϕ, R([[ qh ]])) ≡
∫

Ω

κ∇hϕ ·R([[ qh ]]) dx (25)

with ϕ ∈ H2(Th) and qh ∈ Q`
h, must be interpreted as a shorter (although somewhat

imprecise) way to write

−
∑

e∈E◦
h

∫

e
[[ qh ]] · {κ∇hϕ} ds. (26)
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Indeed, although the two expressions (25) and (26) actually coincide whenever ∇hϕ ∈ V k
h

(as can be seen from the definition (14)), they do not coincide in more general cases. In
these cases, the form (26) has to be intended as the right one.

Stabilization of formulation (10)

The usual way to stabilize it (see e.g. [3] or [13] and the references therein) is to introduce
penalty terms on the jumps of p and/or on the jumps of u. Here instead we are going
to consider a different type of stabilization (introduced for these problems in [18] for
conforming finite elements, and extended in [17] to DG methods) that is more in the
line of the general strategy of [16]. The basic idea of [17] is better described in terms of
bilinear forms. We therefore write first (10) in the equivalent form







find (uh, ph) ∈ V k
h ×Q`

h such that :
ah (uh,vh)− bh (ph,vh)− bh (qh,uh)+
(f, qh)− 〈g, qh〉 = 0 ∀ (vh, qh) ∈ V k

h ×Q`
h.

(27)

The original stabilization of [17], following what had been done in [18] for the con-
forming case, amounts to change (27) into







find (uh, ph) ∈ V k
h ×Q`

h such that :
ah (uh,vh)− bh (ph,vh)− bh (qh,uh)−

1

2
(κ∇ph + uh, δ∇qh + κ−1vh)

(f, qh)− 〈g, qh〉 = 0 ∀ (vh, qh) ∈ V k
h ×Q`

h.
(28)

where δ could assume either the value +1 or the value −1 (giving rise to two different
possible stabilizations). In a sense, (28) can be seen as a correction using the residual of
the first equation in (10), more in the style, as we said, of [16].

Numerical experiments were performed in [17] on the formulation (28) with very good
results. The convergence proof, however, was given only for a further modified form of
(28), where some additional penalty in the jump terms (classical for DG methods) was
added in order to enhance stability. But on the basis of the numerical experiences, the
authors conjectured that the additional jump penalty was not needed.

Here indeed we show that such conjecture is perfectly correct: We consider the form
(28) as it is (without any additional jump stabilization), and we allow (as a minor gener-
alization) the coefficient in front of the residual correction to be a more general parameter
θ instead of just 1/2. We shall see that, surprisingly enough, after the elimination of the
flux variable, the residual-dependent stabilization (28) turns out to be in some cases a
sort of jump stabilization itself, and in other cases a stable combination of two originally
unstable DG methods (namely, Bassi-Rebay [4] and Baumann-Oden [6]).

Let therefore θ be a parameter to be chosen, and let δ = +1 or −1. Using the
equivalent expressions (15) and (19) for the first and second equation of (10), respectively,
we consider the problem:







find uh ∈ V k
h , ph ∈ Q`

h such that , ∀vh ∈ V k
h , ∀qh ∈ Q`

h :
∫

Ω

(κ−1uh +∇hph + R([[ ph ]])) · vh dx− θ
∫

Ω

(κ−1uh +∇hph) · vh dx = 0

−
∫

Ω

uh · (∇hqh + R([[ qh ]])) dx + δθ
∫

Ω

(uh + κ∇hph) · ∇hqh dx = (f, qh)− 〈g, qh〉,

(29)
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that is clearly equivalent to (28) with just θ instead of 1/2. In order to check stability
and boundedness, we shall eliminate as before the u-variable and rewrite the problem in
terms of the p-variable only. From the first equation in (29) and the notation (16) we
then deduce:

κ−1uh = −(πV∇hph +
1

1− θ
R([[ ph ]])). (30)

Consider first the case δ = 1.The second equation of (29) then reads:

−
∫

Ω

((1− θ)uh · ∇hqh + uh ·R([[ qh ]])− θκ∇hph · ∇hqh) dx = (f, qh)− 〈g, qh〉 ∀qh ∈ Q`
h.

In the simpler case in which assumption (18) holds (and hence πV∇hqh ≡ ∇qh), substi-
tuting the expression (30) and adding and subtracting the term (κR([[ ph ]]), R([[ qh ]])) we
obtain:

ABR(ph, qh)+
θ

1− θ

∫

Ω

κR([[ ph ]]) ·R([[ qh ]]) dx
︸ ︷︷ ︸

= (f, qh)− 〈g, qh〉 ∀qh ∈ Q`
h.

S(ph, qh)

(31)

Hence, when δ = 1 and (18) holds, formulation (29) is symmetric, and coincides with the
Bassi-Rebay formulation (22) with the addition of the term

θ

1− θ
S(ph, qh) ≡

θ

1− θ

∫

Ω

κR([[ ph ]]) ·R([[ qh ]]) dx.

Equivalently, thanks to the definition (14), (31) can be seen as the interior penalty method
(see, e.g., [2]) with the addition of the term

1

1− θ
S(ph, qh) ≡

1

1− θ

∫

Ω

κR([[ ph ]]) ·R([[ qh ]]) dx.

The situation is formally a little more complicated when (18) does not hold. However
it is not difficult to see that proceeding as before, and adding and subtracting the term
(κR([[ ph ]]), R([[ qh ]])) we can reach the form

Aπ
BR(ph, qh) +

θ

1− θ
S(ph, qh) +θ(κ(I − πV )∇hph,∇hqh)

= (f, qh)− 〈g, qh〉 ∀qh ∈ Q`
h,

(32)

where Aπ
BR(ph, qh) is defined in (24).

Consider now the case δ = −1. The second equation of (29) for δ = −1 reads:

−
∑

T∈Th

∫

T
((1 + θ)uh · ∇qh +uh ·R([[ qh ]]) + θκ∇ph · ∇qh) dx = (f, qh)−〈g, qh〉 ∀qh ∈ Q`

h.
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As before we analyze first the case when (18) holds. Substituting the expression (30) and
rearranging terms we obtain:

ABR(ph, qh) +
2θ

1− θ

∑

T∈Th

∫

T
R([[ ph ]]) · κ∇qh dx

︸ ︷︷ ︸

+
θ

1− θ

∫

Ω

κR([[ ph ]]) ·R([[ qh ]]) dx
︸ ︷︷ ︸

ANS(ph, qh) S(ph, qh)

= (f, qh)− 〈g, qh〉 ∀qh ∈ Q`
h.

(33)

We remark that formulation (33) can be rewritten as

1

1− θ
ABR(ph, qh)−

θ

1− θ
ABO(ph, qh) = (f, qh)− 〈g, qh〉 ∀qh ∈ Q`

h, (34)

where ABO(ph, qh) denotes the nonsymmetric bilinear form corresponding to the DG
formulation of problem (2) introduced by Baumann and Oden [6], and given by:

ABO(ph, qh) :=

∑

T∈Th

∫

T
κ∇ph · ∇qh dx−

∑

e∈E◦
h

∫

e
{κ∇hph} · [[ qh ]] ds +

∑

e∈E◦
h

∫

e
{κ∇hqh} · [[ ph ]] ds

≡
∑

T∈Th

∫

T
(κ∇ph · ∇qh + κ∇ph ·R([[ qh ]])− R([[ ph ]]) · κ∇qh) dx

≡
∫

Ω

κ(∇hph −R([[ ph ]])) · (∇hqh + R([[ qh ]])) dx +
∫

Ω

κR([[ ph ]]) ·R([[ qh ]]) dx.

(35)

When (18), instead, does not hold, we can argue as in the case δ = 1 and write the
resulting scheme as

1

1− θ
Aπ

BR(ph, qh)−
θ

1− θ
Aπ

BO(ph, qh) −θ(κ(I − πV )∇hph,∇hqh)

= (f, qh)− 〈g, qh〉 ∀qh ∈ Q`
h,

(36)

having defined

Aπ
BO(ph, qh) := (κ(πV∇hph − R([[ ph ]])), πV∇hqh + R([[ qh ]])) + S(ph, qh) ph, qh ∈ Q`

h.
(37)

Boundedness, Stability and Consistency

Following [3], to consider boundedness and stability of formulations (31) or (32), and (34)
or (36), we let Q(h) = Q`

h + H2(Ω)/IR ⊂ H2(Th)/IR and define the following norm for
q ∈ Q(h):

|||q|||2 = |q|21,h +
∑

T∈Th

h2
T |q|

2
2,T + ‖R([[ q ]])‖2

0,Ω, (38)

where |q|1,h denotes the broken H1−seminorm. We also notice that by a local inverse
inequality the norm (38) is equivalent, for qh ∈ Q`

h, to

|qh|
2
1,h + ‖R([[ qh ]])‖2

0,Ω. (39)
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Following [3], to prove that (38) is a norm in Q(h) we only need to show that it is
equivalent to the norm

|||q|||2∗ = |q|21,h +
∑

T∈Th

h2
T |q|

2
2,T +

∑

e∈E◦
h

h−1
e ‖[[ q ]]‖2

0,e. (40)

To this end, we can state the following results where, from now on, C will denote a generic
constant independent of the mesh size h.

Lemma 1 For k ≥ ` ≥ 1, there exist two positive constants C1 and C2, depending only
on the minimum angle of the decomposition and on the polynomial degree `, such that:






∀q double-valued and polynomial of degree ≤ ` on each internal edge we have :

C1‖R([[ q ]])‖2
0,Ω ≤

∑

e∈E◦
h

h−1
e ‖[[ q ]]‖2

0,e ≤ C2‖R([[ q ]])‖2
0,Ω. (41)

Proof. By the definition (14), and Cauchy-Schwarz and trace inequalities, we have:

‖R([[ q ]])‖2
0,Ω = −

∑

e∈E◦
h

∫

e
[[ q ]] · {R([[ q ]])} ds = −

∑

e∈E◦
h

∫

e
h−1/2

e [[ q ]] · h1/2
e {R([[ q ]])} ds

≤ (
∑

e∈E◦
h

h−1
e ‖[[ q ]]‖2

0,e)
1/2(

∑

e∈E◦
h

he‖{R([[ q ]])}‖2
0,e)

1/2

≤ C(
∑

e∈E◦
h

h−1
e ‖[[ q ]]‖2

0,e)
1/2(

∑

T∈Th

‖R([[ q ]])‖2
0,T )1/2,

(42)

thus proving the first inequality of (41), which actually holds for any function q ∈ Q(h),
and not only for polynomials. Next, observe that V k

h contains the space BDM`, that is,
the space of vectors with each component polynomial of degree ` and normal component
continuous across the edges [7]. Let then e be an internal edge of Th, shared by elements
T1 and T2; for every q ∈ Q`

h (that is, double-valued and polynomial of degree ≤ ` on each
internal edge) let v ∈ BDM` be defined by:

v · ne = [[ q ]] · ne, v · ne = 0 ∀e 6= e. (43)

Clearly we have:
∫

e
[[ q ]] · {v} ds = ‖[[ q ]]‖2

0,e,
∫

e
[[ q ]] · {v} ds = 0 ∀e 6= e,

and
‖v‖0,Ω ≤ Ch

1/2

e ‖v · n‖0,e = Ch
1/2

e ‖[[ q ]]‖0,e.

Hence, from definition (14) we have:
∫

Ω

R([[ q ]]) · v dx ≡
∫

T1∪T2

R([[ q ]]) · v dx = −
∫

e
[[ q ]] · {v} ds = −‖[[ q ]]‖2

0,e.

Consequently we deduce:

‖[[ q ]]‖2
0,e = −

∫

T1∪T2

R([[ q ]]) · v dx ≤ C h
1/2

e (‖R([[ q ]])‖0,T1
+ ‖R([[ q ]])‖0,T2

)‖[[ q ]]‖0,e,

10



so that
1

he
‖[[ q ]]‖2

0,e ≤ C(‖R([[ q ]])‖2
0,T1

+ ‖R([[ q ]])‖2
0,T2

).

Summation over all the internal edges gives then

∑

e∈E◦
h

1

he

‖[[ q ]]‖2
0,e ≤ C‖R([[ q ]])‖2

0,Ω, (44)

which proves the second inequality of (41).

Lemma 2 For k ≥ 1 there exist two positive constants C1 and C2, depending only on
the minimum angle of the decomposition such that:

C1‖R([[ q ]])‖2
0,Ω ≤

∑

e∈E◦
h

h−1
e ‖[[ q ]]‖2

0,e ≤ C2(‖R([[ q ]])‖2
0,Ω + |q|21,h) ∀q ∈ H2(Th). (45)

Proof. The first inequality follows just as in the previous Lemma. Let us see the second
one. As a first step we recall a classical inequality (see e.g. [1], [2]). There exists a
constant Cagm depending only on the minimum angle, such that: for every triangle T ,
for every edge e of T and for every function ϕ ∈ H1(T ) we have

‖ϕ‖2
0,e ≤ Cagm(h−1

T ‖ϕ‖2
0,T + hT |ϕ|

2
1,T ). (46)

For every internal edge e, and for each of the two elements T sharing e we denote by q
the L2(e)-projection of q onto constants, and by qk the L2(e)-projection of q on the space
of polynomials (on e) of degree ≤ k, and we extend q and qk in T as constants in the
direction normal to e. Clearly we have

‖[[ q ]]‖0,e ≤ ‖[[ qk ]]‖0,e ∀e. (47)

Moreover, it is easy to check that the mapping q → q coincides with the identity whenever
q is constant. We have therefore, from (46) and usual approximation properties, that

h−1
e ‖q − q‖2

0,e ≤ h−1
e Cagm(h−1

T ‖q − q‖2
0,T + hT |q − q|21,T ) ≤ C|q|21,T , (48)

for each of the two elements T , that easily implies

∑

e∈E◦
h

h−1
e ‖[[ q − q ]]‖2

0,e ≤ C|q|21,h ∀q ∈ H2(Th). (49)

We also note that, from (47) and the previous Lemma with ` = k,

∑

e∈E◦
h

h−1
e ‖[[ q ]]‖2

0,e ≤
∑

e∈E◦
h

h−1
e ‖[[ qk ]]‖2

0,e ≤ C2‖R([[ qk ]])‖2
0,Ω ≡ C2‖R([[ q ]])‖2

0,Ω, (50)
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where the last equality follows immediately from the fact that R([[ qk ]]) ≡ R([[ q ]]) that, in
turn, follows from the definitions of R and qk. Since [[ q ]]− [[ q ]] and [[ q ]] are L2-orthogonal
on each edge, we easily have from (49) and (50) that

∑

e∈E◦
h

h−1
e ‖[[ q ]]‖2

0,e =
∑

e∈E◦
h

(h−1
e ‖[[ q − q ]]‖2

0,e + h−1
e ‖[[ q ]]‖2

0,e) ≤ C(|q|21,h + ‖R([[ q ]])‖2
0,Ω) (51)

for all q ∈ H2(Th), and the proof is completed.

Boundedness

When (18) holds, boundedness of the bilinear forms in (31) and (34) follows directly
from the boundedness of the bilinear forms ABR and ABO, as proved in [3], thanks to
the equivalence of the norms (41) and (45). When (18) does not hold, boundedness still
follows from the inspection of the corresponding bilinear forms (32) and (36) using the
boundedness of the projection operator πV , the arguments of [3], and the equivalence of
norms (41) and (45). We explicitely point out that in dealing with terms of the type (25)
containing the operator R, we must use the form (26), as we already said. It is actually
in the treatment of these terms that the part

∑

T∈Th

h2
T |q|

2
2,T

of the norm (38) has to be used. We refer to [3] for these types of details. Hence, to
summarize the above discussion, denoting by Bh(·, ·) any of the the bilinear forms in (31),
(34), (32), or (36)we have:

∃ Cb > 0 such that Bh(p, q) ≤ Cb |||p||||||q||| ∀p, q ∈ Q(h). (52)

Stability

Before proving stability of our different stabilized formulations, we anticipate a trivial
algebraic lemma, that we are going to use in the sequel.

Lemma 3 Let H be a Hilbert space, and λ and µ positive constants. Then, for every ξ
and η in H we have

λ‖ξ + η‖2
H + µ‖η‖2

H ≥
λµ

2(λ + µ)
(‖ξ‖2

H + ‖η‖2
H) (53)

Proof. We first remark that a simple algebraic computation shows that

λ‖ξ + η‖2
H + µ‖η‖2

H = ‖(λ + µ)1/2η +
λξ

(λ + µ)1/2
‖2
H +

λµ

λ + µ
‖ξ‖2

H. (54)

Setting L := λ‖ξ + η‖2
H + µ‖η‖2

H we have obviously L ≥ µ‖η‖2
H and from (54) we also

have L ≥
λµ

λ + µ
‖ξ‖2

H. Hence taking the sum of the two, and using the obvious fact that

1 ≥ λ/(λ + µ), we get

2L ≥ µ‖η‖2
H +

λµ

λ + µ
‖ξ‖2

H ≥
λµ

λ + µ
(‖ξ‖2

H + ‖η‖2
H), (55)
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and the proof is completed.

Remark. We note that the constant in (53) is not optimal. With a little eigenvalue

analysis it is not difficult to see that the best constant is λ + (µ/2) −
√

λ2 + (µ/2)2.

However we are not going to need it, and we stick to (53) that is simpler and sufficient
for our purposes.

Lemma 4 For δ = 1, k ≥ 1, and ` ≥ 1 problem (29) is stable for all θ ∈]0, 1[.

Proof. We consider first the case when (18) holds. In this case, taking ph = qh in the
left-hand side of (31), we have:

Bh(qh, qh) = ‖κ1/2(∇hqh + R([[ qh ]]))‖2
0,Ω +

θ

1− θ
‖κ1/2R([[ qh ]])‖2

0,Ω (56)

and the stability in the norm (39) follows from Lemma 3.
We consider now the case in which (18) does not hold. Considering the formulation

(32), we take again ph = qh and we have

Bh(qh, qh) = ‖κ1/2(πV∇hqh + R([[ qh ]]))‖2
0,Ω − θ‖κ1/2πV∇hqh‖

2
0,Ω

+θ‖κ1/2∇hqh‖
2
0,Ω +

θ

1− θ
‖κ1/2R([[ qh ]])‖2

0,Ω.
(57)

We observe that the sum of the second and third term is always nonnegative. Applying
Lemma (3) with λ = 1, µ = θ/1− θ we have then

2Bh(qh, qh) ≥ θ(‖κ1/2πV∇hqh‖
2
0,Ω + ‖κ1/2R([[ qh ]])‖2

0,Ω). (58)

On the other hand, from (57) we also deduce

Bh(qh, qh) ≥ −θ‖κ1/2πV∇hqh‖
2
0,Ω + θ‖κ1/2∇hqh‖

2
0,Ω. (59)

Hence,
3Bh(qh, qh) ≥ θ(‖κ1/2R([[ qh ]])‖2

0,Ω + ‖κ1/2∇hqh‖
2
0,Ω), (60)

and the result follows.

Lemma 5 For δ = −1, k ≥ 1, and ` ≥ 1 problem (29) is stable for all θ < 0.

Proof. Once more we start from the case when (18) holds. Taking ph = qh in (34) and
using the definitions of ABR and ABO as given in (21) and (35) respectively, we have:

Bh(qh, qh) =
1

1− θ
‖κ1/2(∇hqh + R([[ qh ]]))‖2

0,Ω −
θ

1− θ
‖κ1/2∇hqh‖

2
0,Ω

and since θ < 0 the result follows again from Lemma 3 .
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We consider now the case when (18) does not hold. We take the formulation (36)
with ph = qh, and for the sake of simplicity we set α = −θ. We have

Bh(qh, qh) =
1

1 + α
‖κ1/2(πV∇hqh + R([[ qh ]]))‖2

0,Ω

−
α2

1 + α
‖κ1/2πV∇hqh‖

2
0,Ω + α‖κ1/2∇hqh‖

2
0,Ω.

(61)

Splitting α as α =
α

α + 1
+

α2

α + 1
and using ‖κ1/2∇hqh‖

2
0,Ω ≥ ‖κ1/2πV∇hqh‖

2
0,Ω and Lemma

3 we deduce

Bh(qh, qh) ≥
1

1 + α
‖κ1/2(πV∇hqh + R([[ qh ]]))‖2

0,Ω +
α

1 + α
‖κ1/2∇hqh‖

2
0,Ω

≥ C(‖κ1/2(πV∇hqh‖
2
0,Ω + ‖R([[ qh ]]))‖2

0,Ω)

(62)

with C = α/2(1 + α)2. On the other hand, (62) also implies

Bh(qh, qh) ≥
α

1 + α
‖κ1/2∇hqh‖

2
0,Ω, (63)

and the result follows immediately.

To summarize, for all the bilinear forms in (31), (32), (34), or (36) we have:

∃ Cs > 0 such that Bh(qh, qh) ≥ Cs |||qh|||
2 ∀qh ∈ Q`

h, (64)

where (64) clearly holds for every θ ∈ ]0, 1[ for the symmetric cases ((31), (32)), and for
every θ < 0 for the nonsymmetric cases ((34), (36)).

Consistency

The consistency of both the original mixed formulation and of all the stabilized ones is
obvious. This is not the case when we deal with the reduced formulations that we obtain
after the elimination of uh. Indeed, as we shall see, consistency does not hold in every
case.

We start by considering all the bilinear forms Bh(ph, qh) obtained in (31), (34), (32)
and (36), and we substitute the exact solution p in place of the approximate solution ph,
taking into account the fact that p is continuous and hence its jumps are zero.

We note that when (18) holds, that is in the cases (31) and (34), Bh(p, qh) can be
written in the form

Bh(p, qh) = (κ∇p,∇hqh + R([[ qh ]])). (65)

At this point we remember that we must use the form (26) in dealing with the term
containing R([[ qh ]]), so that (65) must actually be written as

(κ∇p,∇hqh + R([[ qh ]])) →
∑

T∈Th

∫

T
κ∇p · ∇qh dx−

∑

e∈E◦
h

∫

e
[[ qh ]]{κ∇p} ds. (66)
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After integration by parts and using formula (11) we obtain

∑

T∈Th

∫

T
κ∇p · ∇qh dx−

∑

e∈E◦
h

∫

e
[[ qh ]]{κ∇p} ds

= −
∑

T∈Th

∫

T
div(κ∇p) qh dx +

∑

T∈Th

∫

∂T
qhκ∇p · nT ds−

∑

e∈E◦
h

∫

e
[[ qh ]]{κ∇p} ds

= (f, qh)− 〈g, qh〉,

(67)

proving the consistency of both formulations (31) and (34).
The situation is different when we deal with the cases where (18) does not hold, that

is the formulations (32) and (36). In these cases it is not difficult to see that both cases
share the general form

Bh(p, qh) = (κπV∇p,∇hqh + R([[ qh ]])) + λ(κ(I − πV )∇p,∇hqh), (68)

where λ depends on the method (λ = θ for (32), λ = −θ for (36)), and the term including
R should be interpreted as in (66). By adding and subtracting (κ∇p,∇hqh + R([[ qh ]]))
in (68) we have:

Bh(p, qh) = (κ(πV − I)∇p,∇hqh + R([[ qh ]])) + λ(κ(I − πV )∇p,∇hqh)

+(κ∇p,∇hqh + R([[ qh ]])).
(69)

For the last term we can use (67), and for the others we use boundedness, to reach

Bh(p, qh)− (f, qh) + 〈g, qh〉 = (1 + λ)(κ(πV − I)∇p,∇hqh) + (κ(πV − I)∇p, R([[ qh ]]))

≤ Cc‖πV∇p−∇p‖0,Ω |||qh|||.
(70)

Error estimates

To perform the analysis, we need to bound the approximation error |||p − pI||| when
pI ∈ Q`

h is a suitable interpolant of the exact solution p. If pI is chosen to be the usual
continuous interpolant of p, then R([[ p− pI ]]) ≡ 0, so that (38) immediately gives

|||p− pI |||
2 = |p− pI |

2
1,h +

∑

T∈Th

h2
T |p− pI |

2
2,T ≤ C2

a h2`|p|2`+1,Ω. (71)

If pI is discontinuous, we just need the local approximation property:

|p− pI |s,T ≤ C h`+1−s
T |p|`+1,T ∀T ∈ Th, s = 0, 1, 2. (72)

Then, using (41) we have:

|||p− pI|||
2 ≤ |p− pI|

2
1,h +

∑

T∈Th

h2
T |p− pI |

2
2,T + C−1

1

∑

e∈E◦
h

h−1
e ‖[[ p− pI ]]‖2

0,e. (73)
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Using (46) in (73) we have:

|||p− pI |||
2 ≤ C (|p− pI |

2
1,h +

∑

T∈Th

h2
T |p− pI |

2
2,T +

∑

T∈Th

h−2
T ‖p− pI‖

2
0,T ), (74)

and from (72) and (74) we have again

|||p− pI ||| ≤ Ca h`|p|`+1,Ω. (75)

For the cases when (18) holds (that is when k ≥ `− 1, as in formulations 31), (34)),
we can use stability (64), consistency (67), boundedness (52), and the approximation
property (75) to obtain:

Cs|||pI − ph|||
2 ≤ Bh(pI − ph, pI − ph) = Bh(pI − p, pI − ph)

≤ Cb|||p− pI||| |||pI − ph||| ≤ Ch`|p|`+1,Ω|||pI − ph|||.
(76)

Hence, the triangle inequality gives the optimal estimate

|||p− ph||| ≤ C h`|p|`+1,Ω.

On the other hand, when dealing with the case when (18) does not hold, that is with
formulations (32) and (36) (corresponding to k < ` − 1), we cannot use the consistency
property (67) but we have to use the weaker form (70). We have then

Cs|||pI − ph|||
2 ≤ Bh(pI − ph, pI − ph) = Bh(pI − p, pI − ph) + Bh(p− ph, pI − ph)

≤ Cb|||p− pI ||| |||pI − ph|||+ Cc‖∇p− πV∇p‖0,Ω |||pI − ph|||

≤ Chk+1|p|k+2,Ω|||pI − ph|||,

(77)

where, in the last line, we took into account the fact that k < `− 1. Hence, in this case
the triangle inequality gives the estimate

|||p− ph||| ≤ C hk+1|p|k+2,Ω.

We can summarize the results of both cases in the estimate

|||p− ph||| ≤ C hs|p|s+1,Ω with s := min{k + 1, `}. (78)

We finally point out that, in both cases, it is immediate to derive an estimate for uh in
terms of ∇hph and R([[ ph ]]). Indeed, recalling (30):

uh = −κ(πV∇hph +
1

1− θ
R([[ ph ]])) (79)

we easily deduce, using (78),

‖uh − u‖0,Ω ≤ C |||ph − p||| ≤ C hs|p|s+1,Ω with s := min{k + 1, `}.

Remark. For the symmetric schemes (31) and (32) the adjoint consistency property (see
[3]) holds true. Consequently, whenever the problem (2) has H2−regularity, we also have
the optimal estimate in L2:

‖p− ph‖0,Ω ≤ C hs+1|p|s+1,Ω with s := min{k + 1, `}. (80)
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4 Numerical results

We consider discontinuous velocity and pressure triangles and quadrilaterals. The domain
Ω = [0, 1] × [0, 1] and the exact pressure field is p = (sin 2πx)(sin 2πy). The velocity is
computed from the pressure using Darcy’s law with κ = 1, f is computed from the
divergence of the velocity, and g is taken to be its normal component on the boundary.
The boundary value problem is specified by setting f over Ω and g weakly over the
boundary. The parameter θ is set to 1/2 and δ is chosen as +1. This is the case studied
previously in [18] and [17]. We consider linear and quadratic interpolations on triangles,
and bilinear and biquadratic interpolations on quadrilaterals, in all combinations. The
quadrilateral meshes are uniform and the triangular meshes are the same with each
quadrilateral split into two triangles with all diagonals running in the same direction.

Convergence results for the equal-order elements are presented in Figures 1-4. Note
that the bilinear quadrilaterals and linear triangles attain optimal second -order conver-
gence in L2 for the pressure field. The pressure results follow from adjoint consistency.
The velocity convergence is one order less, which is consistent with the theoretical pre-
dictions. We also obtain optimal third-order L2 pressure convergence for the quadratic
triangle and biquadratic quadrilateral, but the L2 velocity results are again one order
lower, consistent with our theoretical predictions.

Figure 1

Equal-order bilinear quadrilaterals

Figure 2

Equal-order linear triangles

Results for unequal-order elements are presented in Figures 5-8. For cases in which
the pressure interpolation is the higher-order field, we see optimal L2 rates of convergence
for velocity and pressure, second- and third-order, respectively. (See Figures 5 and 6.)
For the cases in which the velocity interpolation is the higher-order field, we see optimal
second-order L2 convergence for the pressure, while the order of convergence for velocity
is one, as predicted by theory. (See Figures 7 and 8.)
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Figure 3

Equal-order biquadratic quadrilaterals

Figure 4

Equal-order quadratic triangles

Figure 5

Bilinear-velocity biquadratic-pressure quadrilaterals

Figure 6

Linear-velocity quadratic-pressure triangles

Figure 7

Biquadratic-velocity bilinear-pressure quadrilaterals

Figure 8

Quadratic-velocity linear pressure triangles
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