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Abstract. We provide a common framework for the understanding, comparison,
and analysis of several discontinuous Galerkin methods that have been proposed
for the numerical treatment of elliptic problems. This class includes the recently
introduced methods of Bassi and Rebay (together with the variants proposed by
Brezzi, Manzini, Marini, Pietra and Russo), the local discontinuous Galerkin meth-
ods of Cockburn and Shu, and the method of Baumann and Oden. It also includes
the so-called interior penalty methods developed some time ago by Douglas and
Dupont, Wheeler, Baker, and Arnold among others.

1 Introduction

In 1973, Reed and Hill [21] introduced the first discontinuous Galerkin (DG)
method for hyperbolic equations, and since that time there has been an active
development of DG methods for hyperbolic and nearly hyperbolic problems,
resulting in a variety of different methods. Also in the 1970’s, but indepen-
dently, Galerkin methods for elliptic and parabolic equations using discontin-
uous finite elements were proposed, and a number of variants introduced and
studied. These were generally called interior penalty (IP) methods and their
development remained independent of the development of the DG methods
for hyperbolic equations. In this paper, we provide a common framework
which includes nearly all the DG methods that have been proposed thus far.

We briefly review the development of penalty methods for elliptic and
parabolic equations. Penalties were first introduced into the finite element
method as a mean for imposing Dirichlet boundary conditions weakly rather
than incorporating the boundary conditions into the finite element space. Let
us begin by recalling Nitsche’s method [19] for the model problem —Au = f
in 2, u =0 on 012. Clearly

/Vu-Vvdw—/ %vds:/fvdw,
Q a0 On Q
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for all sufficiently smooth test functions v. Since u vanishes on the boundary,
we have as well that B(u,v) = [ fvdz, where

ou ov
B(u,v) .—/QVU-VUda:—LQ%Uds—LQ%uds+/{mnuvds, (1.1)

for any weighting function 7. Nitsche’s method then determines an approxi-
mate solution uy, in a finite element subspace of H'(§2) such that B(up,vs) =
[ fon dz for all vy, in the same space. Note that the second term of the bilin-
ear form B arose to ensure that the method is consistent. The third term was
added so that the discrete problem is symmetric (and so the method is truly
variational—the discrete solution minimizes B(u,u)/2 — [ fu over the finite
element space). Finally, the last term is the penalty term, which is necessary
to guarantee stability. Nitsche proved that if i is taken as C/h where h is the
element size and C' is a sufficiently large constant, then the discrete solution
converges to the exact solution with optimal order in H' and L2.

A different penalty method for imposing Dirichlet boundary conditions is
due to Babuska [2]. He does not include either the second or third term in
(1.1), and uses as the penalty weight h~7 for some o > 0. Because of the
missing consistency term, his method, and its analysis, includes a consistency
error. Another interesting possibility is to include all the terms in (1.1) but
to reverse the sign of the third term in B. The bilinear form is then no longer
symmetric, but it has a favorable coercivity property, namely, B(u,u) >
[ IVul?, no matter how n > 0 is chosen.

The IP methods arose from the observation that, just as Dirichlet bound-
ary conditions could be imposed weakly instead of being built into the finite
element space, so interelement continuity could be attained in a similar fash-
ion. This makes it possible to use spaces of discontinuous piecewise polynomi-
als for solving second order problems. The natural generalization of Nitsche’s
method to this context (in which there are consistency, symmetrization, and
penalty terms on each edge, the latter penalizing the jump of the function
across the edge) is stated in Wheeler’s 1978 paper on IP collocation—finite
element methods, [27], where it is attributed to a private communication of
Douglas and Dupont. That method is analyzed in detail for linear and non-
linear elliptic and parabolic problems in the 1979 thesis of Arnold which is
summarized in [1]. Interior penalties of this sort were also used by Baker
[4] for imposing C! interelement continuity on C° elements for fourth or-
der problems. In these, of course, it is the jump in the normal derivative
that is penalized. In 1976, Douglas and Dupont [16] penalized the jump in
the normal derivative of C° elements for second order elliptic and parabolic
problems, with the goal of enforcing a degree of continuity in some sense
intermediate between C° and C'. Babuska and Zldmal [3], like Baker, used
interior penalties to weakly impose C' continuity for fourth order problems,
but their bilinear form is analogous to Babugka’s finite element with penalty
rather than to the bilinear form of Nitsche’s method, i.e., it does not have
the consistency and symmetry terms.
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Not so much attention has been paid to IP methods since the early 1980’s,
although they have found a few new applications. In 1990, Baker, Jureidini
and Karakashian [5] used interior penalties to enforce continuity on piecewise
solenoidal vector fields for solving the Stokes equations. In the same year,
Rusten, Vassilevski, and Winther [23] used an interior penalty method for
second order elliptic problems as part of a preconditioner for mixed methods.
Recently, Becker and Hansbo [10] used the IP approach as a way to enforce
continuity across non-matching grids for domain decomposition.

On the other hand, DG methods for the numerical treatment of nonlinear
hyperbolic systems experienced a vigorous development during the last ten
years due to a strong interaction with the ideas of finite volumes methods
for hyperbolic problems; see a review of this development in [14]. But the
evolution of the DG methods did not stop there. The necessity of dealing with
problems that, together with a dominant convective part, had a non-negligible
diffusive part, prompted several authors to extend the DG methods to elliptic
problems. Thus in 1997, Bassi and Rebay [6] introduced a DG method for the
Navier-Stokes equations and in 1998, Cockburn and Shu [15] introduced the
so-called local discontinuous Galerkin (LDG) methods by generalizing the
original DG method of Bassi and Rebay. Around the same time, Oden and
Bauman [8], [9] introduced another DG method for diffusion problems. Their
approach uses a non-symmetric bilinear form, even for symmetric problems,
analogous to the one obtained from Nitsche’s penalty form by reversing the
sign of the symmetrization term, as discussed earlier.

It was at this point that several authors were struck by the similarities
between those recently introduced DG methods and the old IP methods and
started to apply to the former the old techniques of analysis used on the lat-
ter. Thus, Brezzi et al. [12] studied several variations of the original method of
Bassi and Rebay; Oden, Babuska and Baumann [20] studied the DG method
of Baumann and Oden; Riviére and Wheeler [22], [26] analyzed several vari-
ations of the DG method of Baumann and Oden; and Siili, Schwab, and
Houston [24], [25] synthesized the elliptic, parabolic, and hyperbolic theory
by extending the analysis of DG methods to partial differential equations
with non-negative characteristic form. Our long term goal is to follow this
trend and produce a comprehensive study of the above mentioned methods
as applied to elliptic problems. In this note, we recast all of the above men-
tioned methods within a single framework in order to lay down a basis for
a better understanding of the connections among them, and, eventually, a
unified analysis, that however we postpone to a subsequent paper.

An outline of the paper is as follows. For the sake of simplicity and clarity,
we present our unified framework for the classical problem of the Laplacian
with homogeneous Dirichlet boundary conditions. In § 2, we provide a general
framework for its discretisation by means of DG methods. This framework is
an extension of the approach used by Cockburn and Shu [15] to define the
LDG methods and allows us to include methods that are not LDG methods,
like the IP methods and the DG method of Baumann and Oden. In the
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next two sections we verify that indeed many known methods fall within our
framework, and we present a partial classification of methods. A table listing
all these methods is included in the final section.

2 The general DG method for a model problem

For the sake of simplicity, we restrict ourselves to the following model prob-
lem:

—Au=f in 0, w=0 ondf,

where (2 is assumed to be a polygonal domain and f a given function in
L?(02). To obtain the weak formulation upon which the discretization is
based, we rewrite the above problem as follows:

c=Vu, —V-o=f in {2, u=0 onJdf.

Let K be the closure of an open subset of {2 with a piecewise smooth bound-
ary. If we multiply the above equations by test functions and integrate for-
mally on K, we get

/U-de:—/uV-Tda:+/ ung - Tds,
K K oK

/U-Vvd:r:/fvd:r+/ o-ngvds,
K K oK

where ng is the outward normal unit vector to K. This is the weak formu-
lation we sought. We are now ready to define the DG method.

We denote by 7, a triangulation of 2 in polygons K, and by P(K) a
finite dimensional space of smooth functions, typically polynomials, defined
on the polygon K. This space will be used to approximate the variable u. We
denote by X (K') another finite dimensional space of smooth functions that
we are going to use in order to approximate the auxiliary variable o. Setting

Vi={veL*N) | vlkeP(K) VKeET,},
Tp={re(L*(7)* | 7lx € Z(K) VKeTu},

and following Cockburn and Shu [15], we consider the following general weak
formulation: Find u, € Vj and o, € X}, such that VK € T, we have

/Uh-Tda::—/uhV-Tdm—l- Z heKng -rds Vre X(K), (2.1)
K K ecoK e

/Uh-VUda::/ fvdx + Z ek ngvds Yv € P(K), (2.2)
K K

eCOK 7€
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where the sums are taken over the edges e of the polygon K, and the nu-
merical flures h®® and h&¥ are approximations to o|. = Vul. and to ule,
respectively, on the edges of the triangulation. In order to complete the defi-
nition of a method we must provide the polynomial spaces P(K) and X'(K)
and the formula for the numerical fluxes h&® and h%X in terms of o and
up,. The choice of spaces will not play a large role in our study. For triangular
elements, one could, for example, take P(K) to consist of all polynomials of
degree p > 1 and Y (K) to consist of all polynomial vector fields of degree
p — 1 or p. The choice of the consititutive relations defining the fluxes, on
the other hand, will be crucial. The flux choices affect the stability and the
accuracy of the method, as well as properties such as sparsity and symmetry
of the stiffness matrix; cf. [15] and [13]. As we shall see, different choices for
the fluxes will lead to the different methods that we are going to discuss.

Next, we discuss some basic properties that are shared by all the flux
choices.

1. Locality. Let K = K; be an element in the triangulation, and let e be
one of its edges. Assume first that e is an interior edge of our triangulation,
so that there is a second element K- sharing the edge e with K;. We then
assume that h9¥ and h%% depend on the restrictions uy|k, and op |k, of uy
and o, to K;, i = 1,2. More precisely, locality means that

hi’K = h?K('Ufh|K17Uh|K17uh|K2’Uh|K2)'

Actually, in all our examples, this fucntional dependence will have a special
form in that both h&X and h&¥ will depend only on the traces of up|k;,
Vun|k;, and op|k, on the edge e. Since up, Vup, and o, will, in general, be
discontinuous across e, the trace of up|x, on e will be different from the trace
of up|k, on e, and similarly Vuy, and o5, will each have two different traces
on e. Thus h&X and h$¥ will depend linearly on the six quantities

(unlr,)le, (Vunli)les (Tnlr)les (unlxa)les (Vunls)le, (on|ws)le-

In our particular case of a homogeneous Dirichlet problem, the fluxes on
boundary edges will have the same functional dependence on these six traces,
provided we interpret the traces coming from K, as follows: (up|k,)|e =
0, (Vunli,)le = (Vupli,)le, and (onlr,)le = (0n|ky)|e- Other boundary
conditions can be handled easily as well, but, in order to keep the notation
as simple as possible, we shall not discuss these here.

Finally, it is important to note that in all the methods we are going to
analyze, h%¥ will not depend on oy |k, (nor on Vuy|g,, but that will be less
important). This, as we shall see, will allow us to eliminate the variable o}
at the element level, often with a considerable computational saving.

2. Consistency. All the methods we consider are consistent in the sense
that, in the functional form described above,

h?K(u|K17vu|K1)u|K2)VU|K2) = Vu|6>

hZ’K(U|K15vu|K17U’|KzaVU|K2) = U|ev
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whenever u is a smooth function satisfying the boundary conditions.
3. Conservation. All our methods satisfy

heFT = p&ke (2.3)

when e is an edge shared by elements K; and K>, and so we may write simply
h¢. This is a conservation property: if S is the union of some collection of
elements, then, taking v to be identically unity in (2.2) and adding over K
contained in S we get

/fd:v+ > [ hg-nds=0.
S

eCdsS e

We close this section with several additional remarks concerning the above
properties.

1. Aswe have seen, if h&% does not depend on o, then the auxiliary variable
oy, can be eliminated locally in terms of uj, and Vuy, using (2.1). When
using triangles, the use of the orthonormal Dubiner basis [17] renders this
elimination trivial. See also the extensions to 3D elements by Lomtev and
Karniadakis [18].

2. In all the methods we consider, h¢ depends either on the traces of Vuy,
or on those of op, but not on both. The former category, for which the
stiffness matrix tends to be much sparser, includes the IP methods and
the method of Baumann and Oden; we discuss this category of methods
in § 4. The latter category, which we discuss in § 3, includes the LDG
family of methods.

3. Most of the methods will satisfy, in addition to the conservation property
(2.3), the analogous property h&%1 = h&E2 (in which case we write h¢
for h&%.) We shall refer to them as completely conservative methods.
As we shall see, generally only completely conservative methods lead
to a symmetric stiffness matrix after elimination of ¢j,. Except for the
methods of Baumann and Oden, and the so-called pure penalty methods
discussed at the end of § 4, all the methods we consider are completely
conservative.

4. We also note that, in view of (2.2), only the normal component h&¥ -n
of h&¥ enters the methods; its tangential component is irrelevant. In
practice, the normal component will depend only on the normal traces.

3 Numerical fluxes independent of Vu,

In order to describe the flux functions for various methods we need to intro-
duce some notation. Again let e be an edge shared by elements K; and K.
Define also the normal vectors n; and ns on e pointing exterior to K; and
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K, respectively. If v is a function on K; U K>, but possibly discontinuous
across e, let v; denote (v|k;,)|e, 7 = 1, 2. For a scalar function v we then define

1
{v} = 5(1)1 + v2), [v] := ving + vene.

If 7 is a vector-valued function, we set
1
{r}:= 5(7'1 + 72), [T]:=71 11+ 72 no.

Notice that the jump [v] of the scalar function v is a vector parallel to n and
that [7] is the jump of the normal component of the vector function 7- it is
hence is a scalar quantity. The advantage of these definitions is that they do
not depend on assigning an ordering to the elements Kj;.

In this section, we consider the DG methods determined by the following
choice of numerical fluxes:

WK ={ony —a(un]) + 8Monl, % ={un} +7° [un].  (3.1)

Here 3¢ and ¢ are vector-valued functions on e. Often they are constant,
and, indeed, for many methods they both vanish. The term af([up]) could
simply be taken to be

a’([un]) =n"Tunl (3.2)

for some constant (or function) n¢. Another possibility arises from the work
of Bassi and Rebay. Namely we define the operator 7. : L'(e) — X, by

/re(q)-rda::—/q-{r}ds V1 € Xh,q € L' (e),
2 e
and set

a’([un]) = —n“{re([un )} (3.3)

First we rewrite the method by inserting the flux formulas (3.1) into the
Galerkin equations (2.1)—(2.2) and adding over K € Tj. Denoting by &, the
set of all element edges, after simple algebraic manipulations we obtain

/Qah~7dx=;/Km~m+ > [or tunlr] - [un] - {rh s,

ecEy V€
(3.4)
;/th'vvdw:/vadx+e§/e({gh}—ae([[uh]])+ﬁ6[[0h]])'[[U]]ds
(3.5)

for all 7 € X}, v € V},. If we take all the af, 3¢, and ¢ to vanish, we recover
the original DG method of Bassi and Rebay, cf. [6], formulae (13) and (15),
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and also [11], equations (12) and (14). This method can be unstable, at least
for uniform meshes; see [11]. However, stability is achieved if a® is a positive
operator. Defining «f by (3.3) with n° > 0 (and still with 8¢ and ~¢ zero)
gives the variant of the method of Bassi and Rebay [6], as proposed by Brezzi
et al. [12], formula (24). Defining a® by (3.2), n° > 0 gives the LDG methods
(which allow general 8¢ and ~¢).

Next, we eliminate o, to rewrite the method in terms of uj alone (this
is usually the preferred implementation in practice). To do so, we define
two operators, R and L. The operator R : V}, — X} is given by R(v) =
Eeefh re([v]), or, equivalently,

/Q R(p)-7de = — Z/[[@]]{T}ds Vr € . (3.6)

e€lp

The operator L : L*(|J &) — X, is given by

/QL( Td:L’—Z/Lp[[ lds V1€ 5. (3.7)

ecély

Denoting by Ps the L2-projection onto X, we can now rewrite equation
(3.4) as

op = Pg(Vuh) + R(Uh) + L(’y . [[uh]]), (38)

and equation (3.5) as

;/Koh-Vvda::/gfvda:—k/gah-(—R(v)+L(ﬂ-[[v]]))
—Z/ (Tun]) -[v]ds. (3.9)

ecély

Here we mean by 8 and + the functions on |J &, which are given by 8¢ and
~¢, respectively, on each edge e. Finally, inserting (3.8) in (3.9), we get

Z/ (Pe(Vun) + Rlun) + Ly - [un])) - (Vo + Bw) ~ L(B - [v])) de
K K
+Z/ (Tun]) - [v ]]ds_/fvda: (3.10)

e€éy
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Note that the second sum on the left-hand side of (3.10) is symmetric with
respect to up and v. Indeed

> [t @m - [o1as

ecEp V€
Z /ne[[uh]] [v]ds, if a¢ is defined by (3.2),
— ecEp v €
Z n°re([un]) -re([v])dz, if a®is defined by (3.3).
e€é

It is thus clear that a symmetric stiffness matrix is obtained if we choose
B¢ = —~¢ for all e. This choice was suggested by Cockburn and Shu [15] for
the LDG methods.

In practice the inclusion VP(K) C X (K) generally holds. In that case
the projection Py is not needed in (3.10).

Finally, we remark that if the support of v is contained in a single element
K, then the support of R(v) will generally contain all the elements that
contain an edge of K. Consequently the product R(up) - R(v) in (3.10) will
generally have a big negative impact on the sparsity of the stiffness matrix.
This problem is much less severe when the numerical fluxes are independent
of Oh.

4 Numerical fluxes independent of oy,

First we consider, instead of (3.1), the following numerical fluxes:
he™ = {Vup} —a([un]) + 8°[Vur],  h5% = {un} +7°[un],

where 3¢ and ¢ are still vector-valued functions on e. Let us proceed now
to the elimination of the variable o, as we did at the end of the previous
section. By using the definitions of R and L, (3.6) and (3.7), respectively, a
simple computation gives us that

; /K(PE(VUh) + R(up) + L(y - [un])) - Vo

+ Vup - (R(v) = L(B - [v])) dz (4.1)
+ a’([un]) - [v]lde = | fode.
3 teie= |

For = v = 0 and « chosen as in (3.2), we recover the old IP method of
[16] and [1], while for § = v = 0 and « as in (3.3) we recover the second
formulation of the DG method of Bassi and Rebay, see [7]. As proven in [11],
under rather general assumptions, and for triangular elements, the scheme
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is stable and optimally convergent whenever n¢ > 3, where the number 3
represents, in essence, the number of edges per element.

Notice that now the number of non-zero entries of the stiffness matrix is
reduced to its minimum. This is due to the fact that the term R(up) - R(v)
that appeared in (3.10) is not present anymore in (4.1).

We now consider another family of numerical fluxes. Let us choose:

he = {Vun} —a([un]),  BG% = {un} + 0[un] - ni, (4.2)

where ( and § are real parameters. Different choices for these parameters
will select different methods. We point out immediately that for § # 0 the
corresponding methods will not be completely conservative, and for { # 1
consistency will be violated.

Using (4.2) in (2.1)—(2.2) and proceeding in the elimination of o} as be-
fore, we get

Z/ (Ps(Vup) - Vo + (1 = 26)R(up) - Vo + (Vuy, - R(v)) dz
< K

+2/ [us]) - [v ]]da:—/fvda:

e€éy

(4.3)

For d =1,(=1,a° =0, and VP(K) C X(K) (so restricted to VP(K),
Ps; reduces to the inclusion operator and can be suppressed), this is exactly
the DG method of Baumann and Oden. To see this, let us rewrite the above
equation. We start by noting that

/Vu R(v Z/[[ {Vu}ds = — Z/ q”DanK

eEln
where we set, in each element K, for every e € 0K,

1 .
(IUD — §(vmt _ Uezt)e’

with obvious meaning of the symbols. With this notation and when VP(K) C
Y (K), the equation (4.3) can be rewritten as

Z(/ Vuh-Vvda:+/ ((25‘1)0uh|)——<q Dauh) )

+ 3 [aqwD-[las= [ foas

e€ly

which is nothing but the DG method of Baumann and Oden when § = (=1
and af = 0, as claimed. This scheme has been analyzed by Oden, Babuska,
and Baumann [20], and requires some extra assumptions to achieve stability,
e.g., polynomials of degree > 2. The situation would clearly improve by taking
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a® as in (3.2) or (3.3) with n° > 0. This is also indicated by Siili, Schwab,
and Houston in [24] and [25], where a full analysis of these methods (with
0=0o0r1,¢=1and af as in (3.2), ¢ > 0) is performed.

On the other hand, by taking § = 1/2 and ¢ = 0 in (4.2), equation (4.3)
becomes

S [a @D tolde= [ foan

Z/ Px(Vuy) - Vodz +
K VK e€&p

This, when VP(K) C ¥(K), can be seen as an extension of the Babugka-
Zlamal IP method [3] to second order elliptic problems, when af is chosen as
in (3.2). If instead, a° is chosen as in (3.3), we obtain the penalty formulation
proposed in [12]. Note that both methods are inconsistent, so that, in both
cases, n° has to go to +o0o when the meshsize tends to zero, although with
different speed for the two cases; for triangular grids, n¢ should behave as
le|=2P=1 in the former case, and as |e|~?” in the latter, where p is the degree
of the polynomials in P(K).

5 Concluding remarks

In this paper, we have proposed a unified framework to study a large class of
DG methods for elliptic problems. This class includes the classical IP methods
as well as practically all the recently introduced DG methods. The following
table summarizes the flux choices needed to obtain the methods discussed; for
all these methods P(K) is a standard polynomial space and ¥(K) is taken
large enough to contain VP(K).

Method heK hoK
Bassi—Rebay 1 {on} {un}
Brezzi et al. 1 {on} +n{re([un])} {un}

LDG {on} —nlun] +B[on]  {un} +7°Tunl
IP {Vur} —n°lun] {un}
Bassi-Rebay 2 {Vup}+n¢{re([un])} {up}
Baumann—Oden {Vup} {up} = [un] - nx
Babugka-Zlamal nun] Un|K

Brezzi et al. 2 +n¢{re([un )} un| K
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We saw that this class subdivides naturally into completely conservative
methods and partially conservative methods, on the one hand, and into meth-
ods whose fluxes are independent of o, and methods who aren’t. We saw that
completely conservative methods give rise to symmetric problems when the
parameters of their numerical fluxes are suitably defined, and that partially
conservative methods might give rise to non-symmetric methods. We also
saw that DG methods whose numerical fluxes are independent of o, produce
stiffness matrices with a remarkably smaller number of non-zero entries.

We believe that such a unified framework could facilitate the understand-
ing of the various methods and their relationships, as well as a possible unified
analysis of their convergence properties.
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