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Abstract.  We present a mixed finite element approximation of an elliptic
problem with degenerate coefficients, arising in the study of the electromag-
netic field in a resonant structure with cylindrical symmetry. Optimal error
bounds are derived.

Subject Classifications: AMS(MOS): 66N30; CR: G1.8

1. Introduction

We shall present a mixed finite element approximation of the following
elliptic problem with degenerate coefficients

1
—div(—Yu) = Ed in €,
Ty Ty (1.1)

u =0 on 02,
where € is a bounded open set of R? defined by
Q= {(z1,72) ER? : 0< 21 < g(x2), 72 € (a,b)}, (1.2)

with ¢ smooth and positive. We shall assume (2 to be a convex polygon
defined as in (1.2) with ¢ : [a,b] — R piecewise linear continuous and
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symmetry properties allow to transform the original 3-D problem, governed
by Maxwell’s equations in the vacuum, into an eigenvalue problem for the
operator in (1.1), see Fernandez, Parodi (1985). A conforming finite element
discretization for the eigenvalue problem has been introduced and analyzed in
Marini, Pietra (1993). In this paper a mixed finite element scheme for (1.1) is
presented and optimal error bounds are derived. As in the conforming case,
special care for the presence of the singular weight a;l_l must be taken, since
classical elements cannot be used and standard techniques do not directly
apply. Introducing the spaces

W = {v : xl_l/zv € Lz(Q)} ,
and
H={v:z7"% € L*(Q),27*Vv € (L2(Q))%,v = 0 on 0Q\{z1 = 0}},

if f € W, problem (1.1) has a unique weak solution in H , and the following
regularity result holds

1
feW = 27*D*uc L*(Q) Va< 3" (1.3)

Moreover, (1.3) implies
feEW = 27*Duc L*(Q) Va< g , (1.4a)
leT™Dully o < Cla ) Il Va < g . (1.4b)
In order to introduce the mixed formulation of (1.1), let us define the space
v={r:are @2Q)? o divr € 2@},

with the usual graph norm ||7][?, = ||a:}/21| (2]7Q+||a:i/2divz||%7Q (here and in

the following || -|lo.p denotes the norm in L?(D) orin (L?(D))* k=2,4).
Define

a(g, 1) = / z10-1dx 0,7 €V,
Q
1
b(r,v) = / divcvde 7eV,oeW, L(v) :/ — fvdx v eW.
Q Q71
The mixed formulation of (1.1) is then the following

find (o,u) € V x W such that
a(g,7) — b(r,u) = 0 Vr eV, (1.5)
b(o,v) = L(v) YoeW.
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Moreover, the Inf-Sup condition (see Brezzi, Fortin (1991), e.g.) holds:

b
98>0 : voe W0}, Ire VA[0} : —BY o g (1.7)
Izl[v[lv]lw
To prove (1.7), let us consider the following auxiliary problem: for v € W,
let w be the solution of —div(z]'Vw) = z]'v in Q, w =0 on 99Q.
Take then 7 = —z]'Vw. Clearly, 7 € V and [|7||v < C||v||w . Hence we

deduce b(r.v) o] )
T,v vi|w
= > (1.8)
Izllvllvllw izl = C
and (1.7) holds with 8 = 1/C. According to the general theory (Brezzi,
Fortin (1991)), (1.6) and (1.7) imply that problem (1.5) has a unique solution
(o, u), with

o = —z7'Vu. (1.9)
For a < 1/2, define the space
Voo = {T:27% e (L3(Q)%,z17*Dr e (L2(Q)*} NV, (1.10)
with the graph norm ||r[[2 = [lo7*7|3 o +|[o1 D[ o+ [ley divr|]Z o
o Q ? ? ?

Note that, due to (1.9) and the regularity (1.3)-(1.4) of the solution u of
(1.1), one has g € Vo 0, Vo < 1/2, and

ol < Cllflw - (1.11)

Moreover, the Inf-Sup condition (1.7) holds with ‘Nfaﬂ instead of V' :

46 >0 : Yo e W\{0}, 3z € V, o\{0} : _ bzw) > . (1.12)

’ Tz, _Tlellw
The outline of the paper is the following. In Section 2 the mixed finite
element discretization is presented and the interpolant operators are defined.
Section 3 contains the error estimates.

2. The discrete formulation

Let {T}}n be a regular family of decompositions (see Ciarlet (1978), e.g.) of
Q) into rectangles and triangles as in fig.1. For each T}, , denote by T (resp.
K) the generic triangle (resp. rectangle) of T}, ; hr will denote the element
mesh size of T, hy, hy the edges of K, and h the global mesh size.
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Figure 1. Example of mesh

Note that the regularity assumption on the family {7}};, implies the
existence of three positive constants ¢y, ¢s, and c3, independent of A, such
that, for every element of T},

c1 < Z—T <1 or ca < % < s, (2.1)

T 1

where, as usual, pr is the diameter of the inscribed circle. Immediate con-
sequence of the regularity assumption on 7} is the following property that
will be used throughout the paper.

Proposition 2.1 Let T be a triangle of T}, . Set a = mint x1 . Then, there
exists a constant C' independent of h such that

hr/a < C. (2.2)

Next, define our finite element spaces as

Vi={reV:rg € RT(K) VK €Ty, 7y € RT(T) VT € Tn}, (2.3)

Wyp={veW: vk =az1 VK €T}, (a € R);vr € P(T)VT € T}, }, (2.4)

where RT (K) and RT (T) denote the lowest order Raviart-Thomas elements
on rectangles and triangles, resp. (see Raviart, Thomas (1977)):

RT(K) ={r = (ax1 + b,cxa +d) , a,b,c,d € R},
RT(T) ={r = (ax1 + b,axa+¢) , a,b,c € R}. (2.5)

The discrete problem is then

find (o, un) € Vi x Wy, such that
a(agy,r) — b(t,up) = 0 V1 € Vi, (2.6)
b(ay,,v) = L(v) Yv e Wy, .
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(at least) as z1 in a strip close to {z; = 0} . The choice of subdividing the
strip into rectangles, although not crucial, is the simplest one for the error
analysis.

Note that, although the finite element spaces (2.3)-(2.5) are very similar to
the Raviart-Thomas spaces, the analysis is not straightforward, and proper-
ties such as the commuting diagram property (see Douglas, Roberts (1985))
fail here (div V}, # W} ). As usual in mixed finite elements, the analysis will
rely on a proper definition of the interpolant operators and on the study of

their properties. First, for any 0 < o < 1/2, define II, : V, o — V}, locally
on K by

/(T1 () )da = 0 2.7)

K

/:Ul(z —Ip7) -nds =0 V edge e of K\{z1 =0}, (2.8)

e

and locally on T by

/(z— IIy7) - nds =0 V edge e of T . (2.9)

e

It is easy to check that IIj is well defined. In particular, note that (2.8) and
(2.9) are compatible, since the only possible common edge e of a rectangle
and a triangle is a vertical edge (see fig.1). Moreover, it follows immediately
from Gauss theorem and the definition of I1I; that

b(r — pr,v) =0 YVveW,. (2.10)

Proposition 2.2 Let 11 : V, o — Vj, be the interpolant operator defined
by (2.7)-(2.9). Then, there exists a constant v independent of h, such that

Mazrllv <~lzlly;  Vre Voo, with 0 < o < 1/2 . (2.11)
In order to prove Proposition 2.2 we shall use the following Lemma.

Lemma 2.1 For 7 € V%Q , with 0 < a < 1/2, on any rectangle K we have

/ o |rPde < OHF2 ]2 (2.12)

/ ,

/$1|th|2da: <onter2 (2.13)
a,K

K



/ r1|T|"dz :/ |r “T|%ey " dre < hi“a/ |z " T|%dT . (2.14)
K K K

~

In order to prove (2.13), consider the affine mapping F : K — K =
(0,1) x (0,1), and set II7(Z) = I, 7(F~(Z)) . It is immediate to check that

~

IIr (%) = I7(%) , so that

/x1|1'[hz|2d:v = |K|h1/:?1|ﬁf|2d§. (2.15)
K K

From the explicit expression for I17(%), which can be deduced from (2.7)-
(2.8), we get

[@liizras < CURIE , + 22 a2 ) (2.16)

~

K

Since T € ‘7%9, with 0 < a < 1/2 we have
||f||§7ﬁ:/|:f;“f|2§%ad£§ /|§;"E|Zda?: |K|—1h§“/|x;az|2dx. (2.17)
K K K

On the other hand we can write

A~ N A~

278l < CIREIS 2 < CUREIR 2 + 1B o + 121DZIP ), (2.18)

where

I < P ¢ (2.19)

12072 = [ 8- "DEPatedz < [ |5 DEPds
K K

< O p2? / e Dr|?dz . (2.20)
K

Finally, from (2.15)-(2.20) we obtain (2.13).

Proof of Proposition 2.2 Consider first the contribution of a generic rectangle
K. We have from (2.10), with v =27 on K, and v =0 elsewhere,

divITyr), = /xldivzdx//xldx . (2.21)
K K
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/ z1(divIl,7)de < / z1(divr)“dz . (2.22)
K K

Finally, (2.13) and (2.22) imply

VK [l < Cllrlz (2.23)

where Vi denotes the restriction of V' to the generic rectangle K. Let us
consider now a triangle T, and recall that on T 7 € (H(T))? and Il is
the usual Raviart-Thomas-interpolant. Let a = minT x1, as in Proposition
2.1, and note that maxt x; < a4+ ht. Then, we have

Mzl < (@ + hr) Izl aivery (2.24)
and from Raviart, Thomas (1977)
Tzl (aivery < CUIZIG x + PTIDZIG ¢ + [|divzll§ r) (2.25)

where H (div;T)={r € (L?*(T))? divr € L?*(T)}, and Vr denotes the re-
striction of V' to the generic triangle T. Moreover,

= [lorerPateds < @+ b el (220)
1
1Dz 2 = / ol Defal R < ol Drlf e (220
and .
. 1/2 4.
divzllf p < =l *dive| - (2:28)

Using (2.2), from (2.24)-(2.28) we conclude

VT Iz, < CllrlE (2.29)

More precisely, in the bound of the term coming from (2.27), we used the
trivial fact that (2.2) implies (a + ht)a?*h3/a?> < C. Actually a sharper
estimate, that will be useful in the next section, can be derived from (2.2):

hgf(d + hr) _ h1+2a(h’_T)1—2a(& + hr
a2-2o T ta a

) < Chyt?e . (2.30)

Summation of (2.23) and (2.29) over all the elements of T}, gives (2.11).



/ Pyvdz = / vdz VE = element of T},. (2.31)
B E

Notice that (2.31) implies

PhU|T =

Pruk = $1/ vdx /xlda: VK € Ty, (2.32)
/ VT € T,. (2.33)
T

Moreover,by definition of P, , we deduce, for v € W,
b(t, Phv —v) =0 V1 e V. (2.34)

Since v € W, using (2.32) and Cauchy-Schwarz inequality we deduce, on a
generic rectangle K,

Py’ _ _
/ Moy = (/ T 12, $1/2d$)2// zidr < ||z 1/21)||3 k- (2.35)
K T1 K K ’

Consider now a generic triangle T € T}, . From (2.33) we have (with the
notation of Proposition 2.1)

Pyv? 1 1 1
/h—vdx = —2(/ vdx)? | —dx < ~(/ vdzx)?. (2.36)
T T1 T2 Jr T %1 T|a

Since maxrtzy < a+ ht, via Cauchy-Schwarz inequality, we have

([dea:)zz(/xl_l/ 2y ?dx)? < @+ ho)|T) |2y 02 1 (2.37)
T

Hence, using (2.2) in (2.36)-(2.37), we obtain

P .
/ Zf dz < Cllzy 0|3 (2.38)
T

Finally, (2.35) and (2.38) give the following Proposition

Proposition 2.3 Let P, : W — W}, be the interpolant operator defined
by (2.31). Then, there ezists a constant C independent of h, such that

||th||W < C||U||W Vv € W. (239)



b(r,v)

3 >0 : Yo e Wiy\{0}, 3z € V4 \{0} : llv vl [w

> B, (2.40)

with (8 independent of h .
Since W), C W, the discrete Inf-Sup condition follows from (1.12), (2.10),
and (2.11) with 8= /v (see Brezzi, Fortin (1991), e.g.).

3. Error Estimates

The first theorem in this section follows by standard arguments (as in
Brezzi, Fortin (1991)), using the properties of the interpolant operators IIj,
and P, . Nevertheless for completeness we present the proof.

Theorem 3.1 Problem (2.6) has a unique solution (o, up) , and the follow-
ing estimates hold

121 %(@ — ap)lloe < ||#1/*(a — Mho)]

[u—wunllw < C (|lu= Paullw +[l21*(¢ — o)

0,92 (3.1)
0.2), (3.2)

with (o, u) solution of (1.5), and C a constant independent of h .

Proof Uniqueness follows from the discrete Inf-Sup condition (2.40). By
subtracting (2.6) from (1.5) we obtain the error equation

a(c — oy, 7) — b(t,u—wup) = 0 VT eV, (3.3)
b(loc — gy, v) =0 Yo e Wy . .
We have
alc — oy, 0—0,) =alc —a, 0 —po)+alc —ap, o —ap,) - (3.4)

The first error equation and the property (2.34) of P}, give
a(c—ay, Upe —ap,) = b(Hpa — gy, u—up) = b(lpo — g, Pou—uy) - (3.5)

Using next the property (2.10) of II;, and the second error equation we
deduce
b(Ilpo — oy, Phu — up) = b(o — oy, Pou—up) =0 . (3.6)

Hence, from (3.4) we obtain (3.1).
The Inf-Sup condition (2.40), the property (2.34) of Pj, and the first error
equation imply

_ b(t, Pyu — — b —
||PhU, N Uh“W S /6 1 sup (I) hlU Uh) _ 6 1 sup (I? U Uh)
reVi\{0} z[[v revin{oy  lIzllv
= B_l sup —a(g — 9, 7) (3.7)
7€V \{0} ||I||V
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1Phu — unllw < Cllzy" (@ — 1ra)lfo.0 (3.8)

which gives (3.2), by triangle inequality.

It remains to estimate the interpolation errors. We can state the following

Theorem 3.2 Let (o, u) be the solution of (1.5), and let Py, I, be de-
fined by (2.31), (2.7)-(2.9). Then, there exist two positive constants Cy, Cy
independent of h such that:

lu — Pyullw < CrLA||f|lw, (3.9)
212 (c — ho)lloe < Co b || f|lw 0<e<l. (3.10)

Proof Consider first the contribution of a generic triangle T € T}, , and recall

that, on T, P, is the classical L?- projection on the constants, so that we
have (see Ciarlet (1978), e.g.)

- P 2 h?
/ |U(CU) . hU(CU)| dr < C%HDU’H%E? (3.11)
1

with @ = minpx;. Using (1.4) and maxpz; < a + hp, we obtain, for
0<a<3/2,

IDullfr = [ @reDwsteds < 0@+ b |lorDullfr - (312)
T

From (2.2) it follows that (a + hr)**/a < C, for a > 1/2. Hence, from
(3.11) and (3.12) we obtain

— P 2
vr [ MD=BMOE g < oo pul
T 1
Let us now consider a rectangle K. We have from (2.35)

e
), e.9.) /'“ wel@)l 4, <4/ @I, (3.14)

Since the regularity of u implies that u = 0 for x; = 0, the fundamental
theorem of calculus gives

I 8
u(xy,x2) = / au (t, o)t ¥t~ dt, a.e. . (3.15)
o dr1
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U(.Tl,aj'z)z SC.’E%OH—I/ (38; (t .I‘Q)t_ > dt, (316)

0

giving

2
/'“ d<C’/ 2a/< tx2t—>dtda;

1 3
§Ch%a+1||x1_aDu||%7K, 5 <a<s. (3.17)

Substituting in (3.14) yields

_p 1 3
VK / |u hU )| dr < Ch2a+1||x1—aDu||g7K7 —5 <a< 5 (318)

Summation of (3.13) and (3.18) over all the elements of T}, , and (1.4b) give
(3.9). In order to prove (3.10), consider first a generic triangle T. Using a
similar argument as in Proposition 2.2 (and same notation), we obtain

/x1|g —Mpo|?dr < C(a + hr)ha / |Dg |*dz. (3.19)
T T

Since ¢ € ‘70[75] , with 0 < < 1/2, we deduce

/|Da| dr < - /|a;1 Do dz | (3.20)
and therefore
ht)
/$1|g —Ilpo|?de < C aj—z ; / Do |?dx . (3.21)
T T

Using (2.30) in (3.21)we conclude

T /:mg ~Moffde < CRglls  0<a<1/2. (3:22)
o, T
T

On a rectangle K we apply Lemma 2.1 to obtain

VK /x1|g ~Moffde < CR g2 0<a<1/2.  (3.23)
a,K
K
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