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1. Introduction

The Virtual Element Method (VEM), introduced in [1] and further developed in [2], can be seen as the extension of the
Finite Element Method (FEM) to decompositions into almost arbitrary polygons and/or polyhedra. Since the first paper in
2013 [1] the Virtual Element approach has been applied to a number of applications: linear elasticity in two and three
dimensions ([3,4], respectively), general advection–diffusion–reaction problems, both in primal [5] and in mixed form [6],
Helmholtz problem [7], and plate bending problems in the Kirchhoff–Love formulation [8]. In [8] a family of elements was
constructed and analysed, showing the ductility of the approach to design C1-elements. Optimal convergence rates were
proved in the energy norm, i.e., in H2. Namely, order k � 1, with k � 2 whenever the discrete space Vh contains locally
polynomials of degree k. In the present paper we prove optimal estimates also in H1 and in L2, obtained via classical duality
arguments, and we provide numerical results confirming the theoretical estimates.

We point out that the use of C1-approximations is of interest not only for plate bending problems, although the
family of elements we are dealing with was originally introduced having in mind plates. In many other applications the
presence of fourth order operators calls for higher continuity. For example, Cahn–Hilliard equation for phase separation, or
Navier–Stokes equations in the stream-vorticity formulation contain the biharmonic operator, exactly as in plate bending
problems, which we will refer to throughout the paper.

An outline of the paper is as follows. In Section 2 we state the continuous problem and fix some notation. In Section 3 we
recall the VEM-approximation and the convergence result given in [8]. In particular, in Section 3.3 we propose a different
approximation of the loading term, more suited for deriving optimal estimates in L2 and H1. In Sections 4 and 5 we prove
error estimates inH1 and in L2, respectively. Numerical results are presented in Section 6, and a comparisonwith the classical
Clough–Tocher and Reduced-Clough–Tocher finite elements is carried out.

Throughout the paper we shall use the common notation for the Sobolev spacesHm(D) form a non-negative integer and
D an open bounded domain. In particular (see e.g. [9,10]) the L2(D) scalar product and norm will be indicated by (·, ·)0,D
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or (·, ·)D and k · k0,D or k · kD , respectively. When D ⌘ ⌦ the subscript D will often be omitted. Finally, Pk will denote the
space of polynomials of degree  k, with the convention that P�1 = {0}, and C will denote a positive constant independent
of the mesh size h.

2. The continuous problem

Let⌦ ⇢ R2 be a convex polygonal domain occupied by the plate, let� be its boundary, and let f 2 L2(⌦) be a transversal
load acting on the plate. The Kirchoff–Love model for thin plates (see e.g. [10]) corresponds to look for the transversal
displacement w, the solution of

D�2 w = f in⌦, (2.1)

where D = Et3/12(1�⌫2) is the bending rigidity, t the thickness, E the Youngmodulus, and ⌫ the Poisson’s ratio. Assuming
for instance the plate to be clamped all over the boundary, Eq. (2.1) is supplemented with the boundary conditions

w = @w

@n
= 0 on � . (2.2)

The variational formulation of (2.1)–(2.2) is:
⇢
Find w 2 V := H2

0 (⌦) solution of
a(w, v) = (f , v)0 8v 2 H2

0 (⌦),
(2.3)

where the energy bilinear form a(·, ·) is given by

a(w, v) = D
h
(1 � ⌫)

Z

⌦

w/ijv/ij dx + ⌫

Z

⌦

1w1v dx
i
. (2.4)

In (2.4) v/i = @v/@xi, i = 1, 2, and we used the summation convention of repeated indices. Setting kvkV := |v|2,⌦ , it is
easy to see that, thanks to the boundary conditions in V and to the Poincaré inequality, this is indeed a norm on V . Moreover

9M > 0 such that a(u, v)  MkukVkvkV u, v 2 V , (2.5)

9↵ > 0 such that a(v, v) � ↵kvk2
V v 2 V . (2.6)

Hence, (2.3) has a unique solution, and (see, e.g. [9])

kwkV  Ckf kL2(⌦). (2.7)

3. Virtual element discretization

We recall the construction of the family of elements given in [8], and the estimates there obtained. The family of elements
depends on three integer indices (r, s, m), related to the degree of accuracy k � 2 by:

r = max{3, k}, s = k � 1, m = k � 4. (3.1)

Let Th be a decomposition of ⌦ into polygons K , and let Eh be the set of edges in Th. We denote by hK the diameter of K ,
i.e., the maximum distance between any two vertices of K . On Th we make the following assumptions (see e.g. [1]):
H1 there exists a fixed number ⇢0 > 0, independent of Th, such that for every element K (with diameter hK ) it holds

(i) K is star-shaped with respect to all the points of a ball of radius ⇢0 hK , and
(ii) every edge e of K has length |e| � ⇢0 hK .

3.1. Definition of the discrete space Vh

On a generic polygon K we define the local virtual element space as

V (K) :=
⇢
v 2 H2(K) : v|e 2 Pr(e),

@v

@n|e 2 Ps(e) 8e 2 @K , �2v 2 Pm(K)

�
.

Then the global space Vh is given by

Vh = {v 2 V : v|K 2 V (K), 8K 2 Th}. (3.2)

A function in Vh is uniquely identified by the following degrees of freedom:

• The value of v(⇠) 8 vertex ⇠ (3.3)
• The values of v/1(⇠) and v/2(⇠) 8 vertex ⇠ (3.4)
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• For r > 3, the moments
Z

e
q(⇠)v(⇠)d⇠ 8q 2 Pk�4(e), 8e 2 Eh (3.5)

• For s > 1, the moments
Z

e
q(⇠)v/n(⇠)d⇠ 8q 2 Ps�2(e), 8e 2 Eh (3.6)

• For m � 0, the moments
Z

K
q(x)v(x) dx 8q 2 Pm(K) 8K . (3.7)

Proposition 3.1. In each element K the d.o.f. (3.3)–(3.7) are unisolvent. Moreover, (3.3), (3.4), and (3.5) uniquely determine a
polynomial of degree  r on each edge of K , the degrees of freedom (3.4) and (3.6) uniquely determine a polynomial of degree
 s on each edge of K , and the d.o.f. (3.7) are equivalent to prescribe⇧0

mv in K , where, for m a nonnegative integer,

⇧0
mv is the L2(K) � projector operator onto the space Pm(K). (3.8)

Remark 3.1. We recall that our assumptions on Th allow to define, for every smooth enough w, an ‘‘interpolant’’ in Vh with
the right interpolation properties. More precisely, if gi(w), i = 1, 2, . . . G are the global d.o.f. in Vh, there exists a unique
element wI 2 Vh such that

gi(w � wI) = 0 8i = 1, 2, . . . , G. (3.9)

Moreover, by the usual Bramble–Hilbert technique (see e.g. [10]) and scaling arguments (see e.g. [11]) we can prove that

kw � wIks,⌦  C h��s |w|�,⌦ s = 0, 1, 2, 3  �  k + 1 (3.10)

(with C > 0 independent of h) as in the usual Finite Element framework.

3.2. Construction of ah

We need to define a symmetric discrete bilinear formwhich is stable and consistent. More precisely, denoting by aKh (·, ·)
the restriction of ah(·, ·) to a generic element K , the following properties must be satisfied (see [1]). For all h, and for all K
in Th,

• k-Consistency: 8pk 2 Pk, 8v 2 V (K)

aKh (pk, v) = aK (pk, v). (3.11)

• Stability: 9 two positive constants ↵⇤ and ↵⇤, independent of h and of K , such that

8v 2 V (K) ↵⇤ aK (v, v)  aKh (v, v)  ↵⇤ aK (v, v). (3.12)

The symmetry of ah, (3.12) and the continuity of aK imply the continuity of aKh :

aKh (u, v) 
⇣
aKh (u, u)

⌘1/2 ⇣
aKh (v, v)

⌘1/2

 ↵⇤ M kuk2,K kvk2,K for all u and v in V (K). (3.13)

In turn, (3.12) and (3.13) easily imply

8v 2 Vh ↵⇤ a(v, v)  ah(v, v)  ↵⇤ a(v, v), (3.14)

and

ah(u, v)  ↵⇤ M kukV kvkV for all u and v in Vh. (3.15)

Next, let⇧K
k : V (K) �! Pk(K) ⇢ V (K) be the operator defined as the solution of

8
<

:

aK (⇧K
k  , q) = aK ( , q) 8 2 V (K), 8q 2 Pk(K)Z

@K
(⇧K

k  �  ) = 0,
Z

@K
r(⇧K

k  �  ) = 0. (3.16)

We note that for v 2 Pk(K) the first equation in (3.16) implies (⇧K
k v)/ij = v/ij for i, j = 1, 2, that joined with the second

equation gives easily

⇧K
k v = v 8v 2 Pk(K). (3.17)
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Hence,⇧K
k is a projector operator onto Pk(K). Let then SK (u, v) be a symmetric positive definite bilinear form, verifying

c0 aK (v, v)  SK (v, v)  c1 aK (v, v), 8v 2 V (K) with⇧K
k v = 0, (3.18)

for some positive constants c0, c1 independent of K and hK . We refer to [8] for a precise choice of SK (u, v). We just recall
that SK (u, v) can simply be taken as the euclidean scalar product associated to the degrees of freedom, properly scaled to
satisfy (3.18). Then set

aKh (u, v) := aK (⇧K
k u,⇧

K
k v) + SK (u �⇧K

k u, v �⇧K
k v). (3.19)

Clearly the bilinear form (3.19) verifies both the consistency property (3.11) and the stability property (3.12).
We postpone the construction of the right-hand side, and recall the convergence result of [8].

Theorem 3.1. Under assumptions H1 on the decomposition the discrete problem:
⇢
Find wh 2 Vh solution of
ah(wh, vh) = hfh, vhi 8vh 2 Vh

(3.20)

has a unique solutionwh. Moreover, for every approximationwI of w in Vh and for every approximationw⇡ of w that is piecewise
in Pk, we have

kw � whkV  C
⇣
kw � wIkV + kw � w⇡kh,V + kf � fhkV 0

h

⌘

where C is a constant depending only on ↵, ↵⇤, ↵⇤, M and, with the usual notation, the norm in V 0
h is defined as

kf � fhkV 0
h

:= sup
vh2Vh

hf � fh, vhi
kvhkV

. (3.21)

3.3. Construction of the right-hand side

In order to build the loading term hfh, vhi for vh 2 Vh in a simple and easy way it is convenient to have internal degrees
of freedom in Vh, and this means, according to (3.1) and (3.7), that k � 4 is needed. In [8] suitable choices were made for
different values of k, enough to guarantee the proper order of convergence in H2. Namely,

kw � whkV  C hk�1kwkk+1. (3.22)

In order to derive optimal estimates in L2 and H1 we need to make different choices. To this end, following [2], we modify
the definition (3.2) of Vh. For k � 2, and r and s related to k by (3.1), letWk(K) be the new local space, given by

Wk(K) :=
⇢
v 2 H2(K) : v|e 2 Pr(e),

@v

@n

����
e
2 Ps(e) 8e 2 @K , �2v 2 Pk�2(K)

�
.

For k = 2 we define the new global space as

W 2
h =

⇢
v 2 V : v|K 2 W 2(K), and

Z

K
v dx =

Z

K
⇧K

k v dx 8K 2 Th

�
, (3.23)

and for k � 3

Wk
h =

⇢
v 2 V : v|K 2 Wk(K), and

Z

K
v p↵ dx =

Z

K
⇧K

k v p↵ dx, ↵ = k � 3, k � 2 8K 2 Th

�
. (3.24)

In (3.24) p↵ are homogeneous polynomials of degree ↵. It can be checked that the d.o.f. (3.3)–(3.7) are the same, but the
added conditions on the moments allow now to compute the L2-projection of any v 2 Wk

h onto Pk�2(K) 8K , and not only
onto Pk�4(K) as before. Taking then fh = L2-projection of f onto the space of piecewise polynomials of degree k� 2, that is,

fh = ⇧0
k�2f on each K 2 Th,

the right-hand side in (3.20) can be exactly computed:

hfh, vhi =
X

K2Th

Z

K
fh vh dx ⌘

X

K2Th

Z

K
(⇧0

k�2f ) vh dx

=
X

K2Th

Z

K
f (⇧0

k�2vh) dx.
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Moreover, standard L2 orthogonality and approximation estimates yield

hfh, vhi � (f , vh) =
X

K2Th

Z

K
(⇧0

k�2f � f )(vh �⇧0
k�2vh) dx

 C
X

K2Th

hk�1
K |f |k�1,K kvh �⇧0

k�2vhk0,K . (3.25)

4. Estimate in H1

We shall use duality arguments, both for deriving estimates in H1 and in L2. In view of this, let us recall some regularity
results for the problem

D�2 = g in⌦,  =  /n = 0 on @⌦. (4.1)

Since⌦ is a convex polygon, it holds (see [12])

g 2 H�1(⌦) =)  2 H3(⌦), k k3  C kgk�1, (4.2)

and

9 p with 0 < p  1 such that

g 2 L2(⌦) =)  2 H3+p(⌦), k k3+p  C kgk0.
(4.3)

The value of p depends on the maximum angle in⌦ . Moreover, there exists a ✓0 < ⇡ such that, for all ✓  ✓0 it holds p = 1,
thus giving  2 H4(⌦).

We shall prove the following result.

Theorem 4.1. Let w be the solution of (2.3), and let wh be the solution of (3.20). Then

|w � wh|1  Chk

0

@|w|k+1 +
 
X

K2Th

|f |2k�1,K

!1/2
1

A , (4.4)

with C a positive constant independent of h.

Proof. Let  2 H2
0 (⌦) be the solution of (4.1) with g = ��(w � wh):

D�2 = ��(w � wh) in⌦. (4.5)

By (4.2) we have

k k3  C k�(w � wh)k�1  C |w � wh|1. (4.6)

Let  I be the interpolant of  in W 2
h , for which it holds (see (3.10))

k �  Ikm  C h3�mk k3, m = 0, 1, 2. (4.7)

Integrating by parts, using (4.5), adding and subtracting  I , and using (2.3) and (3.20) we have:

|w � wh|21 = �(�(w � wh), w � wh)0 = (D�2 , w � wh)0

= a(w � wh, �  I) + a(w � wh, I)

= a(w � wh, �  I) + [(f , I) � hfh, Ii] + [ah(wh, I) � a(wh, I)] =: T1 + T2 + T3. (4.8)

The first term is easily bounded through (2.5), and then (3.22), (4.7), and (4.6):

T1  Chk�1kwkk+1hk k3  Chkkwkk+1|w � wh|1. (4.9)

For T2 we use (3.25) with vh =  I . Standard interpolation estimates give

k I �⇧0
k�2 Ik0,K  k I �⇧0

0 Ik0,K

 k I �  k0,K + k �⇧0
0 k0,K + k⇧0

0 ( �  I)k0,K

 ChK | |1,K
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which inserted in (3.25) gives

T2  C hk

 
X

K2Th

|f |2k�1,K

!1/2

|w � wh|1. (4.10)

It remains to estimate T3. Adding and subtracting w⇡ (=⇧0
k w) and using (3.11), then adding and subtracting  ⇡ = ⇧0

2 
and using again (3.11) we have

T3 =
X

K

(aKh (wh, I) � aK (wh, I))

=
X

K

(aKh (wh � w⇡ , I) + aK (w⇡ � wh, I))

=
X

K

(aKh (wh � w⇡ , I �  ⇡ ) + aK (w⇡ � wh, I �  ⇡ )).

From (3.15), (2.5), standard approximation estimates, (3.22) and (4.7) we deduce

T3  C hk|w|k+1|w � wh|1. (4.11)

Inserting (4.9), (4.10), and (4.11) in (4.8) we have the result (4.4). ⇤

5. Estimate in L2

We shall prove the following result.

Theorem 5.1. Let w be the solution of (2.3), and let wh be the solution of (3.20). Then

kw � whk0  C

8
>>>>>><

>>>>>>:

h2

0

@|w|3 +
 
X

K2Th

|f |21,K
!1/2

1

A for k = 2

hk+p

0

@|w|k+1 +
 
X

K2Th

|f |2k�1,K

!1/2
1

A for k � 3,

(5.1)

with C > 0 independent of h, and p the regularity index given in (4.3).

Proof. We shall treat only the cases k � 3, the reason being that, if � is the order of convergence in H2, the expected order
in L2 is given by min{2�,� + 2}. Hence, for k = 2 we can expect not more than order 2, which is a direct consequence of
the H1-estimate (4.4):

for k = 2, kw � whk0  C |w � wh|1  Ch2

0

@|w|3 +
 
X

K2Th

|f |21,K
!1/2

1

A . (5.2)

Let then k � 3, and let  2 H2
0 (⌦) be the solution of (4.1) with g = w � wh:

D�2 = w � wh in⌦. (5.3)

By the regularity assumption (4.3) we have

k k3+p  C kw � whk0. (5.4)

Let  I be the interpolant of  in W 3
h , for which it holds

k �  Ikm  C h3+p�mk k3+p, m = 0, 1, 2. (5.5)

Then, from (5.3) and proceeding as we did in (4.8) we have

kw � whk2
0 = (D�2 , w � wh)0 = a( , w � wh)

= a(w � wh, �  I) + [(f , I) � hfh, Ii] + [ah(wh, I) � a(wh, I)] =: T1 + T2 + T3. (5.6)

The rest of the proof follows exactly the steps used for proving Theorem 4.1. Thus, from (3.22), (5.5) and (5.4),

T1  Chk�1kwkk+1h1+pk k3+p  Chk+pkwkk+1kw � whk0. (5.7)
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Fig. 1. VEM31 element on the left, VEM32 element on the right.

Fig. 2. Virtual elements compared with the corresponding finite elements. Left: VEM31 and CLTR. Right: VEM32 and CLT.

Fig. 3. 100 and 1600-polygons Voronoi mesh.
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Fig. 4. Virtual elements on different meshes. Left: VEM31 element. Right: VEM32 element.

For the term T2 we use again (3.25) with vh =  I , which now gives

k I �⇧0
k�2 Ik0,K  k I �⇧0

1 Ik0,K  Ch2
K | |2,K ,

so that

T2  C hk+1

 
X

K2Th

|f |2k�1,K

!1/2

kw � whk0. (5.8)

Finally, proceeding exactly as for (4.11),

T3  C hk�1|w|k+1h1+pk k3+p  C hk+p|w|k+1kw � whk0. (5.9)

Collecting (5.7)–(5.9) in (5.6) gives

kw � whk0  C hk+p

0

@|w|k+1 +
 
X

K2Th

|f |2k�1,K

!1/2
1

A

and the proof is concluded. ⇤

6. Numerical results

In order to assess accuracy and performance of virtual elements for plates, we present numerical tests using the first
two elements of the family here described. The corresponding polynomial degree indices, defined in (3.1), are r = 3, s = 1,
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m = �2 and r = 3, s = 2,m = �1. Thus, the elements are named VEM31 and VEM32, respectively. The degrees of freedom,
chosen according to the definitions (3.3)–(3.7), are the values of the displacement and its first derivatives at the vertices ((3.3)
and (3.4)) for VEM31, and the same degrees of freedom (3.3)–(3.4) plus the moment of order zero of the normal derivative
(see (3.7)) for VEM32. The two elements are presented in Fig. 1. They are the extensions to polygonal elements of two well-
known finite elements for plates: the ReducedHsieh–Clough–Tocher triangle (labelled CLTR), and the Hsieh–Clough–Tocher
triangle (labelled CLT) (see e.g. [10]), respectively. As a test problemwe solve (2.1)–(2.2) with⌦ = unit square and f chosen
to have as exact solution the function wex = x2(x � 1)2y2(y � 1)2. As a first test, we compare the behaviour of virtual
and finite elements; for this we take a sequence of uniform meshes of N ⇥ N ⇥ 2 equal right triangles (N = 4, 8, 16, 32),
and we plot the convergence curves of the error in L2, H1 and H2 produced by the virtual elements VEM31 and VEM32,
and the finite elements CLTR and CLT respectively. Fig. 2 shows the relative errors in L2, H1 and H2 norm against the mesh
diameter (h = 0.3536, h = 0.1768, h = 0.0884, h = 0.0442). The convergence rates are obviously the same, although
in all cases the virtual elements seem to perform a little better. Next, we test the behaviour of the virtual elements on a
sequence of random Voronoi polygonal tessellations of the unit square in 25, 100, 400, 1600 polygons with mean diameters
h = 0.3071, h = 0.1552, h = 0.0774, h = 0.0394 respectively. (Fig. 3 shows the 100 and 1600-polygon meshes). In Fig. 4
we compare the convergence curves in L2, H1 and H2 norm obtained using the virtual elements VEM31 and VEM32 on the
Voronoi meshes and on uniform triangular meshes.
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