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Abstract

Residual-free bubbles have been recently introduced in order to compute optimal
values for the stabilization methods a la Hughes-Franca. However, unless in very
special situations, (one-dimensional problems, limit cases, etc.) they require the
actual solution of PDE problems (the bubble problems) in each element. Thus
they are very difficult to be used in practice. In this paper we present, for the
special case of convection-dominated elliptic problems, a cheap way to compute
approximately the solution of the bubble problem in each element. This provides,
as a consequence, a cheap way to compute good approximations for the optimal
values of the stabilization parameters.

1 Introduction

We will present in this paper a new stabilization method for convection-diffusion prob-
lems, particularly designed to treat strongly convection-dominated problems, but able to
adapt naturally from diffusion-dominated regime to convection-dominated regime in a
very simple way. We will consider, for the sake of simplicity, the following linear elliptic
convection-diffusion problem in a polygonal domain €2:

Ly = f in Q
(1)
u =0 on 0,
where
Lu=—cAu+a- Vu. (2)

Let 7, = {K} be a family of regular discretizations of €2 into triangles K, and let
hx = diam(K), h = maxy hx. We assume that the diffusion £ is a positive constant,
and both the convection field a and the right-hand side f are piecewise constant with
respect to the triangulation 7. If the operator L is convection-dominated, it is well
known that the exact solution of (1) can exhibit boundary and internal layers, i.e., very
narrow regions where the solution and its derivatives change abruptly. As a consequence,
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if we employ a classical finite element method with a discretization scale which is too big
to resolve the layers, the solution that we get has in general large numerical oscillations
spreading all over the domain, and can be completely unrelated to the true solution. To
properly resolve the layers, the discretization parameter must be of the same size of the
ratio between diffusion and convection. In many problems, this choice would lead to
a huge number of degrees of freedom, making the discretization intractable. In recent
years, many stabilization methods have been invented to cope with this kind of problem.
Among them, let us recall the SUPG method (Streamline-Upwind Petrov/Galerkin),
first described in [5], which has been successfully applied to many different situations
(see e.g. [6] and the references therein). As it is well known, the method corresponds
to adding a consistent term providing an additional diffusion in the streamline direction
(see (10) below). The amount of such additional diffusion is tuned by a parameter 7
that must be chosen in a suitable way. According to thumb-rule arguments and a lot
of numerical tests, several recipes have been proposed for the choice of 7 (one of them
being recalled in (11) and (12) below). The method has been proven to have a solid
mathematical basis in several cases of practical interest (see e.g. [9]). Nevertheless, the
need for a suitable convincing argument to guide the choice of 7 is still considered as
a major drawback of the method by several users. In recent times, SUPG has been
related to the process of addition and elimination of suitable bubble functions (see [2, 1])
that aroused considarable interest, although the problem of the optimal choice of 7 was
simply translated into the problem of the optimal choice of the bubble space. In more
recent times, however, starting from [4] and further developed in [7], a guideline for the
choice of optimal bubble spaces came into the market. Roughly speaking this approach,
called residual-free bubbles method, related the shape of the “optimal bubble space” (the
one giving rise to the “optimal 7”) to the solution of suitable boundary value problems
(obviously, strictly related to the original one in ) in each element K. In our case this
would correspond to solving, in each K, the following boundary-value problem:

(3)

find bx € Hy(K) such that

(which is, in a sense, as difficult as (1)), and then setting

T:|1?|/Kb;<. (4)

It was surely reassuring to see that one arrives to the same conclusion starting from a
different point of view, basically aiming at taking into account the effect of unresolvable
scales onto the resolvable ones (see [8] and [3]), but both approaches require at the end
the solution of the same boundary value problem in each K. For the limit case ¢ — 0,
one can compute the limit solution in some special cases (included the present one), but
a general approach is still lacking.

We present here a methodology for computing, at a very cheap price, an approximate
solution of (3), in the hope that it is “good enough” to indicate suitable values for the
parameter 7. As we shall see in the following with more details, our approximate optimal



bubble (that we call pseudo residual-free bubble) is set a priori to be piecewise linear, inside
K, onto the simple mesh generated by taking a point P internal to K and connecting
it to the vertices of K (in this way we obtain three subtriangles). A reasonable cheap
algorithm dictates a suitable choice for the location of P. The method that we generate
in this way increases smoothly the amount of added streamline diffusion as € decreases,
and gives the same limit (for £ — 0) as the residual-free bubbles.

The layout of the paper is as follows. In Section 2 we briefly recall the basic ideas
of the SUPG method. In Section 3 we describe the residual-free bubbles method which
is the starting point for deriving the pseudo-residual-free bubbles method, described in
Section 4.

2 The SUPG Method

In this Section we will briefly present the SUPG stabilization method for our convection-
diffusion problem (1) (2) (see [6]). For, let us recall the classical variational formulation
of problem (1):

{ﬁnd u € H}(Q) such that -

a(u,v) = F(v) for all v € H} ()
where

a(u,v)zg/QVu~VU—|-/Q(a~Vu)v (6)

is a continuous and coercive bilinear form on the Hilbert space H](f2) and

UHF(U):/va (7)

is in H~'(Q). A Galerkin approximation of problem (1) consists in taking a finite-
dimensional subspace Vj, of H} (), and then solving the variational problem (5) in V},.
For the sake of simplicity, from now on we will restrict ourselves to the case of continuous,
piecewise linear elements, i.e., we will consider the finite element space

V= {v € Hy(Q), vk linear for all K € ’77L} (8)

so that the approximation of (5) reads

(9)

find u;, € V7, such that
a(ur,vr) = F(vg) for all v, € V.

As already pointed out, if the problem is convection-dominated, then, unless h is of the
same size of ¢, the solution of (9) will exhibit strong oscillations spreading all over the
domain. The SUPG method consists in adding to the original bilinear form a (-, ) a term
which introduces a suitable amount of artificial diffusion in the direction of streamlines,



but without upsetting consistency. In the case of problem (1) (and with linear elements)
the SUPG method reads

find u;, € V7 such that for all vy, € Vi,

a(UL,UL)—{—;TK/K (a'VUL—f) (G/'V’UL) :F(UL), (10)

where 7 is a stabilization parameter depending on the local character of the discretiza-
tion: in elements whose diameter is not small enough to resolve all scales, 7x =~ hi/|a,|
and elsewhere 7 =~ 0. More precisely, we can introduce a mesh Péclet number in the
following way:

o |a’\K|hK

for each K € T,, Pex = e (11)
£

and then define 7k element by element accordingly to the size of Pek:

h
5 K if Peyx > 1
T = |g’|K| (12)
K .
= fP 1.
12- 1 e <

Scheme (10) leads to a reasonable numerical solution, where of course layers are not
resolved, but they are very well localized, and away from the layers the accuracy is very
good. We refer to [6, 9] for further details.

A possible drawback of the SUPG method is the sensitivity of the solution to the
stabilization parameter 75, whose value is not determined precisely by the available
theory. A way to recover intrinsically the value of 7 is to use the residual-free bubbles
approach (see [7, 3]) that will be recalled in the next Section.

The effect of stabilization obtained by modifying the original bilinear form as in (10) can
be obtained by enlarging the finite element space in the following way.

For each element K, we define the space of bubbles in K as

By = HY(K) (13)
and the enlarging space Vg as
Then, we solve problem (5) on

V=V & Vp. (15)

Of course, we cannot pretend to solve ezactly problem (5) in V},, because V}, is infinite-
dimensional. We will make some approximations later on.

By (15) we have that any v, € V}, can be split into a linear part vy, € V;, and into a
bubble part v € Vp in a unique way:

vy, = v +vp €V, @ Vp, (16)



and the bubble part itself can be uniquely split element by element:

vg = ZUB,Ka Up Kk € By. (17)
K

Then, the variational problem (5) in V}, can be written as follows:

find up, = uy, +up € Vi, @ Vi such that
for all vy, € VL, K e 771, and UB,Kk € By

a(ug +up,vr) = F(vg)

a(ur + up K, UB,K)K = F(v,K)k,

(18)

where the subscript (-)x indicates that the integrals involved are restricted to the element
K. Consider the first equation of (18); using the decomposition (17) on ug and the
bilinearity of a (-, -), it can be written as

UL,UL +Z UBK,UL F(UL). (19)

The term Y a (up i, vr), represents the effect of the bubble part up i onto the linear
part uy,. We can give this term a different expression, observing that

a(u,v)x = (Lu,v) g = (u, Lg0) (20)
where L3 is the formal adjoint of £ on K (with zero boundary conditions on 0K). We
then have

ZCL(UB,Ka'UL)K :Z(UB,K,,C}}’UL)K. (21)
K K

We now use the second equation in (18) to determine up  in terms of uy. By linearity,
we can rewrite it as

a(upi,vBx)x = —[a(ur,") — F()|g (vB.K) (22)

or, using the differential operator (recall that the test functions vp g range on the whole
space Hg(K)),

(23)

ﬁUB,K = —[EUL — f] in K
uw=0 on 0K.

For each uy, problem (22) (or (23)) has always a unique solution up x € Bg which can
be written as

’LLB’K = MK (EUL—f), (24)

where M is a bounded linear operator from H™'(K) to B = Hj(K). Substituting (24)
into (19) the equation for u; becomes:

UL;UL +Z MK £UL_f)7UL)K:(fva)v (25)



or, using (20):
a(ur,vr) + Z (Mg (Lur, — f), Lxvr) g = (f,vr) (26)

~ v
e

effect of residual-free bubbles onto linears

for all vy, € V. Since the coefficients of the operator are piecewise constant, for each
K € 7;, we have
Lxu=—cAu— a), - Vu. (27)

Recall that V7, is the space of continuous, piecewise linear elements on 7;,. Then
(Lup, — f)|K = (a-Vug — f)|K = constant (28)

and
(Lxvr)ik = —(a - Vv )|k = constant. (29)

As a consequence, we have
(MK (ﬁUL - f) 7£*KUL)K =
—(a-Vur = f)ix (@ Vor)x (Mr(1),1), =
(a@-Vuy = f)ik (a- Vo) ik /KMK(—l) =

[/K(a-VuL ~ F(a- Vo) %/K Mie(—1). (30)

The resulting scheme on V7, is then
find uy, € Vz such that for all vy, € Vp,

CL(UL,UL)—f—;?K/K(a-VuL_f)(a.V,UL) :F(’UL) (31)

where

e = % [ Mie(-1). (32)

We see that the SUPG scheme (10) and (31) have an identical structure; we need only
to compare the two constants 7 and 7Tx. By (24) we see that

Mg(-1) = bg, (33)

where by solves the following boundary value problem on K:

(34)
brx =0 on 0K,
i.e.
—eAbg +aj, - Vbg =1 in K
(35)
bK =0 on 0K.



We are left with the problem of evaluating, possibly in some approximate way, the integral
of by appearing in (32). For strongly convection-dominated cases (the most interesting
ones) we can argue as in [4]. If ¢ < |a|,|hk, the solution of (35) will be very close to
a pyramid with one (or two) almost vertical faces on the outflow boundary of K (the
element boundary layer). The remaining faces of this pyramid have slope 1/|a,,| in the
direction of a|,. Hence, if we define hi as the length of longest segment parallel to a,,
and contained in K, we have

K| hg

/ bk ~ Volume of the pyramid = 1% , (36)
K 3 lay|

so that

= e et 5 |a\K| (37)

Using a scaling argument (see [10]), we can also show that when ¢ is large with respect
to |a), |hk, we have
h2
¥ / bic 2 =& (38)

where C' still depends on K and h but can be unlformly bounded from above and from
below if we have a regular family of triangulations.

If we compare (12) and (37) we see that the values of 7x and Tk are very close in
both limits; indeed, the theoretical results for the SUPG method of [6, 9] also hold with
Tk in place of 7k, and the numerical experiments give results of similar quality.

3 The Pseudo Residual-Free Bubbles

As we have seen in the previous section, the problem of finding the optimum value for
T would be solved if we knew explicitly, in each triangle K and for any given value of
¢ and ay,, the exact solution of problem (35) (or, at least, its integral on K). However,
in general, this cannot be computable in an easy way. In this section we shall present
a strategy to solve this problem, at least in a reasonably good approximate way. The
idea is to look for a solution of (35) having the shape of a pyramid, with vertex in a
point P internal to K, to be chosen in order to minimize the L'-norm of the residual.
More precisely, let P be (any) internal point of K, let V; (i = 1,2,3) be the vertices of
K ordered, as usual, counterclockwise, and let e; (i = 1,2, 3) be the edges of K, with e;
opposite to V; (see Fig. 1). We denote by K, K, K3 the three subtriangles obtained by
connecting P with the vertices V;. Consider a function vanishing on 0K, continuous on
K, and piecewise linear on each K;. Clearly, VP € K there is only one function of this
type with value 1 in P. Let bp(z) be such a function. We want now to approximate the
solution by of (35) with functions of the type abp(x), where o and P have to be suitably
chosen. As a first step, we choose « as a function of P; we look for v = «(P) such that

Oébp,bp / bp (39)



FIGURE 1
Notation

Note that this is a Galerkin approximation of (35) in the 1-dimensional space spanned
by bp. Since @, is constant, an easy computation gives

_Jkbr
)= T P

We then set Bp(z) = a(P)bp(x). (Notice that a(P) does not depend on the convection
coefficient.) As a second step, we want to choose P. For, we require that

(40)

/K|—6ABp+a|K~VBp—1| (41)

is minimum. Note that, Bp being piecewise linear on K, the term ABp will have only a
distributional meaning, so that the integral appearing in (41) has to be intended in the
sense of measures.

As we shall see, there are infinitely many points P minimizing (41). The choice of the
“best” P among them will be discussed later on.

Let us now turn to the computational aspects. We denote by e;, (i = 1,2,3), the
length of the edge e; and by \; (i = 1,2, 3) the (unknown) barycentric coordinates of P,
given by

A = A(P) = |Ki|/|K].
With this notation, and since Vbp g, = —e;n'/2|K;|, (where n’ is the outward normal to
e;), standard computations give

[ (@) = IK1/3,
[ I¥bef? = Z/K Vol =

2
€j

%:/Kj 4|Kj|2 = Z(6§/4|Kj|),




so that, from (40)
[K1/3 4K
o P) = 2IAK)  3ex,(e2/N)
e Xjef/AlKG]) 32255065/ A5)
We now turn to the minimization of (41). We first remark that ABp is a measure

concentrated on (UOK;) \ 0K, while (a|, - VBp — 1) is an integrable function. This
implies that

(42)

/K|—€ABP+CL|K'VBP—1|:
_:AB / ‘VBp—1 43
[ 1==0Bp|+ [ lay - VBe - 1] (43)

where only the last integral is in the ordinary sense (the others being in the sense of
measures.) Moreover, a little functional analysis plus usual computations lead to

B

/|—5ABP|:—5 9Bp ip _

K oK On

(P)Y 4 = 2k (44)
oK~ 3

so that minimizing (41) amounts to minimize
J(P) = [ lay - VBr—1]=

Z/K - VBp — 1] = Z/K 91, (45)

where, for every fixed P, g; = g;(P) are constants defined as

We notice now that

E a,-VBp=0 47
i /Z | P ( )
so that, for all P € K

Z/K 6= [ —1=-IK| (48)

and finally, always for every P € K,
> [ ol > 1K1 (49)
i UK

At least one of the g;’s is < 0 (from (48)). If, for some P € K, all the g;’s are < 0, then
P minimizes (41), thanks to (48) and (49). Next, we show that there is always a subset
S of K (with positive measure) such that, for every P in S, we have



and afterwards we choose P in S. To prove (50) we rewrite it as
(a(P)a, - pr)mi <1, (51)

or, using definition (42) for a(P), as

4K ay, - Vbpix, <3 (€5/X), (52)
J
and finally, since Vbp x, = —e;n'/2|K;| = —|K|e;n'/2);,
e < 220 S/ 53
—(a), -n')e; < 31K i%:(ej/ i) (53)

that we rewrite, with more compact notation, as

bi < eXi(P)p(P), (54)
where we have set
; 3¢
b= (@, -w)es, o= 5o w(P) = 2(E/%). (55)

We point out explicitly that b; and ¢ are independent of P. We also point out that

Zbi:—Z(ah{-ni)ei:— a), -ndl =0, (56)

i oK

since aj, is constant), and therefore b; < 0 for at least one index . We also notice that
|K
cAi(P)p(P) >0 VP € K, Vi (57)

so that (54) trivially holds all over K for all the indices i such that b; < 0. Finally, we
have
o(P) — 400 for P — 0K, (58)

so that for every i = 1,2,3 the product \;(P)p(P) still goes to plus infinity uniformly
on any compact subset of 0K that does not contain €;. With all these remarks in mind,
consider first the case where only one of the b; is < 0. To fix ideas, let by < 0 while
by > 0, by > 0. In this case, we easily see that both \y(P)p(P) and A3(P)¢(P) go to
plus infinity when P tends to any fixed point internal to the edge e;, so that (54) holds
for all i’s on a set S close to it. Take then the line through V) parallel to a|,. This line
crosses the edge e, in a point P; different from V5 and V3, and along this line we have
(@, - VBp)|k, = (@), - VBp)|k, for obvious continuity reasons. Hence, we define in this
case P* as the point closest to P;, on the line V; P;, among the points of S. Next, consider
the case where two of the b; are < 0. To fix ideas, let b; < 0, by < 0, while b3 > 0. In
this case (54) holds all over K for i = 1 and i = 2, and we see that A\3(P)¢(P) goes to
plus infinity when P tends to the vertex V3, so that (54) holds also for i = 3 in a region
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S close to V3. Let then P; be the midpoint of the edge e3 and take the line V3P;. In this
case we define P* as the point closest to V3, on the line V3P;, among the points of S. It is
easy to see that, in practice, the actual computation of P* is extremely simple, and can
be performed at a very cheap cost. Similarly, the computation of the 7x corresponding to
the pseudo residual-free bubble Bp-, denoted by 7}, is also quite economic, and is again
given by

1
Th = — Bp-. 29

We remark explicitly that, with the use of the stabilization coefficient Tj given by the
pseudo residual-free bubble, we are adding a streamline diffusion term which grows
smoothly and in a very natural way as ¢/|a|,|h approaches zero, i.e., as the problem
becomes convection-dominated. We also point out that, for fixed K and a,,, denoting
by

~ 1
Tr(e) = R /K % (60)

and 3 )
i (e) = K] /K Bp- (61)

the coefficients provided by the residual-free bubble and by the pseudo residual-free bub-
ble respectively, we easily have
ity e (¢) = Ly 75 (), (62)

both limits being equal to the volume of the pyramid divided by |K| as discussed at the
end of the previous Section.

4 Numerical Experiments

In the Section we will present a numerical experiment showing the effect of the stabi-
lization coefficient computed with the pseudo residual-free bubble. As we have noticed
before, the pseudo residual-free bubble scheme coincides with the residual-free bubble
scheme in the convection-dominated limit € — 0, so that a comparison with other meth-
ods should be made in the intermediate regime. We will compare the pseudo residual-free
bubble method with the classical SUPG method described in Section 2.

We will solve the following problem:

(63)

—cAu+a-Vu=0 in Q
u =g on 0,

where the computational domain €2 and the Dirichlet boundary data ¢ are as in Fig. 2,
e =5-10"° and a(z,y) = (—y,z) is shown in Fig. 3. We will use the mesh shown in
Fig. 4, for which the local Peclet number defined in (11) is partly > 1 and partly < 1, as
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shown in Fig. 5. Hence the problem is partly diffusion-dominated and partly convection-
dominated. The level curves of the solution obtained with the SUPG stabilization and
with the pseudo residual-free bubbles stabilization are shown in Fig. 6 and Fig. 7 re-
spectively. In Fig. 8 is shown the solution to the same problem obtained with the plain
Galerkin method (no stabilization) but with a mesh fine enough to resolve all the fine
details of the solution. The mesh used has 11639 elements and is reported in Fig. 9. We
notice that the SUPG solution presents a slight over-diffusivity in the reentrant corner
region, white the pseudo residual-free bubbles solution is qualitatively closer to the “ex-
act solution” of Fig. 8. At a first sight, this difference could seem quite small, but we
have to keep in mind that the solution of a linear scalar convection-diffusion equation is
only one small step of the long way to solving the full Navier-Stokes equations. Hence,
small differences could become important in a more complex situation. We think that
this point should be analyzed in much more details.

5 Conclusions

The residual-free bubbles technique interprets the stabilization parameter as the mean
value of the solution of a differential equation defined at the element level. The value of the
parameter can be easily determined in the convection-dominated limit; for intermediate
cases, a simple minded interpolation is usually employed. This paper is a first attempt
toward the computation of the parameter in the intermediate regime. We have introduced
the concept of “pseudo residual-free bubble”, which is a certain approximation of the true
residual-free bubble. We have shown that in some cases the method obtained by using
the pseudo residual-free bubbles gives better results than the SUPG method.
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FIGURE 6 FIGURE 7
SUPG stabilization Pseudo residual-free bubbles stabilization
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FIGURE 8 FIGURE 9
Galerkin method (no stabilization) on the re- Refined mesh (5993 nodes, 11639 elements,
fined mesh of Fig. 9 hmean = 0.0014)
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