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ABSTRACT

We present a domain decomposition type algorithm for dealing with the numerical solution of
bonded plates

1. Introduction

Since a pioneering work by Goland and Reissner in 1944 [6] the bonding of two elastic
three dimensional structures by an adhesive layer is treated with asymptotic analysis. (See,
e.g., [1],[2],[5],[8].) In the resulting limit problem the adhesive disappears from a geometrical
point of view but it gives rise to suitable transmission conditions. In [3] we introduced and
analyzed a domain decomposition type procedure to deal with the limit problem numerically.
In the present paper we apply the same technique to the bending of two thin elastic plates
(Love-Kirchhoff), bonded in their common plane by an adhesive layer. This layer is also
treated as a Love-Kirchhoff plate having, in its plane, a small dimension with respect of
those of the two adherent plates. Let £ donote the smallness ratio. The type of transmission
conditions in the limit problem depends on the ratio of the bending rigidity coefficients. We
refer to [4] for the derivation of the limit problem in the different cases. In what follows we
shall consider the case where the bending rigidity coefficient of the glue is given by 3Dy, Dy
being of the same order of magnitude of D™, D™, the bending coefficients of the adherents.

2. Position of the problem

Let QT and Q~ denote the two plates, that we assume to be open connected subsets of
R? with boundaries 9Q% and 9Q~ piecewise of class C2, and let § = 90+t N N~ be a non
empty regular curve of positive measure. Let Q be the union of Q9 and Q~, with boundary
0, and let '™ = 90T NN, I'™ = 90~ NIN. For simplicity, assume that the plate is clamped
on 9Q. For a function v defined on €, let v* (resp. v—) denote the restriction of v to QF



(resp. 7). The local equations are (see [4])

DTA2wt = pt in QF
D=A’w~ = p~ in Q° )
wt = % =0 on I't (1)
w = %Ln 0 on I'”
with the transmission conditions on S
Mp(wt) = Mu(w™) =0 on S
Kp(wt) = —12Dg(wt —w™) on S (2)
K,(w™) = 12Dg(wt —w™) on S

where pT, p~ are the applied external loads, n™ (resp. n™) is the outward unit normal to
Q7 (resp. Q7), M, is the normal bending moment, and K, the normal Kirchhoff shear force.
In order to apply a domain decomposition type procedure, we observe that the boundary
conditions (2) can be rewritten as

My,(wt) =M,(w) =0 on S
K,(wt) = —Kpw") on S (3)
Kp(wt) +24Dgw™ = Ky(w™) + 24Dow™ on S

Next, for g € L?(S), consider the following problems

Dt A2yt pt in QF D-A2w= = p~ in Q~

wh :% =0 on 't w- =2 =90 on '~ ()
Mp(wt) =0 on S Mp(w=™) =0 on S
Kp(wt) +24Dow™ = ¢ on S Kp(w™) +24Dow™ =g on S

For any given g € L*(S), pt € L?>(Q%), p~ € L?(Q~) problems (4) have a unique solution
wt € H2(Q1), and w™ € H?(27) respectively. (Note that the boundary conditions (4)
actually induce more regularity on the solutions.) Due to linearity, these solutions can be
split as

+ — gt Lt S
wt = w, +wy, wT = w, +w,, (5)

, solutions of (4) with g =0, and w/, w, solutions of (4) with p™ =0, p~ =0.

We can then define the linear continuous operators 7,7, T,”, T,", T,

with w;l, w

p+ € L2(Q+) — w; = T;(p+)7 p € Lz(Qi) — ’LU; = Tpi(pi)a (6)
g € L*(S) — wj =TS (9), w, =T, (9),

so that (5) becomes

wt =T ")+ T (9) w =T, (p)+T, (9. (7)
Next, let A be the operator from L?(S) in itself defined as

g€ L*(S) — Ag = (wy +wy)s = (T, (9) + Ty (9)))s- (8)



It is immediate to check that A is linear and continuous. Moreover, thanks to the trace

theorem (see, e.g., [7]), we have in particular wj‘s € H03[42(S), wy s € H03[42(S), so that A is

linear and continuous from L2(S) into H[%z(S).

Going back to formulation (4), note that the continuity condition on K, in (3) is not
taken into account. Hence, we must find a suitable g such that the solutions of (4) verify (3).
Since from (4) it follows that K, (w*) + K,,(w~) = 2(g—12Do(wt +w™)), such a g will be
the solution of the following minimization problem

Find g* € L*(S) : 0=J(¢") < J(9) Vg€ L*(S), (9)

for the quadratic functional

J(g) = llg = 12Do(w™ + w7)|[5 s- (10)
Using the notation introduced in (7)-(8) we have
12Dg(w +w™)js = F+12DgAg,  having set F := 12Do(T; (p*) + T, (p7))js, (11)
so that (10) can be written as

J(g9) = llg — (F + 12Do Ag)|[3 s- (12)

It is easy to check that J(g) is strictly convex, so that problem (9) has a unique solution g*,
which verifies

g* = F+12DyAg". (13)

In order to write the variational formulation of (4) we set

Vti={ve H?>(Q") ,v=0v/0n=0o0on T}, (14)

Voi={ve H*(Q) ,v=0v/0n=0on T}, (15)

a*(v,w) = D+/+(U/11w/11 +2(1 = V)v/2wpi2 + V22w + V(U1 W 2 + V2w ) dz o (16)
Q

a (@) =D [ (0w + 20 = )oyiaw 2 + vyan + (01w + vy de - (17)
o-

a*(w,v) =a’(w,v)+ 24Dy [gvwds, (18)
a~ (w,v) =at(w,v)+ 24Dy [gvwds. (19)

The variational formulation of problems (4) is then

Find wt € V7T such that : (20)
CL"'(w*,v) = (p*,v)-l—(g,v)s VU€V+7
Find w~ € V~ such that : (21)
a (w,v) = (p,v)+(gv)s YveV.



Existence, uniqueness and a-priori error bounds for the solutions of (20)-(21) are ensured by
the continuity and coercivity properties of the bilinear forms a*, a~.

3. The Algorithm

We shall now present a domain decomposition type algorithm, based on the variational
formulations (20)-(21) and the minimum problem (9), for which we shall prove convergence.
Compute w} = T, (p™), w, = T, (p~) solutions of

wi eVt at(wi,v) = (pt,v) YoeVT, (22)
w, €V_: a (w,,v) = (p~,v) Yve VT, (23)
and set
9" = 12Dg(w} +w, )5 (= F). (24)
For m > 0 compute the solutions w;l, = T, (¢™), w;, = T, (¢™) of the problems
wh eVt s at(wh,v) = (g™ v)s VweVT, (25)
w, €V :a (w,,,v) = (¢™,v)s YoeV™. (26)
Then set
g™ = g™ — 12Do(w, +w,,)|s, (27)
gt =g" = p(g" — 4°), (28)

and compute the solutions w,, ,,, w;, | of (25)-(26) with the new datum g™**. In (28) p >0
is a parameter to be chosen in order to have convergence of ¢ to ¢g*, as m — oo, where g*
is defined in (13). In order to prove convergence we shall use the following result

Theorem 1 A is a compact operator. Moreover, the eigenvalues z of 12Dy A are all real and

verify

3C; > 0 such that 0<z<1-C;1 <1 Vz. (29)

Proof The proof is a slight modification of that given in [3] and we shall not report it here.
We can now prove the following convergence theorem.
Theorem 2 There exists a pg > 1 such that, for p €]0, po[ we have

lim ¢™ = g", (30)

m—ro0
where g™ is the sequence defined in (22)-(28), and g* is defined in (13).
Proof Note that, according to definition (8), (27) can be rewritten as

§™ = (I — 12Dy A)g™. (31)
From (28) and (31), using (24) and (13) we then have

gmtt —g* = (1—p)g™ + p12DoAg™ + pg° — g* + pg* — pg*
= (L= p)g™ + p12Do Ag™ + p(g° — ¢*) — (1 = p)g*
=1 =p)(g™ —9g") +p12Do A(g™ — g*)
= ((1 = p)I + p12Do A) (g™ — g7).

(32)



Recursive application of (32) yields

9" =g = (1 = p)I + p12Dy A)" (¢ — g*), with ¢° —g* = —12DoAg*.  (33)

Convergence will be proved if we can show that
Tim [[[((1 = p)I + p12Do )™ ||| = 0, (34)

where |||L||| denotes the norm of the operator L. From a theorem by Gelfand, if L is bounded
then lim, o |[|L7]||'/" = sup{|\|, A € o(L)}, o(L) being the spectrum of L. Thanks to
Theorem 1, the spectrum of the operator (1 — p)I + p12DyA is given by 1 — p and

Aj =1 =p)+pz, (35)
z; being the eigenvalues of 12Dy A. Proving (34) amounts then to prove that

flp) = max{ll—pl,m?XI/\jl} <1 (36)

and this is true for all p €]0, 2], since the inequality

—2<p(z;—1)<0 vy (37)
is verified for all the values p €]0, —2—[ and —2— > 2. "
Remark The optimal value for p is the minimizing argument of the function f(p) in (36). A
simple computation gives pop: = # > 1.
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