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Abstract

We analyse the effect of the subgrid viscosity on a finite element discretisation,
with piecewise linear elements, of a linear advection-diffusion scalar equation. We
point out the importance of a proper tune-up of the viscosity coefficient, and we
propose a heuristic method for obtaining reasonable values for it. The extension
to more general problems is then hinted in the last section.

1 Introduction

In a series of recent papers (see [9, 10, 11], for example), P. Guermond proposed the
use of subgrid viscosity methods in order to stabilise finite element discretisations of a
variety of problems for which the standard Galerkin approach usually fails. The basic
underlying idea is the following. We consider a finite element space V}, that can be written
as the direct sum of a coarse grid space Vi and a finer (subgrid) space Vg. Assume that
the standard Galerkin discretisation has the form

a(uh,vh) = (f,vh) Yoy, € Vp,. (1.1)

Then, roughly speaking, the subgrid viscosity method would consist of considering the
stabilised form
a(un,vpn) + Crd(us,vs) = (f,vn) Yon € Vi, (1.2)

where, ug and vg are the subgrid components of uj, and vy, respectively, d(u,v) is a “dif-
fusion” term, and C}, is a parameter to be chosen properly. This will, of course, be made
more precise for a specific example in the next section. In the original presentation of Guer-
mond, not much emphasis was given to the choice of the parameter C}. The choice was
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usually of the type Cy, = ch, and a priori error estimates were proven for a large range of
possible values of the constant c. In our opinion, the idea is quite appealing, since it could
be extended to a great variety of different important problems in which the implementation
of other stabilising procedures, as for instance the Streamline-Upwind/Petrov—Galerkin
(SUPG) method (see, for example, [14, 12]), might become cumbersome, in particular
compared with the striking simplicity of (1.2). On the other hand we believe that, disre-
garding for a while the asymptotic error analysis, for commonly used values of the coarse
grid meshsize h the choice of the subgrid viscosity parameter C} can become crucial, and
that a bad choice for it can result in quite a poor method. In particular, as we are going
to demonstrate in the present paper, the use of subgrid viscosity corresponds to using a
residual-based stabilisation very similar to SUPG (and often coinciding with it), with an
“intrinsic time scale” 7 strongly dependent on the choice of Cj,. Hence, the choice of the
optimal value for C}, or at least of a reasonably good one, appears to be of paramount
importance. The problem of selecting an appropriate value for C, is not simple. Ideally,
we would like to have an automatic procedure for choosing it, that is simple enough to
be adapted to different physical applications and, if possible, be reasonably cheap. In this
paper we propose a simple and cheap procedure that works reasonably well on the model
problem of advection—dominated diffusion flows. For this problem, several heuristic rules
have been proposed for the automatic choice of the parameter 7 (see Brezzi & Russo [3],
Fischer et al. [4], Franca et al. [5, 6], Fihrer & Rannacher [8], Hansbo & Johnson [12]
Hughes & Brooks [14] and Roos et al. [18], for example). The only derivation of a good
value for 7 which is based on the use of subgrid functions vanishing at the interelement
boundary is, however, the one of [3] based on the residual free bubbles. The values of
7 generated by our procedure are indeed in good agreement with the ones that could
be obtained with the residual free bubble approach. We are fully aware that the linear
advection—diffusion model problem cannot represent most of the difficulties that arise in
real life problems. However, some generalisations of our idea to more complicated cases
seem to be pretty obvious, while others will require further attention. But, of course,
even the ‘obvious’ ones should be tested in practice before making claims. Despite these
considerations, we still believe that it is important to point out the problems, together
with a starting point for their possible solution.

For other attempts of an automatic tune-up of viscosity parameters we refer for instance
to Brezzi et al. [1, 2], Franca [5], Franca & Russo [7], Hughes [13] and Onate [16, 17].

The outline of this paper is as follows. In Section 2 we first outline the subgrid viscosity
method introduced by Guermond for an advection—diffusion model problem. In Section
3, we design a simple and cheap algorithm for automatically determining the size of the
subgrid viscosity C. The practical performance of this procedure is then demonstrated in
Section 4 for a simple advection—diffusion test problem. Finally, in Section 5 we summarise
the work presented in this paper and draw some conclusions.

2 Subgrid viscosity and its effects on the coarse grid

In this section we are going to recall the basic idea of the subgrid viscosity method proposed
by Guermond, and to show the importance of the choice of the subgrid viscosity parameter.
In order to simplify the exposition, we consider a very simple model problem.

Suppose that © is a bounded polyhedral domain in R? (but the extension to R™ would
be straightforward), whose diameter has been scaled to 1; let 8 be a constant vector field
in Q, ¢ a small parameter (compared with |3]) and f a function in L?(Q) that we assume



(a)

Figure 1: (a) Piecewise linear bubble; (b) Cubic bubble.

to be piecewise constant. We consider the problem of finding u € H}(£2) such that
—cAu+p-Vu=f inQ. (2.1)

Existence and uniqueness of the solution of (2.1) are well known. We assume now that we
are given a triangulation of {2 into triangles T" of diameter hr, and let Vo be the space of
continuous piecewise linear functions vanishing on 9€2. On each triangle T" in the mesh, we
define Vg to be the space of continuous functions which vanish at the boundary of T'. For
simplicity, we assume that the space Vg has only one degree of freedom for every triangle
T in the mesh. Particular examples include: given a triangle 71", we can split 7" into three
subtriangles Tj, (k = 1,2,3) by connecting the three vertices with the barycenter. Then,
the space Vg = Vg 1 may be constructed to consist of functions which are continuous and
piecewise linear on the new triangulation and vanish at all the vertices of the old one, cf.
Figure 1(a). Alternatively, we may define Vs = Vg5 ¢ to be the space of cubic bubbles on
T centered at the barycenter of the triangle, cf. Figure 1(b).

Before we proceed, it will be convenient to introduce some notation: for every subdo-
main F C ), we write

ap(u,v) = 6/Vu-Vvdx+/(B-Vu)vdx,
E E
dg(u,v) = /Vu-Vvd:L“,
E
for u,v in H'(E), and
(u,v)E:/uvdx,
E
for u,v in L?(E).

We consider now the space V}, := Vo + Vg, and in V}, we apply the following subgrid
stabilisation: find u;, = uc + ug € V}, such that

aq(unp,vy) + Z Crdr(us,vs) = (f,vn)a Yo, =vec +vs € V. (2.2)
T



In [11] it is proved that optimal asymptotic error bounds for (2.2) hold, provided Cr has
the form Cr = crhr, where c¢r is bounded from below and from above by fixed constants,
independent of T" and hr.

We want now to analyse the actual behaviour of (2.2) for different possible choices of
Cr. For this we remark first that, for every T, we can define p” as the (unique) function
in Vg of height one, having support in 7. Taking then v, = p’ in (2.2) we obtain:

ar(uc + ug,pt) + Cr dr(us,p’) = (f,p")r VT. (2.3)

Setting now, in every T, us = u’ p’ we then easily obtain from (2.3) that
u® (ar(p",p") + Crdr(p",p")) = —ar(uc,p”) + (f,p")r VT. (2.4)

We remark now that, for every T', the advective term has no effect in ar(p, p’), being
skew-symmetric in H}(T). Integrating by parts the first term in the right-hand side of
(2.4) gives

T
T fT Rrp” dz
= — = _R 9 25
(e +Cr) [7|VpT]2de T (25)
where Ry := (—eAuc + - Vuc — f)|r is the residual (for the coarse grid solution) on the
triangle T and ~r, as defined in (2.5), depends only on the bubble p’ (plus ¢ and C7).
We go back to (2.2) where we take now v = v¢:

ag(uc,ve) + an(us,ve) = (f,vc)a Yve € Ve, (2.6)

and we notice that (2.6) differs from the standard Galerkin finite element method on the
coarse grid due to the presence of the stabilising term aq(ug,vc). Let us analyse it in
detail. Using (2.5) and integration by parts in T' we have

ag(us,ve) =Y ar(u’p",ve) = =Y ReyrLr*ve (p7, ),
T T

where Lp*ve is defined as —eAve — 8- Voo in every T. We obtain therefore

ag(us,vc) ==Y mr(Rr, Ly*ve)r, (2.7)
T

with the intrinsic time scale 7 defined as

_ 1 (fppTda)?
7| (e + Cr) Jp VPP dz

T (2.8)

A simple computation shows that when Vg = Vs 1, the value of 71 given by (2.8) is actually

A|TP?

(e +Cr) j e? ’

T =TT, = 5 (29)

where the e; (j = 1,2, 3) are the lengths of the edges of T'. Alternatively, when Vg = Vg ¢,
we have

s

10(c + Cr)o’ (2.10)

T = TT,C’ =

4



where
o= (x3—x1)(x1 —x2) + |x3 — x1|2 + |xo — x1|27

and x; = (z;,v;), i = 1,...,3, denote the coordinates of the three vertices of element 7'
To fix the ideas, on an equilateral triangle we would have

h2 3h2.

_ . o 2.11
108(c + Cr)’ B¢ 7 400(e + Cr)’ (2.11)

TT,L
respectively. The effect of the subgrid viscosity becomes now clear, as well as the role

of the parameter C7. Indeed, first of all, we have from (2.6) and (2.7) that the coarse
equation (after condensation of the subgrid unknowns ug) becomes

aQ(uc,vc) — ZTT(RT,LT*U())T = (f, UC’)Q Yve € VC’,
T

and hence coincides with the SUPG method with a particular choice of the parameter 71
given by (2.8) and depending on the choice of Cr. On the other hand, assuming that the
natural viscosity € is very small, and that Cr is chosen (as indicated in [11]) of the form
Cr = er hp, we would have, in (2.9), respectively, (2.10),

1 4|T)? 1 |T)?
N — ~— 2.12
LR ek TCR e (2.12)
or, in (2.11),
~N—— N ——— 2.13
TT,L cr 108 ) r,C or 400 ° ( )

for equilateral triangles, respectively. Equations (2.12) and (2.13) show clearly the follow-
ing fact, that would have been somehow counter—intuitive in the first place: the bigger one
takes cr in the artificial subgrid viscosity, the smaller becomes the stabilising effect on the
coarse grid equation.

In our opinion, this indicates also, in a very clear manner, that the choice of a good
value for c¢r is extremely important for having satisfactory results on affordable grids.
Actually, it is known that the tune-up of the 7 in SUPG is quite important for that, and
(2.12) shows that this problem is not solved by the subgrid viscosity approach.

3 Tune-up of the subgrid viscosity

We have seen in the previous section that the subgrid viscosity method suffers a major
drawback. The precise amount of subgrid viscosity to be used is not at all clear, but, in
spite of asymptotic results, the choice is actually crucial for obtaining reasonable perfor-
mances on affordable grids. On the other hand, as we pointed out in the introduction, the
method still remains appealing for its great simplicity, and in particular for the possibil-
ity to apply it, possibly without proofs, on complicated problems. For a very promising
attempt in this direction, related to LES and turbulence, see Hughes et al. [15].

In this section we make an attempt to design a viable procedure that is able to produce,
if not the optimal value to be used for cr, at least a reasonable value. For the sake of
simplicity, we present it on the simple model problem (2.1). However, the underlying idea
is that, contrary to what was done previously for the choice of 7 for the same model



problem (see, for example, [1] and the references therein), here we make an effort to not
use any a priori information on the nature of the underlying partial differential equation.
More realistically, let us say that we are trying to minimise the use of a priori information
on the problem.

The basic idea which is behind our strategy is the following. The subgrid component of
the solution, ug, can be thought of as being obtained by multiplying, element by element,
the scalar constant factor Ry (the residual of the coarse grid equation in element T') times
the solution wg of the scaled subgrid equation

ar(wg,vs) + crhpdr(ws,vs) = (1,vg). (3.1)

If the tune-up of ¢ is reasonably good, the solution should be a reasonable approximation
of the solution of the corresponding continuous problem

ar(w,vg) = (1,vs) Yug € Hy(T), (3.2)

where wg" is looked for in H}(T) as well. Being, as in our previous case, a one-degree-
of-freedom approximation of (3.2), we cannot expect (3.1) to be too precise. We would
however at least be satisfied if it produced a reasonably good approximation of the average
of the solution over the triangle 7'. This seems particularly relevant, as it can be seen in
our model case that the average of the solution plays a crucial role. Indeed, the solution
wg of (3.1) satisfies, in our model problem,

Jpp" dz '
(e+Cr) [7|VpT2da™

ws =

(3.3)

and comparing (3.3) with (2.8) we immediately obtain

),
7= — | wgdx,
7| Jr

while, on the other hand, the residual-free bubble approach applied to the model problem
would actually indicate as optimal 77 the average of wg’. Moreover, always if the tune-up
of the subgrid viscosity parameter ¢y is reasonably good, any sub-subgrid approximation
of the continuous equation (3.2), obtained making use of an artificial viscosity based on
cr, should also produce a solution wgg such that

1 1 1
— weodxr ~ — wedr ~ — w& dzx. 3.4
|T|/T ss |T|/T s |T|/T s (34

Equation (3.4) is the key point in our strategy. More precisely, the idea is to compute the
solutions wg and wgg (on the subgrid and on the sub-subgrid, respectively) as functions
of ¢y, and then compute the desired value of ¢y by requiring that

1 1
m/wss(cT)dx% m/wS(CT)d:E.
T T

It is clear that, taking the sub-subgrid mesh very fine, the function

1
cT —>—/’w550T dx
7 ), 55



will become practically flat: on a very fine grid, every choice of ¢ would indeed give wgg
practically equal to the exact solution. As the function

1
cr —>—/wSCT dz
7] J 5er)

is monotonically decreasing, the equation

%/T'UJSS’(CT)dx = %/ng(cT)dx (3.5)

will have a unique solution. Moreover, always in the ideal case in which the sub-subgrid
is very fine, the solution of (3.5) will provide a ¢ that, when used, will give a wg (and
hence a ug) with the “ideal” value for the integral. In practice, however, this would be
tremendously expensive, and we shall use (3.5) with a sub-subgrid that is just slightly
finer than the original one.

We end this section by outlining the practical implementation of the proposed al-
gorithm for determining the subgrid viscosity Ct on each element T in the mesh. As
previously stated we assume that Cr = crhr, where hr is a measure of the length scale
of element T. To this end, we first recall that for a general bubble function p’, we have
that

2
L/ wgdz = 1 (Jrp" dz) . (3.6)
7| Jr IT| (¢ + crhr) [7|VPT|? dz

Thereby, by exploiting equation (3.5), we get

(prT dx)2
fT |VpT |2 dz fT wgs(cr) dz

CThT = — E. (37)

Equation (3.7) may be used to determine the subgrid viscosity coefficient ¢ using the
following iteration: select an initial guess cr, then for j =0,...,7, set

T dz)?
crji1 = % ( (pr d ) )dx _ E) . (38)

fT [VpT|? fT wss(cr,

Here, 7 is the smallest number of iterations required to ensure that the convergence crite-
rion:

|CT,ﬁ - CT,ﬁ—1| S TOL

is satisfied. For the practical implementation of this algorithm we choose TOL to be equal
to £/10hr; i.e. the subgrid viscosity Cr (= crhyr) is calculated to within an accuracy of
an order of magnitude less than the underlying physical diffusion. We remark that this
tolerance level is sufficient to compute cr accurately with a small amount of computational
effort.
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Figure 2: (a) Element T’; (b) Subgrid; (¢) Sub-subgrid.

()

4 Numerical Example

In this section we present a numerical experiment in 2 space dimensions to compare the
performance of the subgrid stabilisation algorithm outlined in the previous section, using
both the piecewise linear bubble function and the cubic bubble, with the residual free
bubble approach. We recall, that the latter approach gives rise to the following SUPG
stabilisation parameter

1
T = TT,R = T /ngxdz,

where wg’ is the analytical solution of the subgrid equation (3.2) on each element 7' in
the mesh. To this end, we consider the numerical example presented by Fischer et al.
[4]; here, Q = (0,1)2, B is chosen so the flow is at angle of 22° to the horizontal (i.e.
B = (-0.927,0.375)) and f = 0 with boundary condition

forz =0,0<y <1,

for0<z<1l,y=1,

for0 <z <1/2,y=0, (4.1)
for1/2<z<1,y=0,

forr =1,0<y < 1.

u($7y) =

—_ -0 O O

We begin by first comparing the performance of the subgrid stabilisation method using
the piecewise linear bubble with the residual free bubble approach. Given a triangle T" in
the mesh, cf. Figure 2(a), we recall that the subgrid solution wg is computed on a mesh
with one interior node located at the centroid of T, cf. Figure 2(b). For computational
efficiency, the sub-subgrid solution wgg will be computed on a mesh based on one uniform
refinement of the subgrid mesh; thereby, wgg is calculated on a mesh with four interior
nodes, cf. Figure 2(c). In Tables 1, 2 & 3, we present numerical results for ¢ = 107!,
2 x 1073 & 1077, respectively. In each case, we compute the mesh Peclét number Pe
(=|B8|h/¢e), the subgrid viscosity Cr, the stabilisation parameter using the piecewise linear
bubble, 77, the stabilisation parameter arising from the residual free bubble approach,
Tr,r, and the ratio 77 /77 g, on a sequence of uniform triangular meshes. We note that, in
each case the mesh is constructed from a uniform N x N mesh by connecting the bottom—
left corner of each mesh square with its top—right corner. Furthermore, the stabilisation
parameter 77 g is calculated by numerically approximating the subgrid equation (3.2) using
the standard Galerkin finite element method on a fine mesh partition of each triangle T



Mesh Pe CT TT,L TT,R TT,L/TT,R
17x 17 [0.63 | —1.640 x 102 | 4.342 x 10~ % | 5.090 x 10% 0.85
33x33 (031 —-1.674x10 2] 1.08 x 10 | 1.273 x 10 * 0.85
65 x 65 | 0.16 | —1.675 x 1072 | 2.715 x 10~° | 3.184 x 10~ 0.85

129 x 129 | 0.08 | —1.665 x 1072 | 6.780 x 1076 | 7.961 x 106 0.85
257 x 257 | 0.04 | —1.639 x 10=2 | 1.690 x 1075 | 1.990 x 106 0.85

Table 1: Stabilisation parameters 77 ;, and 77 g for € = 101,

Mesh Pe CT TT,L TT,R TT,L/TT,R
17 x 17 | 313 1.348 x 1072 | 1.080 x 1072 | 1.165 x 10?2 0.93
33x33 | 15.6 | 2.054 x10°% | 4.100 x 103 | 4.423 x 103 0.93
65 x 65 | 7.81 | —1.861 x 10~* | 1.246 x 1073 | 1.403 x 103 0.89

129 x 129 | 3.91 | —2.968 x 10~* | 3.318 x 10~* | 3.842 x 10~* 0.86
257 x 257 | 1.95 | —3.233 x 10~* | 8.426 x 107° | 9.861 x 10~° 0.85

Table 2: Stabilisation parameters 77 j, and 77 g for e =2 x 1073.

From Table 1, we observe that when the mesh Peclét number is small (Pe < 2), the
subgrid viscosity C7 is O(1) as the mesh is refined. In fact, here Cr is actually negative,
though by construction, the total effective viscosity, namely ¢ 4+ Cp, is guaranteed to be
strictly positive, cf. (3.7). Furthermore, the stabilisation parameters arising from the
piecewise linear bubble and the residual free bubble, 77 1, and 71 g, respectively, are both
O(h?) as h tends to 0, with 77 g being slightly larger than 771, by a consistent factor.
In contrast, when the mesh Peclét number is very large, Table 3 indicates that Cr, 71,
and 7p r are all O(h) as the mesh is refined; here, 77 7, is now roughly of the same size
as 7r,g. In Table 2, we clearly see the transition between these two regimes as the mesh
Peclét number decreases. This asymptotic behaviour of the stabilisation parameters 777,
and 77 r as the mesh is refined is consistent with the usual choice of 71 for the SUPG
scheme, predicted by standard a priori error analysis, cf. [18], for example.

Let us now investigate the behaviour of the subgrid stabilisation method using the
cubic bubble. For computational simplicity, here the sub-subgrid solution wgg is again
approximated on a mesh consisting of four interior nodes with piecewise linear basis func-
tions, cf. Figure 2(c). In Tables 4, 5 & 6, we present a comparison of 77, ¢ and 71 g for
e =101 2x1073 & 1075, respectively. Here, we observe that TT,c is consistently smaller

Mesh Pe CT TT.L TT' R TT,L/TT,R
17 x 17 6250 | 2.151 x 1072 | 1.674 x 1072 | 1.600 x 102 1.05
33 x 33 3125 | 1.086 x 1073 | 8.251 x 1072 | 7.972 x 1073 1.03
65 x 65 | 1562.5 | 5.520 x 10~ % [ 4.022 x 103 | 3.972 x 103 1.01

129 x 129 | 781.3 | 2.823 x 1074 [ 1.933 x 103 | 1.972 x 103 0.98
257 x 257 | 390.6 | 1.449 x 1074 [ 9.122 x 10 * | 9.721 x 10~ ¢ 0.94

Table 3: Stabilisation parameters 77 7 and 77 g for € = 102,




Mesh Pe CT T,C TT,R TT,C/TT,R
17x17 [0.63]2.742x 1072 | 3.832 x 10 % | 5.090 x 10 * 0.75
33x33 1031 2737x102]9584x%x10° ] 12713 x10°* 0.75
65 x 65 | 0.16 | 2.736 x 1072 | 2.396 x 107> | 3.184 x 10~ 0.75

129 x 129 | 0.08 | 2.752 x 1072 | 5.983 x 107 | 7.961 x 106 0.75
257 x 257 | 0.04 | 2.796 x 1072 | 1.491 x 107% | 1.990 x 10 0.75

Table 4: Stabilisation parameters 77 ¢ and 7 g for € = 1071,

Mesh Pe CT T,C TT,R TT,C/TT,R
17 x 17 | 31.3]2.826 x 1073 | 1.012 x 1072 | 1.165 x 102 0.87
33 x33 | 15.6 | 1.276 x 1073 | 3.726 x 1073 | 4.423 x 1073 0.84
65 x 65 | 7.81 | 7.477 x 10~% | 1.111 x 103 | 1.403 x 103 0.79

129 x 129 | 3.91 | 5.989 x 10~* | 2.936 x 10~ | 3.842 x 10~ 0.76
257 x 257 | 1.95 | 5.678 x 10~* | 7.428 x 107> | 9.861 x 10~° 0.75

Table 5: Stabilisation parameters 77 ¢ and 7 g for e =2 x 1073.

than the stabilisation parameter predicted by the residual free bubble approach. Further-
more, by comparing 77 ¢ with the size of 77, we see that the stabilisation parameter
using the cubic bubble is also smaller than the corresponding value using the piecewise
linear bubble.

Finally, in Figure 3 we present the numerical solution to (2.1) for ¢ = 1072, using
each of the stabilisation methods discussed in this paper. In each case, the solution is
computed on the unstructured triangular mesh shown in Figure 3(a). Here, we observe
that each of the stabilisation schemes perform very well; over—shoots are observable in
the boundary layers, but these may only be eradicated when the mesh Peclét number
is large by the introduction of an isotropic artificial-diffusion model in addition to the
streamline—diffusion stabilisation considered here, cf. [12].

Mesh Pe CT T,C TT,R TT,C’/TT,R
17 x 17 6250 | 3.635 x 1073 | 1.340 x 1072 | 1.600 x 102 0.84
33 x 33 3125 | 1.818 x 1072 | 6.679 x 1072 | 7.972 x 103 0.84
65 x 65 | 1562.5 | 9.087 x 10~* | 3.322 x 1073 | 3.972 x 103 0.84

129 x 129 | 781.3 | 4.543 x 10~* | 1.643 x 1073 | 1.972 x 1073 0.83
257 x 257 | 390.6 | 2.267 x 10~* | 8.060 x 10~* | 9.721 x 10~* 0.83

Table 6: Stabilisation parameters 77 ¢ and 7 g for € = 1075.
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Figure 3: (a) Unstructured triangular mesh with 2046 elements and 1084 nodes. Numerical
approximation using: (b) Residual free bubble stabilisation; (c) Piecewise linear bubble
subgrid stabilisation; (d) Cubic bubble subgrid stabilisation.

5 Concluding remarks

In this paper we have analysed the effect of the subgrid viscosity method proposed by
P. Guermond for stabilising the standard Galerkin finite element method for advection—
dominated diffusion problems. In particular, we have shown that by increasing the amount
of subgrid viscosity added into the scheme actually leads to a decrease in the overall sta-
bilising effect on the coarse grid solution. Thereby, determining the amount of subgrid
viscosity is extremely important for computing a good numerical approximation on prac-
tical meshes. Here, we have designed and implemented a simple and cheap algorithm for
automatically determining the amount of subgrid viscosity. Moreover, our algorithm gives
rise to a stabilisation parameter which is in good agreement with the one obtained from
the residual free bubble approach. Extensions to more general problems, and in particu-
lar, to nonlinear problems are possible. However, this subject is beyond the scope of the
current paper and will be presented elsewhere.
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