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Abstract

We present a new preconditioner for the Schur complement in domain decomposition meth-
ods. The new preconditioner seems to be particularly suited for dealing with advection-

dominated elliptic problems.

1 INTRODUCTION

A common procedure in domain decomposition methods is to split the do-
main 2, where the differential problem is posed, into subdomains (or macro
elements) €. The unknowns internal to each subdomain are then eliminated
and one is left with a system of the type

Swn = gn (1.1)

in the unknowns v, lying on the interfaces between subdomains. This kind
of procedure is particularly suited for the use of parallel computers, as the
elimination of the internal variables is typically done independently in each
subdomain. The operator Sp, commonly called Schur complement in the
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domain decomposition terminology, can be seen as the discretization of a
pseudo-differential operator of order 1 acting on > = union of the interfaces
between subdomains (see, e.g., [1]-[2].) For an efficient solution of (1.1) it is
then necessary to have a good preconditioner. As already pointed out in [1],
an ideal preconditioner should behave as an operator of order —1, which is
not so easy to obtain in practice. However, several preconditioners have been
proposed in the literature (see, e.g., [3] and the references therein), although
most of them were restricted to symmetric problems. In [2] we suggested the
use of the following preconditioner

SED; 'Spn, = SED; Man (1.2)

where Dy, is a discrete second tangential derivative operator defined by

< Dai, 5= /Z Wby ds | (1.3)

and ¢/, is the tangential derivative of ¢. Preconditioner (1.2) balances an
operator of order —2 (D; ') with two operators of order 1 (S, and S}),
and it has the advantage of giving rise to a symmetric problem even if the
original differential problem (and hence ) is not symmetric. However, for
strongly advection-dominated problems, as those arising in computational
fluid dynamics, this preconditioner stops being effective. For this reason we
propose a variant of (1.2) of the following type

Si Dy, oSnhn = Si Dy Lan (1.4)

with Dy, ,, given by

< Dputh >= /E (yibys + wib) ds . (1.5)

In the experiments carried out so far on the model problem

1.6
u =g on 0f) (L.6)

{—Au—f—ﬁuw = f in €,
and on a structured grid it appears that a good choice for w is given by:
w =~ /B on the vertical edges (cross-wind), and w = 0 on the horizontal edges
(streamline). As it can be seen in Sect.3, the new preconditioner proved to be
extremely effective, at least in the cases tested so far. Nevertheless we believe
that much work is still to be done in order to understand its behaviour and
to optimize it in cases of practical relevance.
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An outline of the paper is as follows. In Sect. 2 we recall the three-field
formulation introduced in [4] which leads, in a simple and natural way, to the
continuous version S of the Schur complement and to its discrete counterpart
Sp. In Sect. 3 we describe the preconditioner and present numerical results
obtained on an nCUBE2 parallel computer.

2 THE THREE-FIELD FORMULATION

For the convenience of the reader we recall the three-field formulation in-
troduced in [4] for linear second order elliptic operators. Let & C R? be

a polygonal domain split into a finite number of polygonal subdomains €2
(k=1,.,K) (see fig. 1):

o

Q=Ju, (2.1)
k

and define

Fig. 1 Example of subdivision

Let A be a linear elliptic operator of the form

T

Au = Z{Z(_%(aij(iﬂ)g—; +bj(z)u) + ci(x) gul} +d(z)u.  (2.3)

We assume that the coefficients a;;, b;, c¢;, d belong to L*°(£2) and are
smooth in each 2, and we consider the bilinear forms associated with A in
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each Q, that is,
foru,ve HY(Q):

ou Ov ov ou
ak(u, v) := /Qk{zl:(zjz(ama—%a—% + bjua—xj) + Cia—xiv) + duv} dx.

(2.4)
We also set, for u, v € [, H* ()

a(u, v) 1= Zak(u, v); (2.5)
k
for the sake of simplicity we also assume that there exists a constant o > 0
such that
a(v, v) > a||v||§{1(9) Yv € Hy (). (2.6)

In what follows we shall use the following notation: (.,.) will be the usual
inner product in L?(Q); for k = 1,...K, (.,.) will be the inner product in
L?(Qy) and < .,. > will be the inner product in L?(T'}) (or, when necessary,
the duality pairing between H~=(I';) and Hz (T')). Let us now introduce
the spaces that will be used in our macro-hybrid formulation. For k =1, ..., K
we set

Vi := H' (), (2.7)
My, == H™3(Ty,). (2.8)
We then define
V=[]V, (2.9)
k
M =[] My, (2.10)
k
and
®:={p e L*(X) : Tve Hy(Q) with ¢ =vn} = Hj(Q)s. (2.11)

For every f, say, in L?(Q), we can now consider the following two problems:

find w € Hj(Q) such that
. (2.12)
a(w,v) = (f,v)  Vve Hy(Q)
and
(find u € V, A € M and 9 € ® such that
i) a(u,v)—z<x\k,vk>k: (f,v) YoeV
k
Vi) S0 <t g — b >p= 0 Ve M (2.13)
k
i) Y <A, p>p=0 Vo € D.
\ k
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Theorem For every f € L?(Q), both problems (2.12) and (2.13) have a
unique solution. Moreover, we have

uk = w inQ, (k=1,..,K), (2.14)

A = 3—“; onTy (k=1,..,K), (2.15)
on'y

Y=w on X (2.16)

where dw/On¥ is the outward conormal derivative (of the restriction of w to
Q) with respect to the operator A.
Proof For the proof we refer to [4]. N

It is very important, for applications to domain decomposition methods,
to remark explicitly that the first two equations of (2.13) can be written as

ap(uF, )= < XF oF > = (f,0F vk e Vi, vk
{k( ) k= (f,v") k 2.17)

< pFuF >p= <, pf >y vuk e My, Vk.

In particular, for all fixed k, assuming f and 1 as data, (2.17) is the varia-
tional formulation of the Dirichlet problem

2.18
uk = o on 'y, ( )

{Auk = f in Qg,
where the boundary condition is imposed by means of a Lagrange multiplier
(that eventually comes out to be AF = du¥/0nk) as in Babuska [5]. Hence,
for f and 1 given, the resolution of the first two equations of (2.13) amounts
to the resolution of K independent Dirichlet problems. In operator form
(2.13) can be written as

Au — BAN = f
-BTw  +CyY=0 (2.19)
CcTu =0

where, as already noticed, the operator

A= (_gT _OB> (2.20)

is “block diagonal” in V' x M and invertible. Setting now

CT(u, \) == CT )\ (2.21)
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(ug, Ag) == A7'(f,0), (2.22)
g:=CT(ug,Ap) = CT Ay, (2.23)

problem (2.13) can now be written as

cTA ey = g. (2.24)
Setting
S:=cTA ¢, (2.25)
the problem is now
SY = g. (2.26)

Remark Notice that, in the usual language of domain decomposition meth-
ods, S is the Poincaré-Steklov operator on ¥, associated with the elliptic
operator A. We also notice that the dual operator ST (that will be used in
the sequel) can be obtained by an identical procedure starting from the ad-
joint problem. More precisely, to get ST we use in (2.13) aT (u,v) := a(v,u)
instead of a(u,v), and we repeat the procedure (2.19)-(2.26) with AT instead
of A. n

Problem (2.13) can now be approximated in many different ways. Choosing
Vi, M}, and @y, finite dimensional subspaces of V, M, ®, we can consider
the discretized problem

( find up, € Vi, Ap € M}, and ¢y, € @), such that
i) a(uh,v)—z<)\’,§,vk > = (f,v) Yv eV,
k

) ii) Z < W by —uf, >p= 0 V€ Mp, (2.:27)
k
i) Y < AR ¢ >r=0 Vo € .
\ k

It is clear that suitable inf-sup conditions should be assumed on the choice
of Vj,, My, and @y, unless the formulation is properly stabilized as in [6] and
[7]. We shall not address these questions here. We point out, instead, that, if
one takes a finite element approximation V3, of H'(£2), on a mesh compatible
with the decomposition (2.1), one can set

Vit i= Vi, C =]
Ve =V, DH&(Qk) ; O = Viog; (2.28)
Mg = Vi¥ i) D My =] M)



It is easy to check that with these choices the solution of (2.27) is nothing
else but the standard finite element approximation of the solution of (2.13)
by means of the subspace f/ff Moreover, the discrete analogue Sy, of S is the
classical Schur complement, and the discrete analogue S§ of ST is, at the
same time, the transpose of the Schur complement Sy, and the Schur comple-
ment of the transpose problem. In the next section we shall concentrate our
attention on discretizations of this type, and present a new preconditioner
for problem

Shn = gn (2.29)

which is, with obvious notation, the finite element discretization of (2.26).
3 THE PRECONDITIONER

In [2] we suggested the use of the following preconditioner for solving the
system (2.29)

SID;'Spyn = SED; Yo, (3.1)

where Dy, is a discrete second tangential derivative operator defined on &
by

< Dyt >= /E 0o ss ds b, b€ Dp, (3.2)

where ¢/, is the tangential derivative of ¢. Extensive numerical results
showed that preconditioner (3.1) is very effective for symmetric problems,
as well as for moderately unsymmetric ones. Its performance deteriorates
when the number of subdomains grows. In particular, in agreement with the
analysis of [1], the quality deteriorates linearly in /N, if N is the number of
subdomains. In Table 1 we report the results obtained for the model problem

{—Au = f in Q, (3.3)

u =g on 0f2,

with € = unit square subdivided into NV squares as in fig. 2. For simplicity,

results where obtained with f = 0, g = 1, taking as initial guess for v, a ran-

dom generated vector. In Table 1 we report the number of conjugate gradient

iterations necessary to reduce the maximum norm of the initial residual by a

factor 10~7. The mesh size h in each subdomain varies from 1/10 to 1/100.
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Fig. 2 Example of subdivision in N = 9 subdomains

h N=4 N=100
1/10 12 48
1/20 13 50
1/30 13 51
1/40 14 51
1/50 14 51
1/60 14 52
1/70 14 52
1/80 15 53
1/90 15 53
1/100 15 53

Table 1

As an example of a nonsymmetric problem let us consider now

{—Au—kﬁuw =

u =

in €2,
on 012,

(3.4)

with €, f, g as in problem (3.3) and 8 constant. For 3 >> 1 we are then
simulating an advection-dominated problem on a structured grid. Problem
(3.4) was discretized with linear conforming finite elements, upwinded for the
treatment of the advective term to give a backward finite difference scheme.
For values of 5 not too big, preconditioner (3.1) is still quite effective. How-
ever, for big values of 3, that is, for strongly advection-dominated problems,
the quality of preconditioner (3.1) deteriorates till a complete failure. (See
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Tables 2-a and 2-b, where the results obtained for subdivisions into N =4
and N =16 subdomains are shown. ‘Fail’ means that more than 100 itera-
tions were required to reduce the maximum norm of the initial residual by a

factor 1077.)

_ 1 _ 1 _ 1 _ 1
Bl h=1w% | h=x | h=5 | h=1
10 13 14 14 14
102 19 24 25 29
103 22 32 41 47
104 23 36 49 58
Table 2-a - N=4
_ 1 _ 1 _ 1 _ 1
Bl h=1w% | h=g5 | h=5 | h=1
10 25 28 30 31
102 56 67 81 84
103 99 Fail Fail Fail
Table 2-b - N=16
We propose therefore the following modification:
S Dy, o Sntn = S Dy Lan (3.5)
whith Dy, ,, given by
< Do, ¢ >:/ (/e se + wipep) ds . (3.6)
b

A good value for the parameter w is given, experimentally, by: w ~ /3 on
the vertical edges (cross-wind), and w = 0 on the horizontal edges (stream-
line). Tables 3-a and 3-b report the results for subdivisions into 4 and 16
subdomains respectively.

At last, in Table 4 the results obtained solving the nonsymmetric problem
(3.4) with f = 0 and g(z,y) = 1 — x (so that the solution has boundary
layers) are reported.
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_ 1 _ 1 _ 1 1
104 102 19 19 27 35
10° 316.2 10 12 17 17
106 103 10 10 10 12
107 3162.3 8 8 10 10
Table 3-a - N=4
1 _ 1 _ 1 _ 1
103 31.6 63 72 64 72
10° 316.2 31 36 52 62
107 3162.3 22 23 25 29
Table 3-b - N=16
N 6] Wy h= 15 h= 55 h= 5 h= 4
4 107 3162.3 8 8 10 10
16 107 3162.3 22 23 29 29
Table 4

We can see that the lack of regularity of the solution does not affect the
overall quality of the convergence rate. The new preconditioner looks then
quite interesting. An analysis of its behaviour, as well as extensive numerical
results, will be presented in forthcoming papers.

All the results up to 16 subdomains where obtained on a parallel distributed
memory computer nCUBE2 mod. 6401, with 16 processor elements, of the
Istituto di Analisi Numerica del C.N.R. . For more than 16 subdomains an
nCUBE2 with 128 processors of CNUCE was used. In both cases we used
a parallel code, obtained devoting each processor element to the solution of
each subproblem (on each subdomain), whereas the solution of each subprob-
lem was carried out in a sequential mode. The values of the classical mea-
sures commonly used for evaluating the performance of a parallel algorithm
(speedup and efficiency) were examined and they looked quite satisfactory.
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