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ABSTRACT - We recall in the introduction the main features of the drift-diffusion
model for semiconductor devices, pointing out its physical meaning, its possible deriva-
tion, and its limits. Then, in Section 2, we present a mixed finite element method for the
discretization of this model. Finally, using asymptotic analysis techniques, we compare
the qualitative behaviour of the mixed method with other methods (classical conforming
Galerking method and harmonic average methods). This asymptotic analysis provides

some indication of the advantages of the mixed method.

1. Introduction

The most commonly used model for charge transport in semiconductors is the so
called drift-diffusion model, which - in an appropriate system of units - reads
Ip
s div,J = —R 1.1
5 + divgJ (1.1)

J = —u(N,p + pV, ) . (1.2)

Here, p denotes the position density of the positively charged holes, J the hole current
density, and 1 the electrostatic potential. £ = —V_1) is the electric field, and the source
term R is the recombination-generation rate of charged carrier pairs. The coefficient
p > 0 stands for the hole mobility. The equations (1.1), (1.2) hold for all values of the
position variable z in the semiconductor domain Q C R3, and for the time ¢ > 0 (in
the sequel we shall skip the subscript £ when denoting the gradient and the divergence

taken with respect to the position variable).
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The drift-diffusion equations are supplemented by mixed Neumann Dirichlet bound-
ary conditions for p on 02, and by an initial condition at ¢t = 0. The Dirichlet segments
model contacts, where a voltage is applied to the device, and the Neumann segments
represent insulating boundaries or so called artificial boundary segments introduced to
separate the device under consideration from neighbouring devices in the chip. For

details on the boundary and initial conditions we refer to [9], [10].

The corresponding drift-diffusion model for the position density n of the nega-
tively charged conduction electrons is obtained by making the obvious sign changes in
(1.1),(1.2), taking into account the opposite flow direction of the electrons in the elec-
tric field E. The potential ¢ is usually modelled self-consistently as Coulomb potential
generated by the space charge of the semiconductor, i.e., it is obtained as solution of
a Poisson equation whose right-hand side represents the charge density determined by
p, n, and by the density of impurity ions implanted into the semiconductor in order to
control its electrical performance (see [16]). Then, after modelling the recombination-
generation rate and the carrier mobilities as functions of n, p, and £ and after inserting
the current relation (1.2) into the continuity equation (1.1), a system of two parabolic
equations (for n and p respectively) coupled to the Poisson equation for 1) is obtained.
The mathematical analysis and the numerical treatment of this highly non linear pde
system is a formidable task and has received a lot of attention in the mathematical,
physical, and engineering literature so far (see [9], [10], [16] and the references therein).
In this paper we shall focus on a particular issue, namely on the discretization of the

steady-state drift-diffusion equation in the two dimensional case, i.e., we shall assume

9p —

22 =0, and Q C R?. Before going into the details of the numerical analysis (Sections

2 and 3), we now discuss the physical background of the drift-diffusion model.
Obviously, the equation (1.1) is a standard conservation law (continuity equa-
tion) for the hole current density, analogous to fluid dynamics. The source term R
describes the loss and, respectively, gain of charged particles due to the recombination-
generation of electron-hole carrier pairs (see [16] for an account of the most important

recombination-generation mechanisms in semiconductor).

The current relation (1.2) also has a simple phenomenological interpretation. Ob-
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viously, the term J,; ;¢ = —uVp represents a diffusion current, and J 4,4 = ppE
a drift current caused by the electric field E. Thus, (1.2) postulates that the total hole
current in the semiconductor is the sum of a diffusive current and of an electric field
driven convection current. This intriguing but purely phenomenological reasoning how-
ever does not explain the equality of the diffusion and convection coefficients. Moreover,
a more rigorous derivation which illuminates the limits of validity of the drift-diffusion
model is desirable. Both these issues are dealt with in a satisfactory way by taking
the semiclassical Boltzmann equation for semiconductors (see [10], [13]) as a basis for
deriving (1.1),(1.2). The Boltzmann equation, whose solution is the phase space density
of holes, models the convection of the electric field by a hyperbolic differential operator
in the phase space and the collisions (scattering events) of particles with each other
and with their environment by a non local non linear operator. It turns out that the
drift-diffusion model can be derived from the Boltzmann equation by taking the limit
of the normed mean free path (i.e., the average length travelled by a particle between
two consecutive scattering events divided by the characteristic length of the device)
going to zero, when a linearized scattering operator is used (see [10], [14]). The equality
of the diffusion and drift coefficients comes out automatically in this approach. Also,
information on the validity of (1.1),(1.2) can be deduced from this limiting procedure.
First, the considered physical situation must be such that the performed linearization
of the scattering kernel is valid, i.e., the particle density must be reasonably small. This
requires a non-degenerate semiconductor (the density of the implanted impurity ions is
reasonably low, i.e., at most ~ 10'? particles per cubic centimeter in silicon). Also, the
semiconductor has to be operated under moderate electric field strengths. Second, the
normed mean free path of the device must be small in order for the limiting procedure
to make sense. This means that the caracteristic length of the considered device must
be large in comparison with the mean free path of the semiconductor. While this condi-
tion is usually satisfied for modern silicon technology, it fails for other semiconductors
which have a larger mean free path. However, it is certainly also going to be a problem
for the next generation of even higher integrated silicon devices (technology with the

characteristic device length of less than 0.5 micron).



We remark that a lot of research on other charge transport models for semiconduc-
tors is currently going on. Quantum transport models (Wigner equation) are investi-
gated for ultra integrated semiconductor devices, semiclassical Boltzmann-type models
for semiconductors other than silicon and, most recently,the so called hydrodynamic
semiconductor transport model,which is an extension of the drift-diffusion model not

based on the mean free path limit, is under extensive scrutiny (see [10]).

2. Mixed approximation of the continuity equation

We shall describe in this section a mixed approximation to the continuity equation
(1.1), (1.2). For simplicity, we shall consider the stationary two-dimensional case and
a constant mobility coefficient u© = 1. In the solution of the coupled system of three
equations (for 1, n, and p), a linearization method of Gummel type (approximate
Newton decoupling method, [9], [16]) is often used. Then, at each iteration, one has to

solve a problem of the type

( Find p € H'(Q) such that

—~div(Vp+pVey) + cp = f inQ CR?
(2.1)

p =g onlyCoQ

op
\ on

=0 only=00\Iy

where ¢ is assumed to be known and piecewise linear (coming from a discretization of
the Poisson equation). In the equation (2.1) f is a function independent of p, and ¢ a
non negative function independent of p, which can be assumed piecewise constant. To
simplify the exposition, we shall assume here ¢ = 0. We refer to [8] for the treatment
of the more general case ¢ > 0. We recall that, since V1| is quite large in some parts
of the domain, equation (2.1) is an advection dominated equation, for which classical
discretization methods may fail. Using the classical change of variable from the charge

density p to the Slotboom variable p

p=pe”, (2.2)



equation (2.1) can be written in the symmetric form
( Find p € H*(Q) such that
—~div(e™¥Yp) = f in

2.3
p = x = eYg onTy (2.3)
0
\ % =0 on I'y
and the hole current density is now given by
J = —e_¢2p . (2.4)

Note that in (2.3) homogeneous Neumann conditions come from the usually made as-
sumption that —F -n = % vanishes on I'y. The idea is to discretize equation (2.3)
with mixed finite element methods, go back to the original variable p by using a discrete
version of the transformation (2.2), and then solve for p. For the case ¢ = 0, a mixed
scheme (based on the lowest order Raviart-Thomas element [15]) has been introduced
and extensively discussed in [4] for the case f = 0, and in [5] for f # 0. The scheme
provides an approximate current with continuous normal component at the interele-
ment boundaries. Moreover, the matrix associated with the scheme can be proved to
be an M-matrix, if a weakly acute triangulation is used (every angle of every triangle
is < m/2). This property guarantees a discrete maximum principle and, in particular,
a non-negative solution if the boundary data are non-negative. Moreover, when going
back to the variable p, this structure property of the matrix is retained.

Let us recall the mixed scheme. For that, let {T},} be a regular decomposition of
(Y into triangles T ([6]) (€2 is assumed to be a polygonal domain). According to [15], we

define, for all T€ T}, the following set of polynomial vectors
RT(T) = {I - (7-177—2)a Tn=0a+ ﬁxa T2 = ’Y+By7 OA,B,"}/ € R} . (25)
Then, we construct our finite element spaces as follows

Vi =1{r e [L3Q)]" : divr € L*(Q), T-n=00n Ty, 7 € RT(T), VT € T;,}{2.6)
Wi ={¢ € L*(Q) : ¢p € Py(T) VT € Tp,}. (2.7)
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As usual, Py(T) denotes the space of constants on T. The mixed discretization of (2.3)

is then the following

Find J, € Vi, pn € Wi such that :

/ eﬁzh - rdxdy — / div T pp dedy=0 1€ ‘7;1, (2.8)
Q Q :
/ div J,, ¢ dxdy = / fodrdy b € Wy

Q Q

In the first equation of (2.8) ¢ denotes the piecewise constant function defined in each

triangle T by
e¢|T = (/ e¥dxdy)/|T| . (2.9)
T

It is clear that jj, will be an approximation of the solution p of (2.3), and .J, will be an
approximation of the current J. In particular, the first equation of (2.8) is a discretized
version of (2.4), and the second equation of (2.8) is a discretized version of divJ = f.
Uniqueness results for (2.8) follow from the general theory of [3].

We remark that the condition divr € L?*(2) in the definition (2.6) implies that
every T € ‘7h has a continuous normal component when going from one element to
another. This means, in particular, that the current is preserved.

The algebraic treatment of system (2.8) needs some care. Actually, the matrix

associated with (2.8) has the form
A -B
~ 2.1
(% 7)) (2.10)

and is not positive-definite (H* denotes the transpose of the matrix H). A way to avoid
this inconvenience is to relax the continuity requirement in the space definition (2.6)
and to enforce it back by using interelement Lagrange multipliers. (See [7] where this

idea was first introduced). The procedure is the following. First we set
Vi = {re[L*Q)] :7jp € RT(T) VT € Ty}, (2.11)
Then, denoting by Ej, the set of edges e of Ty, we define, for any function & € L%(T)

Ang = {n€L*(En): pye € Po(e) Ve € By, ; /(,u —&ds=0VeC o}, (2.12)

e
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where Py(e) denotes the space of constants on e. The mixed-equilibrium discretization

of (2.3) is then

(Find J;, € Vi, pr € Wi, An € Ay such that :

/eaih-zd:cdy—Z/dz’vzphd:cdy+2/ MT-nds=0 1€V,
Q T JT T Jor

| > / div J,, pddy — / fbdzdy pew, B
T /T Q
Z/ pdp -nds = 0 t € Apo.
| T Jor
It is easy to see that problem (2.13) has a unique solution and that
Jy = I pn = bn - (2.14)

Moreover, A, is a good approximation of p at the interelements. (See [1] for detailed

proofs). The linear system associated with (2.13) can be written in matrix form as

A -B C J, 0
-B* 0 0 m|] = |-F]|. (2.15)
cr 0 0 An 0

In (2.15) the notation J, ps, A is used also for the vectors of the nodal values of the
corresponding functions. The matrix in (2.15) is not positive definite. However, A is
block- diagonal (each block being a 3x3 matrix corresponding to a single element T) and
can be easily inverted at the element level. Hence, the variable .J, can be eliminated
by static condensation, leading to the new system
B*A~'B -B*A~C Ph F
= . (2.16)
~-C*A~'B C*A~C An 0
The matrix in (2.16) is symmetric and positive definite. Moreover, B* A~! B is a diagonal
matrix, so that the variable p;, can also be eliminated by static condensation. This leads

to a final system, acting on the unknown A only, of the form

MM =G | (2.17)
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where M and G are given by:

M = C*A™'C — C*A™'B(B*A™'B)"'B*A~'C |, (2.18)
G = C*A™'B(B*A™'B)"'F |, (2.19)

and M is symmetric and positive definite. In order to go back to the original unknown
p we recall that A, is an approximation of p and we can use a discrete version of the

inverse transform of (2.2):

Moo= (e")pn. (2.20)

In (2.20) (e¥)! is given edge by edge by the meanvalue of e¥:

!, = (/ewds)/|e| . (2.21)

The transformation (2.20) amounts to multiplying the matrix M columnwise by the
value of (e¥)! on the corresponding edge. The final system in the unknown p; will be

of the type
Mp, = G . (2.22)

The matrix M is not symmetric anymore, but it is an M-matrix if the matrix (2.18) is

an M-matrix, which holds true if the triangulation is of weakly acute type.



3. Asymptotic behaviour of the numerical scheme

We already pointed out in the previous sections that the electric field E (= —V1))
can be, in most applications, very large in some parts of the domain 2. The aim of this
section is to perform a (rough) analysis of the mixed exponential fitting scheme (and of
some other possible schemes for (2.3)) when the electric field becomes larger and larger.
This will show why the choice of a mixed method for discretizing (2.3) seems to be
preferable, apart from the obvious reason that it is strongly current-preserving.

In order to perform our asymptotic analysis we shall make the simplifying assump-
tion that we are dealing with a given potential i, piecewise linear, of ”moderate size”,

and that our equation is
~din(Tp+p¥(D) = F, (3.1)

where X is a real valued parameter. We are obviously interested in the behaviour of
numerical schemes for (3.1) when A becomes smaller and smaller. The symmetric form
of (3.1) reads then

—div(e" W/ Nvp) = 7, (3.2)

where the change of variable is now
p = pe= WA (3.3)

We shall analyze the asymptotic behaviour (as A — 0) of three different schemes, all
based on the idea of discretizing (3.2) first, and then use (3.3) to obtain a numerical
scheme in the unknown p (and hence a scheme for (3.1)). In particular, we will consider
the following discretization methods for (3.2): a) classical conforming piecewise linear
methods, b) conforming piecewise linear mothods with harmonic average (as pointed out
in [4], [5] they can be regarded as a discretization of (3.2) by means of hybrid methods),
and ¢) mixed methods as described in the previous section.

We recall that, calling Zj, the space of continuous piecewise linear functions on €2

and setting, for all function ¢ € C°(T'p)

Zne = {v € Zy, v=_, at nodes € Ip}, (3.4)
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the methods a) and b) can be written in the following way.

Classical method

(Z) Ph eZh/:X’
(i4) / e~/ NYp, - Yodedy = / fvdzdy v € Zpng, (3.5)
Q Q

(i55) pp = e~ Y Np,  at the nodes .
Conforming method with harmonic average

( (Z) Pn € Zh,x »

(41) /e_(w/A)th-Zvdxdy = /fvd:cdy Yo € Zpyo ,
Q Q

3.6
(iii) pn = e~ W/ Np, at the nodes (3:6)
— T
(iv) e~/ Np = m VT € Ty, (harmonic average).
\ T

In order to analyze the behaviour of the schemes (3.5), (3.6) and of the mixed scheme of
Section 2, we shall need the following asymptotic formulae, valid as A — 0 for a function

¢ linear on a triangle T:

/e¢’/>‘dxdy ~ A2|T|ePmas/?, (3.7)
T

/e‘b/)‘ds ~ Ae|ePmar/D

e

(3.8)

3

In (3.7), (3.8) T is a triangle, e is an edge of T, and ¢ .., ¢¢, ., Tepresent the maximum

value of ¢ over T and over €, respectively. Formulae (3.7), (3.8) can be easily checked
by direct computation. They hold in the generic case where the values ¢r . and ¢%,,..
are assumed only at one point.

We are now able to analyze the limit behaviour of the various schemes. For this,
let us just look at the contributions of a single triangle T to the final matrix. Denoting

by ¢ (1 =1,2,3) the basis functions on T, we have, for the classical method

/T e~ OO . YD dudy ~ NLTe~ Phin/V), (3.9)
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where Ll-Tj are the contributions of the conforming approximation of the Laplace opera-
tor, that is
Lij = / Vo) - Vo dady, (3.10)
T

and 1. is obviously the minimum value of 1 over T. Taking into account transfor-

mation (3.5,iii), the contributions to the final matrix, acting on py, are given by
T 27T (¥~ )/ A
M ~ NLEeWi—¥min)/X, (3.11)

(where 1= value of 1) at the node j). Hence, for the classical method, some coefficients
of the matrix blow up exponentially when A — 0.

Let us now consider the case (3.6) where the harmonic average is used. From
(3.6,7v) and (3.7) we have
S

/ MY - VDdndy =
T

LEeWma)/X (3.12)

where the coefficients L;rj are defined in (3.10). Then, combining (3.12) and (3.6 ,i),
the contributions of the triangle T to the final matrix are

1 T
T ~ T 3" ¥Ymazx A
M ~ ﬁLije(w Vimaa)/ A (3.13)

We see that, when using the harmonic average, some contributions can become very
small, but this can be regarded as a natural upwinding effect which is rather desirable
than disturbing. However, it is also clear that the contributions which are not exponen-
tially small have order of magnitude 1/A2, while from (3.1) one would expect coefficients
of order 1/A. As discussed in [5] in the framework of hybrid methods, this is clearly not
disturbing if f = 0, but it can be a source of inconsistency for f # 0 and A small, as
shown in [5] on simple practical experiments. (We refer to [5] for possible remedies for
this method). We point out that this drawback is not present in the mixed formutation
(2.13), (2.9), (2.21). Actually, one can easily see that the contributions of a triangle T
to the final matrix, acting on py, for mixed methods are given by

M = / e WYY . vxWdzdy ( / eV Ads) e, (3.14)
. |

€j
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where e; (1 = 1,2,3) are the edges of T, and x® are the piecewise linear non-conforming
basis functions, that is,
x®W e P(T) ; / xWds = |ej|045. (3.15)
ej
In (3.15) d;; is the Kronecker’s symbol, and the harmonic average (3.6,iv) is used. From
(3.14), (3.6,iv), (3.7), and (3.8) we have then

1~ €j T
MY ~ XL;fje%fw*%am)/*, (3.16)

where L;l; are the coefficients of the elementary stiffness matrix coming from a piecewise

linear non-conforming approximation of the Laplace operator, that is,
it = / T - vy D dady. (3.17)
T

It is now clear what the advantages of mixed methods are: 1) exponential blow-up of the
coefficients is avoided, 2) some contributions will go exponentially to zero, corresponding
to a natural upwinding effect, 3) the order of magnitude of the non vanishing coefficients
is 1/, as expected from (3.1).

The above considerations shed, in our opinion, a better light on several common
choices for finite element approximations of the continuity equations, motivating the
use of one-dimensional harmonic averages which are common in semiconductor device
applications ([2], [12], [11] etc.). In the context of mixed methods we can use two-
dimensional harmonic averages (which is, in a sense, more natural), since we compensate
a factor A from (3.8), due to the different change of variable from pj to p, (average on
an edge instead of point value).

Remark We discussed so far the generic case where wﬁ reaches its maximum at one
point only. However, one can easily see that the ”automatic adjustment” provided by
mixed methods works as well for the non generic case where 1/J|T reaches its maximum
on a whole edge. Finally, for ¢ = constant on T, we are just dealing with the Laplace
operator, for which usual and harmonic average coincide and both give rise to the
standard conforming scheme for Laplace operator. Similarly, the mixed approach above

described produces the usual mixed approximation of the Laplace operator.
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