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1 Introdu
tion

In re
ent times, two-level methods are be
oming popular in a wide variety of appli
ations.

Sometimes they 
an be used to take advantage of parallel 
omputers, as in Domain De
ompo-

sition Methods (see for instan
e the series of pro
eedings of the yearly Conferen
e in Domain

De
omposition Methods, visiting [16℄.) Other times, they are used in order to take into a
-


ount small-s
ale e�e
ts, as for instan
e when dealing with 
omposite materials having a �ne

stru
ture (see [4℄, [24℄, [25℄, and the review [17℄ with the referen
es therein), or when dealing

with Helmholtz equations at high frequen
y ([18℄, [20℄.) They are also used in a posteriori

error analysis (see e.g. [29℄, [30℄, [31℄, and the referen
es therein). Finally, they are often also

used to stabilise �nite element formulations that la
k the ne
essary stability properties, as

for 
onve
tion{dominated 
ows or Stokes problems ([22℄, [21℄, [15℄). In many 
ases, they are

not seen as two-level methods, but, as we shall see, they �t rather easily into this 
athegory.

The �rst goal of this paper will indeed be to indi
ate a general framework that 
an be

seen as a generalisation of the augmented spa
e method, in order to in
lude a wide 
lass of

these tri
ks, used for dealing with subs
ales, into a uni�ed approa
h.

The se
ond, and main goal of the paper, is to show that within this approa
h one 
an set

suitable 
onditions on the subgrids that ensure the optimal performan
e of the 
orresponding

two-level method. We shall do that in the parti
ular 
ase of adve
tion dominated s
alar

equations, where mu
h is known (see e.g. [34℄, [35℄, [12℄, [36℄), so that the quality of the

results 
an be evaluated in a sharper way. In parti
ular, we shall see that a 
ertain number

of stabilised methods 
an a
tually be interpreted just as a way of 
hoosing a suitable subgrid,

and then applying the usual Galerkin framework (and 
omputer programs). In other words,

one 
an stabilise the problem just by 
hoosing the subgrid. This 
learly 
an also be used in

self-adaptive methods.

It would be very interesting to study the possible extensions of this approa
h to other

problems, in
luding more 
ompli
ated 
uid 
ows, or also problems of di�erent appli
ative

nature.

2 The model problem

In order to des
ribe the general idea, we take a simple model problem, or, rather, a 
lass of

them. We assume that 
 is a polygon in R

2

, and we set

V := H

1

0

(
): (2.1)

We then 
onsider a bilinear form (u; v)! L(u; v) de�ned as

L(u; v) :=

Z
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where 
learly x = (x

1

; x

2

). The 
oeÆ
ients a

ij

; b

j

; 


i

; d are supposed to be smooth fun
tions

of x in 
. This will easily imply the 
ontinuity of the bilinear form L on V � V , that is

9M su
h that L(u; v) �M kuk

V

kvk

V

; 8u; v 2 V: (2.3)

To simplify the exposition, we also assume that the bilinear form L is V -ellipti
:

9� > 0 su
h that L(v; v) � � kvk

2

V

8v 2 V: (2.4)

For a given right-hand side f , say, in L

2

(
), we then 
onsider the variational problem

�

�nd u 2 V su
h that:

L(u; v) = (f; v) 8v 2 V;

(2.5)

where, as usual, ( ; ) stands for the L

2

(
) inner produ
t. It is 
lear that, thanks to (2.4), prob-

lem (2.5) has a unique solution. In di�erent appli
ations, (2.5) 
an represent a 
onve
tion{

dominated problem, or a problem with a 
omposite material having a �ne stru
ture, or just a

ni
e ellipti
 problem where domain de
omposition has to be used in order to take advantage

of a parallel 
omputer. The approa
h that follows, however, 
an rather easily be extended to

systems of equations, in
luding inde�nite ones that 
an be found, for instan
e, in appli
ations

to mixed methods.

3 The general idea

The general idea behind the 
lass of methods we have in mind 
an be roughly des
ribed as

follows. We 
onsider a splitting of 
 in a �nite number of subpolygons 


k

(k = 1; ::;K) in

su
h a way that

[

k




k

= 
 and 


r

\ 


s

= ; for r 6= s: (3.1)

In (3.1) ea
h 


k

is supposed to be open, and 


k

represents its 
losure. Then we set

� := [

k

�


k

; (3.2)

and we denote by � the spa
e of tra
es on � of the fun
tions of V , that is

� := fg 2 L

2

(�) su
h that 9 v 2 V; v

j�

= gg: (3.3)

Then we 
onsider a �nite dimensional subspa
e

�

H

� � with N := dim(�

H

); (3.4)

and the in�nite dimensional subspa
e V

H

of V made by the fun
tions in V whose tra
es on

� belong to �

H

, that is

V

H

:= fv 2 V su
h that v

j�

2 �

H

g: (3.5)

We 
an now 
onsider the approximate problem:

�

�nd u

H

2 V

H

su
h that:

L(u

H

; v

H

) = (f; v

H

) 8v

H

2 V

H

:

(3.6)

It is 
lear from (2.4) that problem (3.6) also has a unique solution. In many appli
ations,

the de
omposition (3.1) will be made of triangles, with the usual 
ompatibility 
onditions

(namely, for all r and s (with r 6= s) the interse
tion 


r

\ 


s

must be either a 
ommon
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vertex or a 
ommon edge or empty.) Then, we might 
hoose a �nite element spa
e V

P

(the

subja
ent Polynomial spa
e) and de�ne �

H

as the spa
e spanned by the tra
es of V

P

on

�. In these 
ases, the stabilising e�e
ts of passing from V

P

to V

H

are well known. See for

instan
e [12℄, [36℄ for the 
ase of adve
tion{dominated problems. In other 
ases, however,

the stru
ture 
an be mu
h more 
ompli
ated. We might for instan
e have a grid on �,

and take �

H

as the set of fun
tions that are 
ontinuous on �, vanishing on � \ �
 and

pie
ewise polynomial on the given grid. Note that, in this 
ase, the 


k

's do not need to

be triangles or quadrilaterals, and even if they are we do not need 
ompatibility 
onditions

among them. In these 
ases, there will be no obviuos starting spa
e V

P

. In other 
ases the

spa
e �

H


an 
ontain, besides or instead of pie
ewise polynomials, other fun
tions having

suitable properties (exponentials, trigonometri
 fun
tions, wavelets, or other problem-�tted

shapes). During an iterative pro
edure, these fun
tions might be 
hanged from time to time,

using suitable information obtained from the previous steps. As you 
an see, the framework

is rather general.

In any 
ase, it is possible to identify the subspa
e (of bubbles) V

B

whi
h 
an simply be

de�ned as

V

B

:= �

k

H

1

0

(


k

) � V � H

1

0

(
): (3.7)

We 
an then identify another subspa
e V

L

made of fun
tions v

L

in V

H

su
h that

L(v

L

; v

B

) = 0 8v

B

2 V

B

: (3.8)

If L is the di�erential operator asso
iated with the bilinear form L, the elements of V

L

are

lo
al solutions of the partial di�erential equation

Lv

L

= 0 in 


k

(3.9)

for all k, and having tra
es on � that belong to �

H

. It is 
lear that

V

H

� V

L

� V

B

: (3.10)

In some 
ases it will also be 
onvenient to identify a third subspa
e, V

L

�

, made of fun
tions

v

L

�

in V

H

su
h that

L(v

B

; v

L

�

) = 0 8v

B

2 V

B

: (3.11)

If L

�

is the formal adjoint of the operator L, the elements of V

L

�

are lo
al solutions of the

partial di�erential equation

L

�

v

L

�

= 0 in 


k

(3.12)

for all k, also with tra
es in �

H

. It is 
lear that together with (3.10) we also have

V

H

� V

L

�

� V

B

: (3.13)

We also point out that both V

L

and V

L

�

are �nite dimensional, and dim(V

L

) � dim(V

L

�

) �

dim(�

H

) � N .

Given the right-hand side f we 
an �nally 
onsider the parti
ular solution u

f

B

2 V

B

su
h

that

L(u

f

B

; v

B

) = (f; v

B

) 8v

B

2 V

B

: (3.14)

In strong form, u

f

B

will be the solution, in every 


k

, of the boundary value problem

Lu

f

B

= f in 


k

u

f

B

= 0 on �


k

: (3.15)

We have then the following theorem.
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Theorem 1 Let u

H

be the unique solution of (3.6), and let u

H

= u

L

+u

B

be its de
omposition

a

ording to (3.10). Then u

B


oin
ides with the unique solution u

f

B

of (3.14), and u

L


an be


hara
terized as the unique solution of either one of the following problems:

�

�nd u

L

2 V

L

su
h that

L(u

L

; v

L

) + L(u

B

; v

L

) = (f; v

L

) 8v

L

2 V

L

(3.16)

or

�

�nd u

L

2 V

L

su
h that

L(u

L

; v

L

�

) = (f; v

L

�

) 8v

L

�

2 V

L

�

:

(3.17)

Proof It is 
lear from (2.4) that both (3.6) and (3.16) have a unique solution. Let u

H

be the solution

of (3.6) and let u

H

= u

L

+u

B

be its (unique) de
omposition a

ording to (3.10). Using the de�nition

(3.8) and then (3.6) for v

H

= v

B

we have

L(u

B

; v

B

) = L(u

L

; v

B

) + L(u

B

; v

B

) = L(u

H

; v

B

) = (f; v

B

) 8v

B

2 V

B

; (3.18)

whi
h implies that u

B


oin
ides with the unique solution u

f

B

of (3.14). Then we 
an take v

H

= v

L

in

(3.6) and obtain

(f; v

L

) = L(u

H

; v

L

) = L(u

L

+ u

B

; v

L

) 8v

L

2 V

L

; (3.19)

telling us that u

L


oin
ides with the unique solution of (3.16).

We still have to prove that u

L


an also be 
hara
terised as the solution of (3.17), and that su
h

solution is unique. Using u

H

= u

L

+u

f

B

and v

H

= v

L

�

in (3.6), and using (3.11) we immediately have

that u

L

solves (3.17). Let now fu

L

be another possible solution, in V

L

, of (3.17). It is easy to see that

then fu

H

:= fu

L

+ u

f

B

veri�es (3.6) for all v

L

�

2 V

L

�

and for all v

B

2 V

B

. Using (3.13) we have then

that fu

H

veri�es (3.6) for all v

H

in V

H

. As (3.6) has a unique solution, we 
on
lude that fu

H

� u

H

and

then fu

L

� u

L

, thanks to (3.10). Hen
e the uniqueness of the solution of (3.17) is also proved. �

In the 
ase where one has a subja
ent polynomial spa
e V

P

, one 
an present the problem

in another, slightly di�erent way. Indeed, assuming for simpli
ity that V

P

\ V

B

= ;, we 
an

now split V

H

= V

P

� V

B

, and, a

ordingly, u

H

= u

P

+ u

BP

. Then u

BP

solves

L(u

BP

; v

B

) = �L(u

P

; v

B

) + (f; v

B

) 8v

B

2 V

B

; (3.20)

that 
an be written, shortly, as

u

BP

= L

�1

B

(f � Lu

P

): (3.21)

This, inserted into

L(u

P

; v

P

) + L(u

BP

; v

P

) = (f; v

P

) 8v

P

2 V

P

; (3.22)

gives

L(u

P

; v

P

)� (L

�1

B

u

P

; L

�

v

P

) = (f; v

P

)� (L

�1

B

f; L

�

v

P

) 8v

P

2 V

P

; (3.23)

whi
h 
ould be 
onsidered as another equivalent way of writing the same problem (3.6), or

(3.16), or (3.17). Noti
e that, in parti
ular, we have L

�1

B

f � u

f

B

as de�ned in (3.14).

Methods of these types are found at several o

urren
es in the literature. For instan
e, for


onve
tion dominated problems one 
an see [33℄, [34℄, and the referen
es therein for methods

in the formulation (3.16) or (3.17), while the formulation (3.23) 
an be found in [13℄, and

its equivalen
e with stabilised methods as SUPG (see [14℄, [19℄, [26℄, [27℄) is made 
lear in

[7℄. Formulations of the type (3.16) or (3.17) 
an also be found, at a more abstra
t level

but for one-dimensional problems, in [5℄, and also, in more re
ent times, in [24℄, [25℄ for

homogeneisation problems. In some sense, the ups
aling te
hnique of [1℄, [2℄, [3℄ 
an also be
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seen in this framework, although it uses the mixed formulation as a starting point and hen
e

does not enter dire
tly the present assumptions. See [10℄ for a more general setting that

in
ludes the ups
aling methods. Apart from one-dimensional 
ases (where they all give ba
k

the exa
t solution, provided one solves exa
tly the di�erential equation in ea
h subdomain,)

all these methods require a suitable approximation for the solutions of the problems inside

ea
h subdomain, as we shall see below in more detail. A similar point of view 
ould also be

taken when looking at Domain De
omposition problems, where (3.17) would represent a sort

of 
ontinuous S
hur 
omplement that needs however, one way or another, to be dis
retised.

Indeed, if we 
onsider the problem of the a
tual solution of all these equivalent formula-

tions, several observations are in order. First of all, problem (3.14) is in�nite dimensional,

and therefore its solution is, in general, out of rea
h. In some 
ases, however, one might

think that the knowledge of the tra
es of u

L


ould provide enough information. However,

even if problem (3.17) is a
tually �nite dimensional, it is not solvable in pra
ti
e. Indeed,

in order to solve it on a 
omputer, we should �rst 
hoose a basis f 

(i)

g (i = 1; ::; N) in �

H

(this is not so diÆ
ult,) and then asso
iate to it a basis fv

(j)

L

g (j = 1; ::; N) in V

L

and a basis

fv

(i)

L

�

g (i = 1; ::; N) in V

L

�

, de�ned by:

v

(j)

L

=  

(j)

on � and Lv

(j)

L

= 0 in 


k

; (j = 1; ::; N ; k = 1; ::;K); (3.24)

and, respe
tively,

v

(i)

L

�

=  

(i)

on � and L

�

v

(i)

L

�

= 0 in 


k

; (i = 1; ::; N ; k = 1; ::;K): (3.25)

Then, we 
an express u

L

as u

L

=

P

j

U

j

v

(j)

L

and redu
e (3.17) to the linear system of equations

N

X

j=1

U

j

L(v

(j)

L

; v

(i)

L

�

) = (f; v

(i)

L

�

) 8i = 1; ::; N: (3.26)

However, in order to 
ompute the 
oeÆ
ients L(v

(j)

L

; v

(i)

L

�

) of the matrix in (3.26), we need to

know the values of the v

(j)

L

and v

(i)

L

�

inside ea
h 


k

, that requires the solutions of the boundary

value problems (3.24) and (3.25); and this 
annot be obtained in pra
ti
e. Clearly we have

to resort to some approximate solution. It would be ni
e, however, to have guidelines that

indi
ate the ne
essary degree of a

ura
y that su
h approximate solution must have.

The same problem arises with the formulation (3.23). Indeed, expressing now u

P

as

u

P

=

P

j

U

j

v

(j)

P

we should now 
ompute

N

X

j=1

U

j

L(v

(j)

P

; v

(i)

P

)� (L

�1

B

v

(j)

P

; L

�

v

(i)

P

) = (f; v

(i)

P

)� (u

f

B

; L

�

v

(i)

P

) 8i = 1; ::; N; (3.27)

whi
h again requires the (approximate) solution of the lo
al problems de�ning L

�1

B

v

(j)

P

for

ea
h j, and u

f

B

. In these 
ases, having understood the stabilising e�e
t of the additional

term appearing in the sti�ness matrix of (3.27), that is �(L

�1

B

u

P

; L

�

v

P

), the e�orts have

been 
on
entrated mostly in providing approximate solutions of (3.20) that reprodu
ed the

same stabilising e�e
t ; see for instan
e [11℄, [8℄, [21℄, [9℄. In parti
ular, when V

P

is made

of pie
ewise linear fun
tions, we have that the stabilised problem 
orresponds exa
tly to the

SUPG method, with a spe
i�
 value for the stabilising parameter � . An approximate solution

will produ
e the same method with a di�erent value of � . One 
ould then use the theory

of SUPG methods (see e.g. [28℄, [23℄, [35℄) to get the proper 
onditions on � , and hen
e,
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ba
kward, on the quality of the approximation. This, however, apart from working only in

parti
ular 
ases, seems somehow unfair.

In the next se
tion we are going to follow a di�erent approa
h. We suppose that in ea
h

element 


k

we have a subgrid, and a �nite element spa
e on this subgrid. The dis
retised

solutions of the lo
al problems are then obtained by the standard Galerkin �nite element

approximation. We want to see if we 
an pres
ribe reasonable 
onditions on these �nite

element (subgrid) spa
es, in order to preserve, in a sense to be made pre
ise, the a

ura
y

that was (ideally) obtainable by solving (3.17). Unfortunately, we will not be able to do

that for a 
ompletely general problem, but we will have to 
onsider a simpli�ed adve
tion

dominated 
ase. We hope however that this might be a �rst step towards more general

results.

4 The 
hoi
e of the subgrid

As announ
ed at the end of the last se
tion, we are now going to 
onsider a parti
ular 
ase of

(2.2). In this parti
ular 
ase, we shall introdu
e suÆ
ient 
onditions on the subgrid in order

to preserve the quality of the a-priori error bounds.

More pre
isely, we shall make the following assumptions on the bilinear form L:

L(u; v) = "L

s

(u; v) + L

a

(u; v); (4.1)

where L

s

(u; v) is a bilinear symmetri
 form on V � V satisfying

jvj

2

1;


� L

s

(v; v) �M

s

jvj

2

1;


8v 2 V; (4.2)

representing the di�usive term, while L

a

is a skew-symmetri
 bilinear form on V �V satisfying

L

a

(u; v) �M

a

kuk

0;


jvj

2

1;


8u; v 2 V; (4.3)

representing the 
onve
tive term. Finally, " is a small parameter. We obviously assume that

some 
hara
teristi
 length of 
 (for instan
e its diameter) has been s
aled to 1. It is not

diÆ
ult to 
he
k that the present 
ase is a parti
ular 
ase of (2.2), that 
an be obtained for

instan
e by making very mild assumptions on the 
oeÆ
ients a

ij

, taking d and all b

i

's equal

to zero and assuming the 
onve
tive term 
 = (


j

) to have zero divergen
e in 
.

Before dis
ussing the 
hoi
e of the subgrid, we �rst analyse the a-priori error estimates

for problem (3.6). Following essentially [12℄, we set

e

H

:= u� u

H

and �

H

:= u� u

i

H

(4.4)

where u

i

H

is any approximation of u in V

H

. We immediately noti
e that

e

H

� �

H

2 V

H

(4.5)

so that by Galerkin orthogonality we have

L(e

H

; e

H

� �

H

) = 0: (4.6)

Using now (4.2) and (4.1), then (4.6), then again (4.1) and (4.2), we have

"je

H

j

2

1

� L(e

H

; e

H

) = L(e

H

; �

H

) = "L

s

(e

H

; �

H

) + L

a

(e

H

; �

H

)

� "M

s

je

H

j

1

j�

H

j

1

+ L

a

(e

H

; �

H

):

(4.7)
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The tri
k to estimate L

a

(e

H

; �

H

) is now to 
onsider a generi
 fun
tion �

B

in V

B

and re
all

that V

B

is a subspa
e of V

H

, so that Galerkin orthogonality and (4.1) imply

0 = L(e

H

; �

B

) � "L

s

(e

H

; �

B

) + L

a

(e

H

; �

B

): (4.8)

Then we 
an use (4.3), (4.8), and (4.2) and write

L

a

(e

H

; �

H

) = L

a

(e

H

; �

H

� �

B

) + L

a

(e

H

; �

B

)

�M

a

je

H

j

1

k�

H

� �

B

k

0

� "L

s

(e

H

; �

B

)

�M"

1=2

je

H

j

1

("

�1=2

k�

H

� �

B

k

0

+ "

1=2

j�

B

j

1

);

(4.9)

having also, in the last step, 
olle
ted "

1=2

je

H

j

1

, and set M := maxfM

a

;M

s

g. De�ning now

k�

H

k

'1=2

:= sup

">0

inf

�

B

2V

B

f"

�1=2

k�

H

� �

B

k

0

+ "

1=2

j�

B

j

1

g (4.10)

we immediately have from (4.9) and (4.10) that

L

a

(e

H

; �

H

) �M"

1=2

je

H

j

1

k�

H

k

'1=2

; (4.11)

that inserted in (4.7) gives the �nal estimate

"

1=2

je

H

j

1

� C ("

1=2

j�

H

j

1

+ k�

H

k

'1=2

): (4.12)

As dis
ussed in [12℄, and in the referen
es therein, the norm (4.10) behaves, from the point

of view of interpolation error, as a 1=2-norm (hen
e the name we adopted here). See however

[6℄ for a mu
h more detailed analysis of these types of norms. Assuming that H is a typi
al

length asso
iated with the size of the 


k

's, and assuming that, for some integer s � 1, we

have the interpolation errors

j�

H

j

r;


� H

s+1�r

kuk

s+1;


r = 0; 1 (4.13)

we have then the usual error estimate (see e.g. [28℄, [23℄, [35℄)

"

1=2

je

H

j

1;


� C("

1=2

H

s

+H

s+1=2

): (4.14)

We also noti
e that, with the same argument as in (4.9), we easily have, for every � 2 V and

for every �

B

2 V

B

L

a

(e

H

; �) = L

a

(e

H

; � � �

B

) + L

a

(e

H

; �

B

) �M"

1=2

je

H

j

1

k�k

'1=2

(4.15)

that together with (4.14) produ
es a norm of the adve
tive part of the error in the dual norm

of k�k

'1=2

. In pra
ti
al 
ases, see always [12℄, this in turn produ
es the usual L

2

estimate for

the adve
tive part of the error

H

1=2

k
 � re

H

k

0;


� C("

1=2

H

s

+H

s+1=2

): (4.16)

Our target is now to give suÆ
ient 
onditions on the subgrid dis
retisation in order to

preserve the error estimates (4.14) and (4.16). For this, we assume that we are given a �nite

dimensional subspa
e V

h

H

� V

H

, and we 
onsider the fully dis
retised problem

�

�nd u

h

2 V

h

H

su
h that:

L(u

h

; v

h

) = (f; v

h

) 8v

h

2 V

h

H

:

(4.17)
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We would like to have, for problem (4.17), a priori error estimates of the type (4.14)

(4.16). For this, we have to introdu
e suitable subspa
es of V

h

H

, as we did before for V

H

.

We set

V

h

B

:= V

h

H

\ V

B

; (4.18)

V

h

L

:= fv

h

L

2 V

h

H

su
h that: L(v

h

L

; v

h

B

) = 0 8v

h

B

2 V

h

B

g; (4.19)

and

V

h

S

:= fv

h

S

2 V

h

H

su
h that: L

s

(v

h

S

; v

h

B

) = 0 8v

h

B

2 V

h

B

g: (4.20)

To simplify the notation it will also be 
onvenient to set

kvk

2

s

:= "L

s

(v; v) ' "jvj

2

1

: (4.21)

We are now ready to introdu
e our assumptions on the spa
e V

h

H

. We expli
itly point out,

form the very beginning, that our assumptions are only suÆ
ient for getting suitable error

bounds. So far, they have been taylored for 
ases where the lo
al dimension of �

H

is small,

so that we 
an think to use spa
es V

h

B

that have a small dimension as well. We do believe

that there is room for many future improvements, and the present assumptions should be

regarded only as a beginning. Our �rst assumption will be

Assumption 1 There exists a 
onstant C

1

, independent of H, h, and " su
h that, for every

w 2 V the solution �

h

2 V

h

B

of

L(�

h

; b

h

) = L(w; b

h

) 8b

h

2 V

h

B

(4.22)

satis�es

k�

h

k

s

+H

�1=2

k�

h

k

0

� C

1

(kwk

s

+H

1=2

kwk

1

+H

�1=2

kwk

0

); (4.23)

where, here and in all the sequel, H is some 
hara
teristi
 length asso
iated with the 


k

's

(as it was in (4.14) and (4.16)): to simplify the exposition, we 
an assume on
e and for all

that H is the maximum diameter of the 


k

's. �

Assumption 1 should be regarded in the following way: problem (4.22) 
orresponds to

solve a dis
rete problem, in ea
h subdomain, exa
tly of the same type of the original one.

For all these problems we require stability estimates of the type that we expe
t for the global

problem (3.6) (see for instan
e the estimates (4.14) and (4.16)).

We shall 
ome ba
k in a while to dis
uss possible suÆ
ient 
onditions that 
an ensure

(4.23). We �rst indi
ate the use that we are going to make of it.

For that we introdu
e a suitable interpolant of the exa
t solution u, that will allow an

easier derivation of error estimates. We start �rst by de�ning u

h

i

as the usual interpolant of

u in V

h

H

. Then we de�ne a new interpolant, u

h

I

as follows

u

h

I

= u

h

i

on � and L(u

h

I

; b

h

) = L(u; b

h

) 8b

h

2 V

h

B

: (4.24)

Assumption 1 allows us to 
ompare the distan
e ku� u

h

I

k with the 
orresponding ku� u

h

i

k.

Theorem 2 Let Assumption 1 hold, let u be a given fun
tion in V , and u

h

i

be a given fun
tion

in V

h

H

. Assume �nally that u

h

I

is 
onstru
ted as in (4.24). Then there exists a 
onstants C

I

independent of u, u

h

i

, H, h, and " su
h that

ku� u

h

I

k

s

+H

�1=2

ku� u

h

I

k

0

� C

I

(ku� u

h

i

k

s

+H

1=2

ku� u

h

i

k

1

+H

�1=2

ku� u

h

i

k

0

): (4.25)
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Proof From (4.24) we have that u

h

I

must have the form u

h

I

= u

h

i

+ �

h

, where �

h

2 V

h

B

is determined

by

L(u

h

i

+ �

h

; b

h

) = L(u; b

h

) 8b

h

2 V

h

B

; (4.26)

that is,

L(�

h

; b

h

) = L(u� u

h

I

; b

h

) 8b

h

2 V

h

B

: (4.27)

The proof follows then immediately from (4.23) using the triangle inequality. �

Essentially, we are requiring that the new interpolant u

h

I

de�ned in (4.24) is as good as

the traditional interpolant u

h

i

.

We 
ome ba
k now to the problem of �nding suÆ
ient 
onditions on the subgrid that 
an

ensure (4.23). A �rst possibility, rather 
rude but quite useful in simple 
ases (for instan
e

when the subgrid 
ontains only one node per element, or just a few) is the following one:

9C

0

1

> 0 su
h that kb

h

k

0

� C

0

1

H

1=2

kb

h

k

s

8b

h

2 V

h

B

: (4.28)

In the simplest 
ase where we have a poor subgrid, 
onsisting of just one internal node in

ea
h element 


k

, 
ondition (4.28) is essentially equivalent to (4.23). Indeed, 
onsidering for

simpli
ity a 
ase in whi
h the 
oeÆ
ients in (2.2) are 
onstant, and w in (4.22) is linear,

assuming that the shape of the bubble b

k

is su
h that, in ea
h 


k

kb

k

k

0;


k

' j


k

j

�1=2

Z




k

b

k

dx (4.29)

we 
an write, in ea
h 


k

, �

h

= �b

k

and use (4.22) to determine �, obtaining

� =

L

a

w

R




k

b

k

dx

kb

k

k

2

s

' kL

a

wk

0;


kb

k

k

0

kb

k

k

2

s

; (4.30)

that gives

k�

h

k

0

' kL

a

wk

0;


k

kb

k

k

2

0

kb

k

k

2

s

; (4.31)

so that to get (4.23) we must have (4.28).

Inequality (4.28) should be 
ompared with the usual Poin
ar�e inequality, that would give

kb

h

k

0

� CH jb

h

j

1

8b

h

2 V

h

B

: (4.32)

In d dimensions, for a \normally shaped" bubble b

h

with maximum value equal to 1, we

expe
t kb

h

k

0

to behave like H

d=2

and jb

h

j

1

to behave like H

d=2�1

. Here we are dealing with

a two-dimensional problem; roughly speaking, in order to ful�ll (4.28) we must have that, in

ea
h ma
roelement 


k

, jb

h

j

1

behaves as "

�1=2

H

1=2

, instead of being ' 1. Inequality (4.28)

(that a
tually would be the same in any dimension) requires therefore that the subgrid nodes

are at a distan
e ' " (or smaller) from the boundary of the 
orresponding 


k

, as it is for

instan
e the 
ase for the pseudo-residual-free bubbles of [11℄, or for Shishkin meshes [32℄. We

shall see in a while that, if we have in mind subspa
es V

h

B

having more than a few degrees of

freedom, (4.28) is too restri
tive. However its use is quite easy, and we prefer to start with

it rather than with more 
ompli
ated variants. It is easy to see that (4.28) indeed implies

(4.23), when L has the stru
ture des
ribed in (4.1) with (4.2) and (4.3). A
tually taking

b

h

= �

h

in (4.22) using (4.1), (4.2), and (4.3), and �nally using (4.28), we obtain

k�

h

k

2

s

= L(�

h

; �

h

) = L(w; �

h

)

= "L

s

(w; �

h

) + L

a

(w; �

h

)

�M

s

kwk

s

k�

h

k

s

+M

a

kwk

1

k�

h

k

0

� k�

h

k

s

(M

s

kwk

s

+M

a

C

0

1

H

1=2

kwk

1

)

(4.33)
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whi
h easily gives the required estimate for k�

h

k

s

. To estimate k�

h

k

0

use again (4.28).

Another reasonably simple possibility would be to require that

9�

1

> 0 su
h that k�

h

k

0

� �

1

H sup

b

h

2V

h

B

L(�

h

; b

h

)

kb

h

k

0

8�

h

2 V

h

B

; (4.34)

together with

9�

2

> 0 su
h that "kb

h

k

1

� �

2

kb

h

k

0

8b

h

2 V

h

B

: (4.35)

It is easy to see that (4.28) and (4.34) 
oin
ide when V

h

B

has only one degree of freedom per

element. Indeed, in this 
ase

H sup

b

h

2V

h

B

L(�

h

; b

h

)

kb

h

k

0

k�

h

k

0

= H

L(�

h

; �

h

)

k�

h

k

2

0

= H

k�

h

k

2

s

k�

h

k

2

0

: (4.36)

On the other hand, also in the more general 
ase (4.34) and (4.35) always ensure (4.23).

Indeed, in the last step of (4.33), instead of k�

h

k

0

� C

0

1

H

1=2

k�

h

k

s

, we 
ould use (4.27) in

(4.34) to obtain the following estimate

k�

h

k

0

� �

1

H sup

b

h

2V

h

B

L(w; b

h

)

kb

h

k

0

; (4.37)

and then use (4.1), (4.2), (4.3), (4.21), and (4.35) to obtain, for every b

h

2 V

h

B

L(w; b

h

) = L

s

(w; b

h

) + L

a

(w; b

h

) � "M

s

kwk

1

kb

h

k

1

+M

a

kwk

1

kb

h

k

0

� maxfM

s

�

2

;M

a

gkwk

1

kb

h

k

0

:

(4.38)

Inserting it into (4.37) we have

k�

h

k

0

� �

1

HmaxfM

s

�

2

;M

a

gkwk

1

: (4.39)

Then, using (4.39) in the last step of (4.33) gives

k�

h

k

2

s

�M

s

k�

h

k

s

kwk

s

+M

a

�

1

HmaxfM

s

�

2

;M

a

gkwk

2

1

(4.40)

that, together with (4.39), provides the desired bound (4.23).

We also point out that, unfortunately, the easy (4.28) will not be satis�ed if the subgrid

has one or more internal nodes having distan
e of order H from all the other nodes. In this

situation we would indeed be able to 
onstru
t a fun
tion b

h

in V

h

B

with kb

h

k

0

' H and

kb

h

k

s

' "

1=2

, making (4.28) impossible to satisfy with C

0

1

independent of ".

Our se
ond assumption will be needed in order to prove error bounds for ku� u

h

k. In

order to present it, we shall need however one further pie
e of notation. To every v

h

2 V

h

H

we asso
iate in a unique way two other elements of V

h

H

, that we 
all v

h

L

(v

h

) and v

h

S

(v

h

) (or,

shortly, just v

h

L

and v

h

S

, respe
tively) by the 
onditions

v

h

L

(v

h

) = v

h

S

(v

h

) = v

h

on � and v

h

L

(v

h

) 2 V

h

L

; v

h

S

(v

h

) 2 V

h

S

; (4.41)

where V

h

L

and V

h

S

are de�ned in (4.19) and (4.20) respe
tively.

Assumption 2

9C

2

> 0 su
h that 8v

h

2 V

h

H

we have kL

a

v

h

S

(v

h

)k

0

� C

2

H

�1=2

kv

h

L

(v

h

)k

s

; (4.42)
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where 
learly L

a

is the (adve
tive) operator asso
iated with the bilinear form L

a

in (4.1). �

At �rst sight, Assumption 2 might seem rather obs
ure. A possible way of looking at

it is the following: we are 
omparing the lo
al dis
rete solutions of two di�erent problems,

with the same boundary data. Indeed, v

h

S

and v

h

L

have the same value on the boundary of

ea
h 


k

, and represent the dis
rete solutions, on the given subgrid, of L

s

v = 0 and Lv = 0,

respe
tively, where 
learly L

s

, in agreement with (4.1), denotes the symmetri
 part of the

operator L. In both sides of (4.42) we have terms in
luding �rst derivatives, but on the right-

hand side we have a term that behaves like H

�1=2

"

1=2

, that is mu
h smaller than 1 in the

interesting 
ases. Assumption 2 requires that the subgrid is su
h that the dis
rete solution

of the bad problem (Lv = 0) 
omes out to be bad enough so that its k � k

1

norm is big enough

to 
ompensate for the smallness of H

�1=2

"

1=2

. However, a suÆ
ient 
ondition for (4.42) to

hold is to have

kL

a

v

h

S

k � C

3

H

�1=2

sup

b

h

2V

h

B

L

a

(v

h

L

; b

h

)

kb

h

k

s

8v

h

2 V

h

H

(4.43)

for some positive 
onstant C

3

, where v

h

S

and v

h

L

are de�ned, starting from v

h

, as in (4.41).

Indeed, owing to the properties of fun
tions v

h

L

we have, for all b

h

2 V

h

B

,

L

a

(v

h

L

; b

h

) = �"L

s

(v

h

L

; b

h

) �M

s

kv

h

L

k

s

kb

h

k

s

: (4.44)

Hen
e (4.43) implies (4.42) with C

2

= C

3

M

s

. We note that, surprisingly enough, a small

value of " is a
tually helping in proving (4.43) for a given 
hoi
e of subgrid spa
es. Indeed, a

small " will, in general, make the norm kb

h

k

s

smaller (see (4.21)) in the denominator of (4.43),

without 
hanging kL

a

v

h

S

k

0

(that does not depend on ".) In pra
ti
al 
ases, the numerator of

(4.43), having �xed b

h

and v

h

(that is, the values of v

h

L

on �), also in
reases when " be
omes

smaller. Indeed we remind that, for a �xed v

h

, the value of v

h

L

(v

h

), as de�ned in (4.41), grows

when " be
omes smaller. It seems therefore that, in this approa
h, the 
are to be taken for

a small " is all in Assumption 1. On the other hand, for instan
e in the 
ase of one bubble

per element, it might happen that the shape of the bubbles b

k

is su
h that kb

k

k

s

, instead of

behaving like H

1=2

(or as H

d=2�1=2

in d dimensions) as required by (4.28), is a
tually bigger.

This would 
orrespond, for instan
e, to having a node whose distan
e from �


k

is smaller

than ". Then (4.42) might be violated, as the denominator in (4.43) be
omes too big. The

use of (4.28) and (4.42) together seems then to require that the internal node is exa
tly at

a distan
e of order " from the boundary. This agrees perfe
tly with the results obtained in

[11℄ in a more parti
ular 
ase.

Remark One might wonder why we took the pain to introdu
e v

h

S

, and use it in the left-

hand side of (4.42). The reason is simple. If we took v

h

L

instead of v

h

S

in the left-hand side

of (4.42) we would have obtained a very powerful assumption that is never satis�ed, even in

the simplest examples (one dimension, 
onstant 
oeÆ
ients, et
.). �

We are now ready to obtain error estimates for problem (4.17).

Theorem 3 In the same assumptions of Theorem 2, let u and u

h

be the solutions of (2.5)

and (4.17) respe
tively, and let u

h

i

be given in V

h

H

. Let moreover u

h

I

be de�ned as in (4.24).

Then there exists a 
onstant 


s

, independent of u, u

h

, u

h

i

, H, h, and " su
h that

ku� u

h

k

s

� 


s

(ku� u

h

I

k

s

+H

�1=2

ku� u

h

I

k

0

): (4.45)

Proof We set e

h

:= u

h

�u

h

I

and �

h

:= u�u

h

I

. We noti
e that e

h

� �

h

= u

h

�u, so that, by Galerkin

orthogonality,

L(e

h

� �

h

; v

h

) = 0 8v

h

2 V

h

H

: (4.46)
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Moreover, for all b

h

2 V

h

B

we have, using (4.17), (4.24) and (2.5)

L(e

h

; b

h

) = L(u

h

; b

h

)�L(u

h

I

; b

h

) = (f; b

h

)�L(u; b

h

) = 0; (4.47)

implying

e

h

2 V

h

L

(and hen
e e

h

L

� e

h

); (4.48)

that will be used later on. We 
an now use (4.21), (4.46), and (4.1) to obtain

ke

h

k

2

s

= L(e

h

; e

h

) = L(�

h

; e

h

) = "L

s

(�

h

; e

h

) + L

a

(�

h

; e

h

) � I + II: (4.49)

The bound for I is immediate

I = "L

s

(�

h

; e

h

) �M

s

k�

h

k

s

ke

h

k

s

: (4.50)

To bound II requires some additional work: �rst we introdu
e e

h

S

as in (4.41). We noti
e immediately

that e

h

S

turns out to be the proje
tion of e

h

onto V

h

S

in the k � k

s

-norm. Indeed for all v

h

S

2 V

h

S

we

have

L

s

(e

h

� e

h

S

; v

h

S

) = 0; (4.51)

sin
e e

h

� e

h

S

belongs to V

h

B

and L

s

is symmetri
. We dedu
e that, in parti
ular,

ke

h

S

k

2

s

+ ke

h

� e

h

S

k

2

s

= ke

h

k

2

s

: (4.52)

To estimate II we add and subtra
t e

h

S

II = L

a

(�

h

; e

h

) = L

a

(�

h

; e

h

S

) + L

a

(�

h

; e

h

� e

h

S

) � III + IV; (4.53)

and we bound the two pie
es separately. Using Cau
hy-S
hwarz, (4.42), and �nally (4.48) we obtain

III = L

a

(�

h

; e

h

S

) � k�

h

k

0

kL

a

e

h

S

k

0

� k�

h

k

0

C

2

H

�1=2

ke

h

L

k

s

= k�

h

k

0

C

2

H

�1=2

ke

h

k

s

: (4.54)

In order to bound IV we �rst noti
e that, thanks to (4.41) e

h

� e

h

S

belongs to V

h

B

. Using (4.24) we

have then

L

a

(�

h

; e

h

� e

h

S

) + L

s

(�

h

; e

h

� e

h

S

) = L(�

h

; e

h

� e

h

S

) = L(u� u

h

I

; e

h

� e

h

S

) = 0: (4.55)

Now using (4.55), (4.2), and (4.52) we have

IV = L

a

(�

h

; e

h

� e

h

S

) �M

s

k�

h

k

s

ke

h

� e

h

S

k

s

�M

s

k�

h

k

s

ke

h

k

s

: (4.56)

Colle
ting (4.49), (4.50), (4.53), (4.54), and (4.56) we have

ke

h

k

2

s

� ke

h

k

s

(2M

s

k�

h

k

s

+ C

2

H

�1=2

k�

h

k

0

); (4.57)

and we 
on
lude the proof using the triangle inequality. �

From (4.42), (4.48), and (4.57) we immediately have an estimate on the 
onve
tive part

of the error

H

1=2

kL

a

e

h

S

k � C

2

ke

h

L

k

s

= C

2

ke

h

k

s

� maxf2C

2

M

s

; C

2

2

g(k�

h

k

s

+H

�1=2

k�

h

k

0

): (4.58)

Comparing (4.45) and (4.58) with the previous results for the 
orresponding errors for

u � u

H

(see e.g. (4.14) and (4.16)), we see that our assumptions insure errors of the same

size.
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5 Con
lusions

We have seen a rather general setting that in
ludes many variants of two-level methods that

have been developed, more or less independently from ea
h other, for various appli
ations.

Many stabilised methods 
an also be in
luded in this setting. We have seen as well that,

for 
ertain problems like 
onve
tion dominated 
ows, the required stabilising e�e
t 
an be

obtained just with a suitable 
hoi
e of the subgrid. In parti
ular we proposed suÆ
ient


onditions on the subgrid dis
retisation in order to obtain error estimates of the same quality

as one 
ould obtain by solving (ideally) the �ne-level equations in an exa
t way.

The use of 
onditions of this type in self-adaptive pro
edures is surely worth investigating,

as well as their extension to non
onforming approximations for the subgrid problems, or to

other appli
ations.
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