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1 Introduction

In recent times, two-level methods are becoming popular in a wide variety of applications.
Sometimes they can be used to take advantage of parallel computers, as in Domain Decompo-
sition Methods (see for instance the series of proceedings of the yearly Conference in Domain
Decomposition Methods, visiting [16].) Other times, they are used in order to take into ac-
count small-scale effects, as for instance when dealing with composite materials having a fine
structure (see [4], [24], [25], and the review [17] with the references therein), or when dealing
with Helmholtz equations at high frequency ([18], [20].) They are also used in a posteriori
error analysis (see e.g. [29], [30], [31], and the references therein). Finally, they are often also
used to stabilise finite element formulations that lack the necessary stability properties, as
for convection—dominated flows or Stokes problems ([22], [21], [15]). In many cases, they are
not seen as two-level methods, but, as we shall see, they fit rather easily into this cathegory.

The first goal of this paper will indeed be to indicate a general framework that can be
seen as a generalisation of the augmented space method, in order to include a wide class of
these tricks, used for dealing with subscales, into a unified approach.

The second, and main goal of the paper, is to show that within this approach one can set
suitable conditions on the subgrids that ensure the optimal performance of the corresponding
two-level method. We shall do that in the particular case of advection dominated scalar
equations, where much is known (see e.g. [34], [35], [12], [36]), so that the quality of the
results can be evaluated in a sharper way. In particular, we shall see that a certain number
of stabilised methods can actually be interpreted just as a way of choosing a suitable subgrid,
and then applying the usual Galerkin framework (and computer programs). In other words,
one can stabilise the problem just by choosing the subgrid. This clearly can also be used in
self-adaptive methods.

It would be very interesting to study the possible extensions of this approach to other
problems, including more complicated fluid flows, or also problems of different applicative
nature.

2 The model problem

In order to describe the general idea, we take a simple model problem, or, rather, a class of
them. We assume that Q is a polygon in R?, and we set

V = H}(Q). (2.1)
We then consider a bilinear form (u,v) — L(u,v) defined as
2 2
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where clearly x = (z1,2). The coefficients a;;, b;, ¢;, d are supposed to be smooth functions
of x in 2. This will easily imply the continuity of the bilinear form £ on V' x V, that is

dM such that L(u,v) < M ||ully ||lv]ly, VYu,v e V. (2.3)
To simplify the exposition, we also assume that the bilinear form £ is V-elliptic:
Ja > 0 such that L(v,v) > « ||v||%/ Yo e V. (2.4)

For a given right-hand side f, say, in L%(f2), we then consider the variational problem

{ find v € V such that: (2.5)

L(u,v) = (f,v) YweY,

where, as usual, (, ) stands for the L?(€2) inner product. It is clear that, thanks to (2.4), prob-
lem (2.5) has a unique solution. In different applications, (2.5) can represent a convection—
dominated problem, or a problem with a composite material having a fine structure, or just a
nice elliptic problem where domain decomposition has to be used in order to take advantage
of a parallel computer. The approach that follows, however, can rather easily be extended to
systems of equations, including indefinite ones that can be found, for instance, in applications
to mixed methods.

3 The general idea

The general idea behind the class of methods we have in mind can be roughly described as
follows. We consider a splitting of 2 in a finite number of subpolygons Q, (k = 1,..,K) in
such a way that

UpQr =Q and Q,NQ =0 for r#s. (3.1)

In (3.1) each Q is supposed to be open, and €}, represents its closure. Then we set
3= U0, (3.2)
and we denote by ® the space of traces on X% of the functions of V', that is
®:={g € L*(%) such that 3v €V, Vs = g} (3.3)
Then we consider a finite dimensional subspace
Oy C O with N :=dim(Ppy), (3.4)

and the infinite dimensional subspace Vi of V' made by the functions in V' whose traces on
3 belong to @, that is
Vi = {v € V such that vz € ®p}. (3.5)

We can now consider the approximate problem:

{ find ug € Vi such that: (3.6)

[,(UH,’UH) = (f, ’UH) Yog € V.

It is clear from (2.4) that problem (3.6) also has a unique solution. In many applications,
the decomposition (3.1) will be made of triangles, with the usual compatibility conditions
(namely, for all r and s (with r # s) the intersection €2, N Q; must be either a common



Stabilising subgrids 3

vertex or a common edge or empty.) Then, we might choose a finite element space Vp (the
subjacent Polynomial space) and define ®p as the space spanned by the traces of Vp on
3. In these cases, the stabilising effects of passing from Vp to Vi are well known. See for
instance [12], [36] for the case of advection-dominated problems. In other cases, however,
the structure can be much more complicated. We might for instance have a grid on %,
and take @y as the set of functions that are continuous on ¥, vanishing on ¥ N 9Q and
piecewise polynomial on the given grid. Note that, in this case, the ;’s do not need to
be triangles or quadrilaterals, and even if they are we do not need compatibility conditions
among them. In these cases, there will be no obviuos starting space Vp. In other cases the
space @y can contain, besides or instead of piecewise polynomials, other functions having
suitable properties (exponentials, trigonometric functions, wavelets, or other problem-fitted
shapes). During an iterative procedure, these functions might be changed from time to time,
using suitable information obtained from the previous steps. As you can see, the framework
is rather general.
In any case, it is possible to identify the subspace (of bubbles) Vg which can simply be
defined as
Vp = H) (Q) CV = HY(Q). (3.7)

We can then identify another subspace Vz made of functions vz, in Vx such that
[,(?)L,UB) =0 VYo € Vg. (3.8)

If L is the differential operator associated with the bilinear form L, the elements of V7, are
local solutions of the partial differential equation

Lvr, =0 in Qy (3.9)
for all k£, and having traces on > that belong to ®. It is clear that

In some cases it will also be convenient to identify a third subspace, V-, made of functions
vr« in Vg such that
E(UB,UL*) =0 VYvp € Vp. (3.11)

If L* is the formal adjoint of the operator L, the elements of V- are local solutions of the
partial differential equation
L*vp« =0 in Qy (3.12)

for all k, also with traces in ®g. It is clear that together with (3.10) we also have
Ve =V« @ Vp. (3.13)

We also point out that both V and Vz- are finite dimensional, and dim(Vy) = dim(Vy-) =
dim(®g) = N.
Given the right-hand side f we can finally consider the particular solution ué € Vp such
that
L(ul,,vp) = (f,uB) Vup € Vp. (3.14)

In strong form, ug will be the solution, in every €, of the boundary value problem
Lul,=f inQ  ul,=0o0n0dQ. (3.15)

We have then the following theorem.
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Theorem 1 Let uy be the unique solution of (3.6), and let ugr = up+up be its decomposition
according to (3.10). Then up coincides with the unique solution ug of (3.14), and wuy, can be
characterized as the unique solution of either one of the following problems:

{ find ur, € Vi, such that (3.16)
L(ur,vr) + L(up,vr) = (f,vr) Yor € VL '
or
{ find ur, € Vi, such that (3.17)
ﬁ(’U,L,’UL*) = (f, ’UL*) Yo« € Vi«. ’

Proof It is clear from (2.4) that both (3.6) and (3.16) have a unique solution. Let uz be the solution
of (3.6) and let ugy = ur +up be its (unique) decomposition according to (3.10). Using the definition
(3.8) and then (3.6) for vy = vp we have

L(up,vB) = L(ur,vp) + L(up,vB) = L(un,vB) = (f,vB) Yuvp € Vg, (3.18)

which implies that up coincides with the unique solution uf, of (3.14). Then we can take vy = vz, in
(3.6) and obtain
(f,vr) = L(um,vr) = L(ur, + up,vr) Y € Vi, (3.19)

telling us that uz coincides with the unique solution of (3.16).

We still have to prove that uy, can also be characterised as the solution of (3.17), and that such
solution is unique. Using upg = up + uf; and v = vr~ in (3.6), and using (3.11) we immediately have
that ur, solves (3.17). Let now uz, be another possible solution, in V7, of (3.17). It is easy to see that
then upg := uy, + uf; verifies (3.6) for all vy« € Vi« and for all vg € V. Using (3.13) we have then
that ugr verifies (3.6) for all vy in V. As (3.6) has a unique solution, we conclude that ug = ug and
then 4z = ur, thanks to (3.10). Hence the uniqueness of the solution of (3.17) is also proved. =

In the case where one has a subjacent polynomial space Vp, one can present the problem
in another, slightly different way. Indeed, assuming for simplicity that Vp N Vg = (), we can

now split Vi = Vp @ Vg, and, accordingly, ug = up + upp. Then ugp solves
E(qu,vB) = —ﬁ(’u,p,?)B) + (f,?)B) Yvg € V3, (3.20)

that can be written, shortly, as

upp = L' (f — Lup). (3.21)
This, inserted into
L(up,vp) + L(upp,vp) = (f,vp) Yvp € Vp, (3.22)
gives
[,(Up,’l)p) — (LEIUP,L*’UP) = (f, ’Up) — (Lglf, L*’Up) Yvp € Vp, (3.23)

which could be considered as another equivalent way of writing the same problem (3.6), or
(3.16), or (3.17). Notice that, in particular, we have Lp'f = ué as defined in (3.14).
Methods of these types are found at several occurrences in the literature. For instance, for
convection dominated problems one can see [33], [34], and the references therein for methods
in the formulation (3.16) or (3.17), while the formulation (3.23) can be found in [13], and
its equivalence with stabilised methods as SUPG (see [14], [19], [26], [27]) is made clear in
[7]. Formulations of the type (3.16) or (3.17) can also be found, at a more abstract level
but for one-dimensional problems, in [5], and also, in more recent times, in [24], [25] for
homogeneisation problems. In some sense, the upscaling technique of [1], [2], [3] can also be
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seen in this framework, although it uses the mixed formulation as a starting point and hence
does not enter directly the present assumptions. See [10] for a more general setting that
includes the upscaling methods. Apart from one-dimensional cases (where they all give back
the exact solution, provided one solves exactly the differential equation in each subdomain,)
all these methods require a suitable approximation for the solutions of the problems inside
each subdomain, as we shall see below in more detail. A similar point of view could also be
taken when looking at Domain Decomposition problems, where (3.17) would represent a sort
of continuous Schur complement that needs however, one way or another, to be discretised.

Indeed, if we consider the problem of the actual solution of all these equivalent formula-
tions, several observations are in order. First of all, problem (3.14) is infinite dimensional,
and therefore its solution is, in general, out of reach. In some cases, however, one might
think that the knowledge of the traces of uy could provide enough information. However,
even if problem (3.17) is actually finite dimensional, it is not solvable in practice. Indeed,
in order to solve it on a computer, we should first choose a basis {w(i)} (i=1,..,N) in &y

(this is not so difficult,) and then associate to it a basis {vg)} (j=1,..,N) in V7, and a basis
{vgz} (i=1,..,N) in Vi, defined by:

W =p@Dony and L =0inQ, (j=1,..N; k=1,.,K), (3.24)
and, respectively,
v =yp@on® and L) =0inQ (i=1,.,N; k=1,.,K). (3.25)
()

Then, we can express ur, as ur, = » ;Ujv L] and reduce (3.17) to the linear system of equations
N . . .
S Ui o) = (f,00)) vi=1,.,N. (3.26)
7j=1

() @)

However, in order to compute the coefficients L£(v;’,v;:) of the matrix in (3.26), we need to
know the values of the vg) and vg) inside each g, that requires the solutions of the boundary
value problems (3.24) and (3.25); and this cannot be obtained in practice. Clearly we have
to resort to some approximate solution. It would be nice, however, to have guidelines that
indicate the necessary degree of accuracy that such approximate solution must have.

The same problem arises with the formulation (3.23). Indeed, expressing now up as
up =), Ujvg) we should now compute

N

S UL w@)) — (L5l L)) = (o) — (up, L)) Vi=1,.,N,  (3.27)

j=1
which again requires the (approximate) solution of the local problems defining Lglvg) for
each j, and ué. In these cases, having understood the stabilising effect of the additional
term appearing in the stiffness matrix of (3.27), that is —(LgluP,L*vp), the efforts have
been concentrated mostly in providing approximate solutions of (3.20) that reproduced the
same stabilising effect; see for instance [11], [8], [21], [9]. In particular, when Vp is made
of piecewise linear functions, we have that the stabilised problem corresponds exactly to the
SUPG method, with a specific value for the stabilising parameter 7. An approximate solution
will produce the same method with a different value of 7. One could then use the theory
of SUPG methods (see e.g. [28], [23], [35]) to get the proper conditions on 7, and hence,
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backward, on the quality of the approximation. This, however, apart from working only in
particular cases, seems somehow unfair.

In the next section we are going to follow a different approach. We suppose that in each
element ;. we have a subgrid, and a finite element space on this subgrid. The discretised
solutions of the local problems are then obtained by the standard Galerkin finite element
approximation. We want to see if we can prescribe reasonable conditions on these finite
element (subgrid) spaces, in order to preserve, in a sense to be made precise, the accuracy
that was (ideally) obtainable by solving (3.17). Unfortunately, we will not be able to do
that for a completely general problem, but we will have to consider a simplified advection
dominated case. We hope however that this might be a first step towards more general
results.

4 The choice of the subgrid

As announced at the end of the last section, we are now going to consider a particular case of
(2.2). In this particular case, we shall introduce sufficient conditions on the subgrid in order
to preserve the quality of the a-priori error bounds.

More precisely, we shall make the following assumptions on the bilinear form L:

L(u,v) = eLg(u,v) + Lq(u,v), (4.1)

where L¢(u,v) is a bilinear symmetric form on V' x V satisfying
|v|iQ < Ls(v,v) < M |v|iQ Yo eV, (4.2)
representing the diffusive term, while £, is a skew-symmetric bilinear form on V' x V satisfying
Lalu,v) € My lullgq biEg Vu,u eV, (43)

representing the convective term. Finally, € is a small parameter. We obviously assume that
some characteristic length of  (for instance its diameter) has been scaled to 1. It is not
difficult to check that the present case is a particular case of (2.2), that can be obtained for
instance by making very mild assumptions on the coefficients a;;, taking d and all b;’s equal
to zero and assuming the convective term ¢ = (¢;) to have zero divergence in .

Before discussing the choice of the subgrid, we first analyse the a-priori error estimates
for problem (3.6). Following essentially [12], we set

ey :=u—uy and ny:i=u—uly (4.4)
where uﬁq is any approximation of u in Vir. We immediately notice that
eqr —ng € Va (4.5)
so that by Galerkin orthogonality we have
L(eg,eq —ng) = 0. (4.6)
Using now (4.2) and (4.1), then (4.6), then again (4.1) and (4.2), we have

elen|? < L(ew,en) = Llew,num) = eLs(em,nu) + Lo(em,nm)
< eMslem| |nml + Lalem, nm).
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The trick to estimate L,(ep,n) is now to consider a generic function np in Vp and recall
that Vp is a subspace of V7, so that Galerkin orthogonality and (4.1) imply

0= L(em,n) =eLs(en,ns) + Lalen, np)- (4.8)
Then we can use (4.3), (4.8), and (4.2) and write

Lolem,ng) = Lolem,nag —nB) + Lo(em,nB)
< Malem |y [Ing —nBllg — €£Ls(em,nB) (4.9)
< MeYegly (e Y2 lng — nslly + 2 nsl),

having also, in the last step, collected £'/?|ey|, and set M := max{M,, M,}. Defining now

75l o == sup  inf {e 2 lng —npll, +'2nsl} (4.10)
e>0 NMBEVB

we immediately have from (4.9) and (4.10) that

La(emnm) < Melen|i [nalley jo (4.11)
that inserted in (4.7) gives the final estimate

e2ew)r < C (V0w + 178l 2)- (4.12)

As discussed in [12], and in the references therein, the norm (4.10) behaves, from the point
of view of interpolation error, as a 1/2-norm (hence the name we adopted here). See however
[6] for a much more detailed analysis of these types of norms. Assuming that H is a typical
length associated with the size of the Q’s, and assuming that, for some integer s > 1, we
have the interpolation errors

|77H r,Q < qsti-r ||u||s+1,Q r=0,1 (413)

we have then the usual error estimate (see e.g. [28], [23], [35])
e'legla < C(e'2H® + HoH'/?), (4.14)

We also notice that, with the same argument as in (4.9), we easily have, for every n € V' and
for every np € Vp

Lao(er,n) = Laler,n —np) + Lalen,np) < Me'Plen| |nlly (4.15)

that together with (4.14) produces a norm of the advective part of the error in the dual norm
of ||[[~1 o In practical cases, see always [12], this in turn produces the usual L? estimate for
the advective part of the error

H'?|c-Veglyq < C(e'?H® + H/?), (4.16)

Our target is now to give sufficient conditions on the subgrid discretisation in order to
preserve the error estimates (4.14) and (4.16). For this, we assume that we are given a finite
dimensional subspace VI’} C Vi, and we consider the fully discretised problem

h h .
{ find " € Vj; such that: (4.17)

L(ut o) = (f,o") Vol e VI
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We would like to have, for problem (4.17), a priori error estimates of the type (4.14)
(4.16). For this, we have to introduce suitable subspaces of V}’}, as we did before for V.
We set

VE = VEnvs, (4.18)
V] = {vl € VI such that: L(v},v) =0 Vol € VLY, (4.19)

and
V= (vt € VI such that:  L,(v%,0%) =0 Vol € VE}. (4.20)

To simplify the notation it will also be convenient to set
[o]|? := L4 (v,v) ~ e|v]2. (4.21)

We are now ready to introduce our assumptions on the space Vﬁ. We explicitly point out,
form the very beginning, that our assumptions are only sufficient for getting suitable error
bounds. So far, they have been taylored for cases where the local dimension of @ is small,
so that we can think to use spaces Vg that have a small dimension as well. We do believe
that there is room for many future improvements, and the present assumptions should be
regarded only as a beginning. Our first assumption will be

Assumption 1 There exists a constant C, independent of H, h, and € such that, for every
w € V the solution g" € V]g of

LB, ") = L(w,b") Vb € VE (4.22)

satisfies
18", + H™2) 8"y < Cr(llwll, + H?|Jwlly + H™2|wl|,), (4.23)

where, here and in all the sequel, H is some characteristic length associated with the €2’s
(as it was in (4.14) and (4.16)): to simplify the exposition, we can assume once and for all
that H is the maximum diameter of the €2;’s. =

Assumption 1 should be regarded in the following way: problem (4.22) corresponds to
solve a discrete problem, in each subdomain, exactly of the same type of the original one.
For all these problems we require stability estimates of the type that we expect for the global
problem (3.6) (see for instance the estimates (4.14) and (4.16)).

We shall come back in a while to discuss possible sufficient conditions that can ensure
(4.23). We first indicate the use that we are going to make of it.

For that we introduce a suitable interpolant of the exact solution u, that will allow an
easier derivation of error estimates. We start first by defining uzh as the usual interpolant of
u in V}’}. Then we define a new interpolant, u}} as follows

uP =ulon ™ and L(uP,bh) = L(u,b?) VO" € VL. (4.24)

Assumption 1 allows us to compare the distance ||u — u?|| with the corresponding ||u — u?||.

Theorem 2 Let Assumption 1 hold, let u be a given function in'V, and uf be a given function
mn VI’}. Assume finally that u’} is constructed as in (4.24). Then there exists a constants Cy
independent of u, u?, H, h, and ¢ such that

lu =l + B — g < Cr(llu —wllly + HY?u = ulll, + B~ ul). (4.25)
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Proof From (4.24) we have that u? must have the form u? = ul + g%, where 8" € V% is determined
b
’ L(u) + ", b") = L(u,b") Wb € Vg, (4.26)
that is,
L(B"b") = L(u—uf,b") Wb € V. (4.27)
The proof follows then immediately from (4.23) using the triangle inequality. =
Essentially, we are requiring that the new interpolant u/ defined in (4.24) is as good as
the traditional interpolant uf
We come back now to the problem of finding sufficient conditions on the subgrid that can
ensure (4.23). A first possibility, rather crude but quite useful in simple cases (for instance
when the subgrid contains only one node per element, or just a few) is the following one:

AC; > 0 such that ||b%||, < C] HY2|)p"||, Vo" € VE. (4.28)

In the simplest case where we have a poor subgrid, consisting of just one internal node in
each element €2, condition (4.28) is essentially equivalent to (4.23). Indeed, considering for
simplicity a case in which the coefficients in (2.2) are constant, and w in (4.22) is linear,
assuming that the shape of the bubble b is such that, in each €2

nwmgmuWAm@ (4.29)
13

we can write, in each Qy, 8" = ub;, and use (4.22) to determine y, obtaining

Low [ brdx 1%
k 0
p=——-rs—— | Lowlyq : (4.30)
Ibx2 AR
that gives
2
18%lg = 1 Lawllg 0, 73 (4.31)
16k [

so that to get (4.23) we must have (4.28).
Inequality (4.28) should be compared with the usual Poincaré inequality, that would give

16", < CH V"1 Vo' € VE. (4.32)

In d dimensions, for a “normally shaped” bubble " with maximum value equal to 1, we
expect [|b"[|, to behave like H%?2 and |b"|; to behave like H%?~!. Here we are dealing with
a two-dimensional problem; roughly speaking, in order to fulfill (4.28) we must have that, in
each macroelement Qy, |b"|; behaves as e~'/2H'/2, instead of being ~ 1. Inequality (4.28)
(that actually would be the same in any dimension) requires therefore that the subgrid nodes
are at a distance ~ ¢ (or smaller) from the boundary of the corresponding €y, as it is for
instance the case for the pseudo-residual-free bubbles of [11], or for Shishkin meshes [32]. We
shall see in a while that, if we have in mind subspaces Vg having more than a few degrees of
freedom, (4.28) is too restrictive. However its use is quite easy, and we prefer to start with
it rather than with more complicated variants. It is easy to see that (4.28) indeed implies
(4.23), when L has the structure described in (4.1) with (4.2) and (4.3). Actually taking
b* = p" in (4.22) using (4.1), (4.2), and (4.3), and finally using (4.28), we obtain

18217 = £(Bh, ") = L(w, Bh)
= 5£s(w7/6h) + La(waﬁh)
< M|l 18", + Mallwll, 18",
< 18| (Ml|wl], + M,CyHY?wl],)

(4.33)
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which easily gives the required estimate for [|3"||,. To estimate ||8"||, use again (4.28).
Another reasonably simple possibility would be to require that
LB b
Jk1 > 0 such that ||8"[|, < k1 H sup # vgh e VL (4.34)
bheVh [16%{]

together with
Jky > 0 such that ¢|b" ||, < ra V"], Vb" € VA (4.35)

It is easy to see that (4.28) and (4.34) coincide when V2 has only one degree of freedom per
element. Indeed, in this case

LB L(8"8") I8
H =H — s N

On the other hand, also in the more general case (4.34) and (4.35) always ensure (4.23).
Indeed, in the last step of (4.33), instead of ||B"|, < C{H'/?||8"||,, we could use (4.27) in
(4.34) to obtain the following estimate

18" < i sup 2022, (437)
bhevh 12 ||0
and then use (4.1), (4.2), (4.3), (4.21), and (4.35) to obtain, for every b" € V}
L(w,b") = Ly(w,b") + La(w,b") < eM|lwl], 6", + Malw]l, 16", (4.38)
< max{Mgrg, Mo }|w]; 6" (|-
Inserting it into (4.37) we have
18"y < K1 Hmax{ Mk, M, }|w|);. (4.39)
Then, using (4.39) in the last step of (4.33) gives
18"12 < MilIB" | llwll, + Mary Himax{ Mk, Mo} |w]? (4.40)

that, together with (4.39), provides the desired bound (4.23).

We also point out that, unfortunately, the easy (4.28) will not be satisfied if the subgrid
has one or more internal nodes having distance of order H from all the other nodes. In this
situation we would indeed be able to construct a function b* in V2 with ||p*|, ~ H and
6", = €'/2, making (4.28) impossible to satisfy with C} independent of «.

Our second assumption will be needed in order to prove error bounds for ||u — u"||. In
order to present it, we shall need however one further piece of notation. To every v" € V}’}
we associate in a unique way two other elements of V7, that we call v (v") and v%(v?) (or,
shortly, just v% and vg, respectively) by the conditions

V") = o) =P on T and W (0P) € VI, R (") € VE, (4.41)
where V}* and V[ are defined in (4.19) and (4.20) respectively.

Assumption 2

3C, > 0 such that Yo" € VA we have || Lo (v")||, < CoHY2||vf (v™) || (4.42)
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where clearly L, is the (advective) operator associated with the bilinear form £, in (4.1). =

At first sight, Assumption 2 might seem rather obscure. A possible way of looking at
it is the following: we are comparing the local discrete solutions of two different problems,
with the same boundary data. Indeed, vg and v% have the same value on the boundary of
each Q, and represent the discrete solutions, on the given subgrid, of Lysv =0 and Lv = 0,
respectively, where clearly L, in agreement with (4.1), denotes the symmetric part of the
operator L. In both sides of (4.42) we have terms including first derivatives, but on the right-
hand side we have a term that behaves like H~'/2¢'/2_ that is much smaller than 1 in the
interesting cases. Assumption 2 requires that the subgrid is such that the discrete solution
of the bad problem (Lv = 0) comes out to be bad enough so that its || - ||} norm is big enough
to compensate for the smallness of H~'/2¢1/2. However, a sufficient condition for (4.42) to
hold is to have -

I Lavkll < O3 12 sup Ll )

Vol € VA (4.43)
bhevh ||bh||s 7

for some positive constant C3, where v and v are defined, starting from v", as in (4.41).
Indeed, owing to the properties of functions v% we have, for all b € Vé’,

La(v},0") = —eLs (0], 6") < Mol |l (18", (4.44)

Hence (4.43) implies (4.42) with Cy = C3Ms. We note that, surprisingly enough, a small
value of ¢ is actually helping in proving (4.43) for a given choice of subgrid spaces. Indeed, a
small £ will, in general, make the norm ||b" |, smaller (see (4.21)) in the denominator of (4.43),
without changing || Lov’||, (that does not depend on ¢.) In practical cases, the numerator of
(4.43), having fixed b" and v" (that is, the values of v? on ¥), also increases when & becomes
smaller. Indeed we remind that, for a fixed v", the value of v? (v"), as defined in (4.41), grows
when ¢ becomes smaller. It seems therefore that, in this approach, the care to be taken for
a small ¢ is all in Assumption 1. On the other hand, for instance in the case of one bubble
per element, it might happen that the shape of the bubbles by, is such that ||b[|,, instead of
behaving like H'/2 (or as H%?~1/2 in d dimensions) as required by (4.28), is actually bigger.
This would correspond, for instance, to having a node whose distance from 0€ is smaller
than €. Then (4.42) might be violated, as the denominator in (4.43) becomes too big. The
use of (4.28) and (4.42) together seems then to require that the internal node is ezactly at
a distance of order ¢ from the boundary. This agrees perfectly with the results obtained in
[11] in a more particular case.

Remark One might wonder why we took the pain to introduce vg, and use it in the left-
hand side of (4.42). The reason is simple. If we took v instead of v% in the left-hand side
of (4.42) we would have obtained a very powerful assumption that is never satisfied, even in
the simplest examples (one dimension, constant coefficients, etc.). m®

We are now ready to obtain error estimates for problem (4.17).

Theorem 3 In the same assumptions of Theorem 2, let u and u” be the solutions of (2.5)
and (4.17) respectively, and let ul be given in V. Let moreover u® be defined as in (4.24).
Then there exists a constant s, independent of u, u", u?, H, h, and ¢ such that

h h —1/2 h
=Pl < s (llw =l + H 2 |u = uf||p).- (4.45)
Proof We set e := u —u” and n" := u —u®. We notice that e —n" = u" —u, so that, by Galerkin

orthogonality,
Le" —nh vty =0 Wl e Vi (4.46)
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Moreover, for all b* € V} we have, using (4.17), (4.24) and (2.5)
E(eha bh) = E(uha bh) - E(u?a bh) = (f, bh) — L(u, bh) =0, (4.47)

implying
el € V] (and hence e = eh), (4.48)

that will be used later on. We can now use (4.21), (4.46), and (4.1) to obtain
"2 = L(em, ) = L") = eLo(n” ") + La(n®,e?) = T+ IT. (4.49)
The bound for I is immediate
I=eLs(n" e") < Mlln" |l lle" - (4.50)
To bound II requires some additional work: first we introduce e% as in (4.41). We notice immediately

that et turns out to be the projection of e onto V& in the || - || ,-norm. Indeed for all v% € V& we
have

Ly(e" — el vh) =0, (4.51)

h

since e — el belongs to VA and L, is symmetric. We deduce that, in particular,

2 2 2
el + fle® — eI = [le” 2. (4.52)

To estimate IT we add and subtract ef
IT=Lo(n" e") = Loy, el) + Lo, e — el = TIT + 1V, (4.53)
and we bound the two pieces separately. Using Cauchy-Schwarz, (4.42), and finally (4.48) we obtain
11T = Lo (", &) < 0" llo 1Laeblly < 0" laCo B2 le} I, = IIn"lloCoEH /2|l (4.54)

In order to bound IV we first notice that, thanks to (4.41) e — et belongs to V. Using (4.24) we
have then

Lo(hye —ely + Lot el —el) = L(n" e —el) = L(u —ul, e —el) = 0. (4.55)
Now using (4.55), (4.2), and (4.52) we have
IV = La(n",e" — €5) < Mylln"||, lle" — e§ll; < Milln"|l, [le"]l,. (4.56)
Collecting (4.49), (4.50), (4.53), (4.54), and (4.56) we have
e 12 < lletll, Ml ], + CoH= 21" ,), (4.57)

and we conclude the proof using the triangle inequality. m
From (4.42), (4.48), and (4.57) we immediately have an estimate on the convective part
of the error

H'?||Loell| < Callel |l = Calle®ll, < max{2C: My, G5} (In" [l + H™'?|In"[lg).  (4.58)
Comparing (4.45) and (4.58) with the previous results for the corresponding errors for

u—upg (see e.g. (4.14) and (4.16)), we see that our assumptions insure errors of the same
size.
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5 Conclusions

We have seen a rather general setting that includes many variants of two-level methods that
have been developed, more or less independently from each other, for various applications.
Many stabilised methods can also be included in this setting. We have seen as well that,
for certain problems like convection dominated flows, the required stabilising effect can be
obtained just with a suitable choice of the subgrid. In particular we proposed sufficient
conditions on the subgrid discretisation in order to obtain error estimates of the same quality
as one could obtain by solving (ideally) the fine-level equations in an exact way.

The use of conditions of this type in self-adaptive procedures is surely worth investigating,
as well as their extension to nonconforming approximations for the subgrid problems, or to
other applications.
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